1
|
Pason P, Tachaapaikoon C, Suyama W, Waeonukul R, Shao R, Wongwattanakul M, Limpaiboon T, Chonanant C, Ngernyuang N. Anticancer and anti-angiogenic activities of mannooligosaccharides extracted from coconut meal on colorectal carcinoma cells in vitro. Toxicol Rep 2024; 12:82-90. [PMID: 38259721 PMCID: PMC10801218 DOI: 10.1016/j.toxrep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies, though there are no effective therapeutic regimens at present. This study aimed to investigate the inhibitory effects of mannooligosaccharides extracted from coconut meal (CMOSs) on the proliferation and migration of human colorectal cancer HCT116 cells in vitro. The results showed that CMOSs exhibited significant inhibitory activity against HCT116 cell proliferation in a concentration-dependent manner with less cytotoxic effects on the Vero normal cells. CMOSs displayed the ability to increase the activation of caspase-8, -9, and -3/7, as well as the generation of reactive oxygen species (ROS). Moreover, CMOSs suppressed HCT116 cell migration in vitro. Interestingly, treatment of human microvascular endothelial cells (HMVECs) with CMOSs resulted in the inhibition of cell proliferation, cell migration, and capillary-like tube formation, suggesting its anti-vascular angiogenesis. In summary, the results of this study indicate that CMOSs could be a valuable therapeutic candidate for CRC treatment.
Collapse
Affiliation(s)
- Patthra Pason
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Waralee Suyama
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rong Shao
- Shanghai Key Laboratory for Gallbladder Cancer-Related Gastroenterological Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200089, China
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chirapond Chonanant
- Department of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi 20131, Thailand
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Du J, Fang L, Zhao J, Yu Y, Feng Z, Wang Y, Cheng Y, Li B, Gao F, Liu C. Zymosan-A promotes the regeneration of intestinal stem cells by upregulating ASCL2. Cell Death Dis 2022; 13:884. [PMID: 36266266 PMCID: PMC9585075 DOI: 10.1038/s41419-022-05301-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023]
Abstract
Intestinal stem cells (ISCs) are responsible for intestinal tissue homeostasis and are important for the regeneration of the damaged intestinal epithelia. Through the establishment of ionizing radiation (IR) induced intestinal injury model, we found that a TLR2 agonist, Zymosan-A, promoted the regeneration of ISCs in vivo and in vitro. Zymosan-A improved the survival of abdominal irradiated mice (81.82% of mice in the treated group vs. 30% of mice in the PBS group), inhibited the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts and the number of ISCs after lethal IR in vivo. Through organoid experiments, we found that Zymosan-A promoted the proliferation and differentiation of ISCs after IR. Remarkably, the results of RNA sequencing and Western Blot (WB) showed that Zymosan-A reduced IR-induced intestinal injury via TLR2 signaling pathway and Wnt signaling pathway and Zymosan-A had no radioprotection on TLR2 KO mice, suggesting that Zymosan-A may play a radioprotective role by targeting TLR2. Moreover, our results revealed that Zymosan-A increased ASCL2, a transcription factor of ISCs, playing a core role in the process of Zymosan-A against IR-induced intestinal injury and likely contributing to the survival of intestinal organoids post-radiation. In conclusion, we demonstrated that Zymosan-A promotes the regeneration of ISCs by upregulating ASCL2.
