1
|
Dorna D, Kleszcz R, Paluszczak J. Triple Combinations of Histone Lysine Demethylase Inhibitors with PARP1 Inhibitor-Olaparib and Cisplatin Lead to Enhanced Cytotoxic Effects in Head and Neck Cancer Cells. Biomedicines 2024; 12:1359. [PMID: 38927566 PMCID: PMC11201379 DOI: 10.3390/biomedicines12061359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
PARP inhibitors are used to treat cancers with a deficient homologous recombination (HR) DNA repair pathway. Interestingly, recent studies revealed that HR repair could be pharmacologically impaired by the inhibition of histone lysine demethylases (KDM). Thus, we investigated whether KDM inhibitors could sensitize head and neck cancer cells, which are usually HR proficient, to PARP inhibition or cisplatin. Therefore, we explored the effects of double combinations of KDM4-6 inhibitors (ML324, CPI-455, GSK-J4, and JIB-04) with olaparib or cisplatin, or their triple combinations with both drugs, on the level of DNA damage and apoptosis. FaDu and SCC-040 cells were treated with individual compounds and their combinations, and cell viability, apoptosis, DNA damage, and gene expression were assessed using the resazurin assay, Annexin V staining, H2A.X activation, and qPCR, respectively. Combinations of KDM inhibitors with cisplatin enhanced cytotoxic effects, unlike combinations with olaparib. Triple combinations of KDM inhibitors with cisplatin and olaparib exhibited the best cytotoxic activity, which was associated with DNA damage accumulation and altered expression of genes associated with apoptosis induction and cell cycle arrest. In conclusion, triple combinations of KDM inhibitors (especially GSK-J4 and JIB-04) with cisplatin and olaparib represent a promising strategy for head and neck cancer treatment.
Collapse
Affiliation(s)
- Dawid Dorna
- Poznan University of Medical Sciences, Doctoral School, Department of Pharmaceutical Biochemistry, 60-806 Poznan, Poland;
| | - Robert Kleszcz
- Poznan University of Medical Sciences, Department of Pharmaceutical Biochemistry, 60-806 Poznan, Poland;
| | - Jarosław Paluszczak
- Poznan University of Medical Sciences, Department of Pharmaceutical Biochemistry, 60-806 Poznan, Poland;
| |
Collapse
|
2
|
Matar M, Prince G, Hamati I, Baalbaky M, Fares J, Aoude M, Matar C, Kourie HR. Implication of KDM6A in bladder cancer. Pharmacogenomics 2023; 24:509-522. [PMID: 37458596 DOI: 10.2217/pgs-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Background: Bladder cancer is a common urogenital malignancy characterized by frequent genetic alterations. Histone demethylase gene KDM6A is commonly mutated in bladder cancer. Aim: To review the characteristics of KDM6A and its mutation consequences, and to introduce a potential KDM6A-targeted treatment. Methods: We conducted a comprehensive literature search using two electronic databases, MEDLINE and Cochrane Library, to retrieve topic-related articles from July 2013 to July 2022 using keywords 'KDM6A', 'bladder cancer', 'UTX', 'treatment' and 'mutation'. Five reviewers independently screened literature search results and abstracted data from included studies. Descriptive analysis was conducted and 30 articles were retained. Main Results: A total of 30 articles were retrieved. Experimental and clinical data were collected and grouped by theme. Therapeutic strategies are depicted and organized by tables for a better understanding. Conclusion: This review demonstrates that KDM6A has crucial implications in bladder cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Marianne Matar
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Gilles Prince
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Ibrahim Hamati
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Maria Baalbaky
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Jonas Fares
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Marc Aoude
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Charbel Matar
- Division of Hematology-Oncology, Internal Medicine Department, George Washington University Hospital, 20037, Washington DC, USA
| | - Hampig Raphael Kourie
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| |
Collapse
|
3
|
Özden-Yılmaz G, Savas B, Bursalı A, Eray A, Arıbaş A, Senturk S, Karaca E, Karakülah G, Erkek-Ozhan S. Differential Occupancy and Regulatory Interactions of KDM6A in Bladder Cell Lines. Cells 2023; 12:cells12060836. [PMID: 36980177 PMCID: PMC10047809 DOI: 10.3390/cells12060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic deregulation is a critical theme which needs further investigation in bladder cancer research. One of the most highly mutated genes in bladder cancer is KDM6A, which functions as an H3K27 demethylase and is one of the MLL3/4 complexes. To decipher the role of KDM6A in normal versus tumor settings, we identified the genomic landscape of KDM6A in normal, immortalized, and cancerous bladder cells. Our results showed differential KDM6A occupancy in the genes involved in cell differentiation, chromatin organization, and Notch signaling depending on the cell type and the mutation status of KDM6A. Transcription factor motif analysis revealed HES1 to be enriched at KDM6A peaks identified in the T24 bladder cancer cell line; moreover, it has a truncating mutation in KDM6A and lacks a demethylase domain. Our co-immunoprecipitation experiments revealed TLE co-repressors and HES1 as potential truncated and wild-type KDM6A interactors. With the aid of structural modeling, we explored how truncated KDM6A could interact with TLE and HES1, as well as RUNX and HHEX transcription factors. These structures provide a solid means of studying the functions of KDM6A independently of its demethylase activity. Collectively, our work provides important contributions to the understanding of KDM6A malfunction in bladder cancer.