Collapse
Affiliation(s)
- Jicong Du
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Lan Fang
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Jianpeng Zhao
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Yike Yu
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Zhenlan Feng
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Yuedong Wang
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Ying Cheng
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Bailong Li
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Fu Gao
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Cong Liu
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| |
Collapse
|
3
|
He W, Su J, Liu D, Huang K. Mannan Oligosaccharide Could Attenuate Ochratoxin A-Induced Immunosuppression with Long-Time Exposure Instead of Immunostimulation with Short-Time Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11461-11469. [PMID: 34542274 DOI: 10.1021/acs.jafc.1c04485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Our previous study showed that ochratoxin A (OTA), one of the most common mycotoxins in feed, could induce immunosuppression with long-time exposure but immunostimulation with short-time exposure. However, limited studies for the control of OTA-induced two-way immune toxicity were carried out. This study explored the effects of mannan oligosaccharide (MOS), a glucomannoprotein complex with immunoregulatory capability derived from the yeast cell wall, on OTA-induced immune toxicity and its underlying mechanisms. Surprisingly, the results showed that MOS significantly attenuated immunosuppression induced by long-time OTA treatment but did not provide protection against immunostimulation induced by short-time OTA treatment on porcine alveolar macrophages (PAMs), as demonstrated by the expressions of inflammatory cytokines and the capability of migration and phagocytosis. Further, MOS increased the OTA-inhibited autophagy level and the JNK phosphorylation level on PAMs with long-time OTA treatment. In addition, the inhibition of autophagy by 3-MA or the inhibition of JNK phosphorylation by SP600125 could partly block the protective effects of MOS on OTA-induced immunosuppression. Importantly, the inhibition of JNK phosphorylation down-regulated the MOS-promoted autophagy level. In conclusion, MOS could attenuate OTA-induced immunosuppression with short-time exposure on PAMs through activating JNK-mediated autophagy but had no significant effects on OTA-induced immunostimulation with short-time exposure. Our study provides new insights into the application of MOS as an immunoregulator against mycotoxin-induced immune toxicity.
Collapse
Affiliation(s)
- Wenmiao He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jiarui Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
4
|
Sanguri S, Gupta D. Prebiotic Mannan Oligosaccharide Pretreatment Improves Mice Survival Against Lethal Effects of Gamma Radiation by Protecting GI Tract and Hematopoietic Systems. Front Oncol 2021; 11:677781. [PMID: 34249717 PMCID: PMC8266395 DOI: 10.3389/fonc.2021.677781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Total body irradiation (TBI) results in critical injuries in a dose dependent manner that primarily damages highly proliferating tissues including hematopoietic stem cells (HSCs) and intestinal crypt stem cells etc. This may result in hematopoietic syndrome leading to bone marrow failure and gastrointestinal syndrome leading to chronic intestinal functional alterations. Death results from the gastrointestinal syndrome due to sepsis, bleeding, dehydration, and multi-system organ failure. We demonstrate that the prebiotic mannan oligosaccharide (MOS) pretreatment substantially prolongs survival in both male and female mice when administered 2 h prior to radiation either through oral or intraperitoneal route. The radioprotective efficacy of MOS was found to be age dependent and improves survival even in aged mice (12–13 months old). MOS pretreatment effectively abrogates radiation-induced hematopoietic injury and accelerates recovery of lymphocytes and WBCs and alleviates depletion of circulatory blood cells. Results also illustrate that MOS pretreatment abolishes crypt cell death and denudation of villi in comparison to the respective irradiated animals and ameliorates the overall radiation-induced damage to the GI system. MOS pretreatment facilitates intestinal recovery leading to enhanced animal survival demonstrating its protection efficacy against TBI induced mortality. Moreover, MOS pretreated animals show signs of accelerated recovery in terms of severity of radiation sickness symptoms including weight loss and completely abolish TBI associated mortality.
Collapse
Affiliation(s)
- Sweta Sanguri
- Division of Metabolic Cell Signaling Research, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Damodar Gupta
- Division of Metabolic Cell Signaling Research, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| |
Collapse
|
5
|
Ionizing radiation and toll like receptors: A systematic review article. Hum Immunol 2021; 82:446-454. [PMID: 33812705 DOI: 10.1016/j.humimm.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Ionizing radiation, including X and gamma rays, are used for various purposes such as; medicine, nuclear power, research, manufacturing, food preservation and construction. Furthermore, people are also exposed to ionizing radiation from their workplace or the environment. Apart from DNA fragmentation resulting in apoptosis, several additional mechanisms have been proposed to describe how radiation can alter human cell functions. Ionizing radiation may alter immune responses, which are the main cause of human disorders. Toll like receptors (TLRs) are important human innate immunity receptors which participate in several immune and non-immune cell functions including, induction of appropriate immune responses and immune related disorders. Based on the role played by ionizing radiation on human cell systems, it has been hypothesized that radiation may affect immune responses. Therefore, the main aim of this review article is to discuss recent information regarding the effects of ionizing radiation on TLRs and their related disorders.
Collapse
|
6
|
In silico and experimental studies of bovine serum albumin-encapsulated carbenoxolone nanoparticles with reduced cytotoxicity. Colloids Surf B Biointerfaces 2021; 202:111670. [PMID: 33740634 DOI: 10.1016/j.colsurfb.2021.111670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022]
Abstract
Carbenoxolone (CBX) is a semi-synthetic plant derivative with pleiotropic pharmacological properties like anti-microbial and anti-inflammatory activities. Though approved for treatment of gastric ulcers, its use is limited due to adverse effects such as cytotoxicity. Bovine serum albumin (BSA) is a natural, non-toxic protein with high water-solubility and low immunogenicity, and is widely used as a nanocarrier for targeted drug delivery. In the present study, controlled release BSA-CBX nanoparticles (NPs) were synthesized by desolvation method to reduce drug cytotoxicity. These NPs showed desirable physicochemical properties such as particle size (∼240 nm), polydispersity index (0.08), zeta potential (-7.12 mV), drug encapsulation efficiency (72 %), and were stable for at least 3 months at room temperature. The drug was released from the BSA-CBX NPs in a biphasic manner in vitro following non-fickian diffusion. Computational analysis determined that the binding between BSA and CBX occurred through van der Waals forces, hydrophobic interactions, and hydrogen bonds with 93 % steric stability. Further, the cytotoxic assays demonstrated ∼1.8-4.9-fold reduction in cytotoxicity using three human cell lines (A549, MCF-7, and U-87). Subsequently, this novel CBX formulation with BSA as an efficient carrier can potentially be used for diverse biomedical applications.
Collapse
|
7
|
Liu JW, Piersma S, Tang SY. The age-dependent effect of high-dose X-ray radiation on NFκB signaling, structure, and mechanical behavior of the intervertebral disc. Connect Tissue Res 2020; 61:399-408. [PMID: 31875721 PMCID: PMC7190425 DOI: 10.1080/03008207.2019.1703963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Ionizing radiation damages tissue and provokes inflammatory responses in multiple organ systems. We investigated the effects of high-dose X-ray radiation on the molecular inflammation and mechanical function of the intervertebral disc (IVD).Methods: Functional spine units (FSUs) containing the vertebrae-IVDs-vertebrae structure extracted from 1-month, 6-month, and 16-month-old NFκB-luciferase reporter mice and from 6-month-old myeloid differentiation factor 88 (MyD88)-null mice. After a preconditioning period in culture, the FSUs were subjected a single dose of ionizing X-ray radiation at 20 Gys, and then NFκB expression was monitored. The IVDs were then subjected to mechanical testing using dynamic compression, glycosaminoglycan (GAG) quantification, and histological analyses.Results: In the 1-month-old FSUs, the NFκB-driven luciferase activity was significantly elevated for 1 day following the exposure to radiation. The 6-month-old FSUs showed increased NFκB activity for 3 days, while the 16-month-old FSUs sustained elevated levels of NFκB activity throughout the 10-day culture period. All irradiated groups showed significant loss of disc height, GAG content, mechanical function and changes in structure. Ablation of MyD88 blunted the radiation-mediated NFκB signaling, and preserved GAG content, and the IVDs' structure and mechanical performance.Conclusions: These results suggest that high-dose radiation affects the IVDs' NFκB-dependent inflammatory processes that subsequently lead to functional deterioration. Blocking the transactivation potential of NFκB via MyD88 ablation preserved the structure and mechanical function of the FSUs. The long-term effects of radiation on IVD homeostasis should be considered in individuals susceptible to occupational and medical exposure.