Collapse
Affiliation(s)
| | - Busra Savas
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ahmet Bursalı
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Alirıza Arıbaş
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | |
Collapse
|
4
|
Ahmed SS, Rifat ZT, Lohia R, Campbell AJ, Dunker AK, Rahman MS, Iqbal S. Characterization of intrinsically disordered regions in proteins informed by human genetic diversity. PLoS Comput Biol 2022; 18:e1009911. [PMID: 35275927 PMCID: PMC8942211 DOI: 10.1371/journal.pcbi.1009911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/23/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
All proteomes contain both proteins and polypeptide segments that don’t form a defined three-dimensional structure yet are biologically active—called intrinsically disordered proteins and regions (IDPs and IDRs). Most of these IDPs/IDRs lack useful functional annotation limiting our understanding of their importance for organism fitness. Here we characterized IDRs using protein sequence annotations of functional sites and regions available in the UniProt knowledgebase (“UniProt features”: active site, ligand-binding pocket, regions mediating protein-protein interactions, etc.). By measuring the statistical enrichment of twenty-five UniProt features in 981 IDRs of 561 human proteins, we identified eight features that are commonly located in IDRs. We then collected the genetic variant data from the general population and patient-based databases and evaluated the prevalence of population and pathogenic variations in IDPs/IDRs. We observed that some IDRs tolerate 2 to 12-times more single amino acid-substituting missense mutations than synonymous changes in the general population. However, we also found that 37% of all germline pathogenic mutations are located in disordered regions of 96 proteins. Based on the observed-to-expected frequency of mutations, we categorized 34 IDRs in 20 proteins (DDX3X, KIT, RB1, etc.) as intolerant to mutation. Finally, using statistical analysis and a machine learning approach, we demonstrate that mutation-intolerant IDRs carry a distinct signature of functional features. Our study presents a novel approach to assign functional importance to IDRs by leveraging the wealth of available genetic data, which will aid in a deeper understating of the role of IDRs in biological processes and disease mechanisms.
Collapse
Affiliation(s)
- Shehab S. Ahmed
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Zaara T. Rifat
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Ruchi Lohia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Arthur J. Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - M. Sohel Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
- * E-mail: (MSR); (SI)
| | - Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MSR); (SI)
| |
Collapse
|
5
|
KDM6A missense variants hamper H3 histone demethylation in lung squamous cell carcinoma. Comput Struct Biotechnol J 2022; 20:3151-3160. [PMID: 35782738 PMCID: PMC9232545 DOI: 10.1016/j.csbj.2022.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
KDM6A is the disease causative gene of type 2 Kabuki Syndrome, a rare multisystem disease; it is also a known cancer driver gene, with multiple somatic mutations found in a few cancer types. In this study, we looked at eleven missense variants in lung squamous cell carcinoma, one of the most common lung cancer subtypes, to see how they affect the KDM6A catalytic mechanisms. We found that they influence the interaction with histone H3 and the exposure of the trimethylated Lys27, which is critical for wild-type physiological function to varying degrees, by altering the conformational transition.
Collapse
|