Collapse
Affiliation(s)
- Jennifer W. Liu
- Department of Biomedical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Orthopaedic Surgery, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| | - Sytse Piersma
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| | - Simon Y. Tang
- Department of Biomedical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Orthopaedic Surgery, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Materials Science and Mechanical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| |
Collapse
|
8
|
Kun C, Tao L, Leiyuan H, Yunhao F, Ning W, Zhe L, Yuanyuan C, Xiao L, Hongran Q, Jianming C, Fu G, Yanyong Y. Heat-killed Salmonella typhimurium mitigated radiation-induced lung injury. Clin Exp Pharmacol Physiol 2019; 46:1084-1091. [PMID: 31291700 DOI: 10.1111/1440-1681.13135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023]
Abstract
Radiation-induced lung injury (RILI) is a serious complication in thoracic tumour radiotherapy. It often occurs in clinical chest radiotherapy and acute whole-body irradiation (WBI) caused by nuclear accidents or nuclear weapon attack. Some radioprotective agents have been reported to exert protective effects when given prior to radiation exposure, however, there is no treatment strategy available for preventing RILI. In this study, we demonstrated that heat-killed Salmonella typhimurium (HKST), a co-agonist of Toll-like receptors 2 (TLR2), Toll-like receptors 4 (TLR4) and Toll-like receptors 5 (TLR5), mitigated radiation-induced lung injury through the transforming growth factor-β (TGF-β) signalling pathway. We found that HKST alleviated lung hyperaemia and pathological damage after irradiation, indicated that HKST inhibits the early inflammatory reaction of radiation-induced lung injury. Then, for the first time, we observed HKST reduced collagen deposit induced by irradiation in the later phase (7-14 week) of RILI, and we found that HKST inhibited radiation-induced cell apoptosis in lung tissues. We found that HKST reduced the level of TGF-β and regulated its downstream signalling pathway. Finally, it was found that HKST inhibited radiation-induced epithelial-mesenchymal transition (EMT) in lung tissues. In conclusion, our data showed that HKST effectively mitigated RILI through regulating TGF-β, provide novel treatment strategy for RILI in whole-body irradiation and radiotherapy.
Collapse
Affiliation(s)
- Cao Kun
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Luo Tao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Hu Leiyuan
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Fang Yunhao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Wu Ning
- Department of Respiratory, Changhai Hospital, Shanghai, China
| | - Liu Zhe
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Chen Yuanyuan
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Lei Xiao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qin Hongran
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Cai Jianming
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Gao Fu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yang Yanyong
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Mohan S, Gupta D. Role of Nrf2-antioxidant in radioprotection by root extract of Inula racemosa. Int J Radiat Biol 2019; 95:1122-1134. [DOI: 10.1080/09553002.2019.1607607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shikha Mohan
- Division of Capacity Enhancement and Product Induction, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Damodar Gupta
- Division of Capacity Enhancement and Product Induction, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
10
|
Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy. Microorganisms 2019; 7:microorganisms7040097. [PMID: 30987157 PMCID: PMC6518429 DOI: 10.3390/microorganisms7040097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pelvic radiotherapy has been frequently reported to cause acute and late onset gastrointestinal (GI) toxicities associated with significant morbidity and mortality. Although the underlying mechanisms of pelvic radiation-induced GI toxicity are poorly understood, they are known to involve a complex interplay between all cell types comprising the intestinal wall. Furthermore, increasing evidence states that the human gut microbiome plays a role in the development of radiation-induced health damaging effects. Gut microbial dysbiosis leads to diarrhea and fatigue in half of the patients. As a result, reinforcement of the microbiome has become a hot topic in various medical disciplines. To counteract GI radiotoxicities, apart from traditional pharmacological compounds, adjuvant therapies are being developed including food supplements like vitamins, prebiotics, and probiotics. Despite the easy, cheap, safe, and feasible approach to protect patients against acute radiation-induced toxicity, clinical trials have yielded contradictory results. In this review, a detailed overview is given of the various clinical, intestinal manifestations after pelvic irradiation as well as the role of the gut microbiome herein. Furthermore, whilst discussing possible strategies to prevent these symptoms, food supplements are presented as auspicious, prophylactic, and therapeutic options to mitigate acute pelvic radiation-induced GI injury by exploring their molecular mechanisms of action.
Collapse
|