1
|
Hill SJ, Kilpatrick LE. Kinetic analysis of fluorescent ligand binding to cell surface receptors: Insights into conformational changes and allosterism in living cells. Br J Pharmacol 2024; 181:4091-4102. [PMID: 37386806 DOI: 10.1111/bph.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.
Collapse
Affiliation(s)
- Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Tydings CW, Singh B, Smith AW, Ledwitch KV, Brown BP, Lovly CM, Walker AS, Meiler J. Analysis of EGFR binding hotspots for design of new EGFR inhibitory biologics. Protein Sci 2024; 33:e5141. [PMID: 39275996 PMCID: PMC11400634 DOI: 10.1002/pro.5141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/16/2024]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) is activated by the binding of one of seven EGF-like ligands to its ectodomain. Ligand binding results in EGFR dimerization and stabilization of the active receptor conformation subsequently leading to activation of downstream signaling. Aberrant activation of EGFR contributes to cancer progression through EGFR overexpression/amplification, modulation of its positive and negative regulators, and/or activating mutations within EGFR. EGFR targeted therapeutic antibodies prevent dimerization and interaction with endogenous ligands by binding the ectodomain of EGFR. However, these antibodies have had limited success in the clinic, partially due to EGFR ectodomain resistance mutations, and are only applicable to a subset of patients with EGFR-driven cancers. These limitations suggest that alternative EGFR targeted biologics need to be explored for EGFR-driven cancer therapy. To this end, we analyze the EGFR interfaces of known inhibitory biologics with determined structures in the context of endogenous ligands, using the Rosetta macromolecular modeling software to highlight the most important interactions on a per-residue basis. We use this analysis to identify the structural determinants of EGFR targeted biologics. We suggest that commonly observed binding motifs serve as the basis for rational design of new EGFR targeted biologics, such as peptides, antibodies, and nanobodies.
Collapse
Affiliation(s)
- Claiborne W. Tydings
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Bhuminder Singh
- Department of Medicine – Division of Gastroenterology, Hepatology, and NutritionVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Adam W. Smith
- Department of Chemistry and BiochemistryTexas Tech UniversityLubbockTexasUSA
| | - Kaitlyn V. Ledwitch
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Benjamin P. Brown
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Christine M. Lovly
- Department of Medicine – Division of Hematology and OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Allison S. Walker
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
| | - Jens Meiler
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Institute for Drug DiscoveryLeipzig University Medical SchoolLeipzigSACGermany
| |
Collapse
|
3
|
Ranjbar S, Mehrabi M, Akbari V, Pashaei S, Khodarahmi R. "Cyclophilin A" Enzymatic Effect on the Aggregation Behavior of 1N4R Tau Protein: An Overlooked Crucial Determinant that should be Re-considered in Alzheimer's Disease Pathogenesis. Curr Alzheimer Res 2024; 21:242-257. [PMID: 39161146 DOI: 10.2174/0115672050330163240812050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Neurodegenerative disorders like Alzheimer's disease (AD) involve the abnormal aggregation of tau protein, which forms toxic oligomers and amyloid deposits. The structure of tau protein is influenced by the conformational states of distinct proline residues, which are regulated by peptidyl-prolyl isomerases (PPIases). However, there has been no research on the impact of human cyclophilin A (CypA) as a PPIase on (non-phosphorylated) tau protein aggregation. METHODS On the basis of these explanations, we used various spectroscopic techniques to explore the effects of CypA on tau protein aggregation behavior. RESULTS We demonstrated the role of the isomerization activity of CypA in promoting the formation of tau protein amyloid fibrils with well-defined and highly ordered cross-β structures. According to the "cistauosis hypothesis," CypA's ability to enhance tau protein fibril formation in AD is attributed to the isomerization of specific proline residues from the trans to cis configuration. To corroborate this theory, we conducted refolding experiments using lysozyme as a model protein. The presence of CypA increased lysozyme aggregation and impeded its refolding process. It is known that proper refolding of lysozyme relies on the correct (trans) isomerization of two critical proline residues. CONCLUSION Thus, our findings confirmed that CypA induces the trans-to-cis isomerization of specific proline residues, ultimately leading to increased aggregation. Overall, this study highlights the emerging role of isomerization in tau protein pathogenesis in AD.
Collapse
Affiliation(s)
- Samira Ranjbar
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vali Akbari
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | - Somayeh Pashaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Su R, Wu Y, Doulkeridou S, Qiu X, Sørensen TJ, Susumu K, Medintz IL, van Bergen en Henegouwen PMP, Hildebrandt N. A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angew Chem Int Ed Engl 2022; 61:e202207797. [PMID: 35759268 PMCID: PMC9542526 DOI: 10.1002/anie.202207797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Biosensing approaches that combine small, engineered antibodies (nanobodies) with nanoparticles are often complicated. Here, we show that nanobodies with different C‐terminal tags can be efficiently attached to a range of the most widely used biocompatible semiconductor quantum dots (QDs). Direct implementation into simplified assay formats was demonstrated by designing a rapid and wash‐free mix‐and‐measure immunoassay for the epidermal growth factor receptor (EGFR). Terbium complex (Tb)‐labeled hexahistidine‐tagged nanobodies were specifically displaced from QD surfaces via EGFR‐nanobody binding, leading to an EGFR concentration‐dependent decrease of the Tb‐to‐QD Förster resonance energy transfer (FRET) signal. The detection limit of 80±20 pM (16±4 ng mL−1) was 3‐fold lower than the clinical cut‐off concentration for soluble EGFR and up to 10‐fold lower compared to conventional sandwich FRET assays that required a pair of different nanobodies.
Collapse
Affiliation(s)
- Ruifang Su
- nanoFRET.comLaboratoire COBRA (UMR6014 & FR3038)Université de Rouen Normandie, CNRS, INSANormandie Université76000RouenFrance
- Nano-Science Center & Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100CopenhagenDenmark
| | - Yu‐Tang Wu
- Université Paris-Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)91198Gif-sur-YvetteFrance
| | - Sofia Doulkeridou
- Cell BiologyNeurobiology and BiophysicsDepartment of BiologyScience FacultyUtrecht University3508 TBUtrechtThe Netherlands
- Princess Maxima CenterHeidelberglaan 253584CSUtrechtThe Netherlands
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)91198Gif-sur-YvetteFrance
- Key Laboratory of Marine DrugMinistry of EducationSchool of Medicine and PharmacyOcean University of China266003QingdaoChina
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology266237QingdaoChina
| | - Thomas Just Sørensen
- Nano-Science Center & Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100CopenhagenDenmark
| | - Kimihiro Susumu
- Jacobs CorporationHanoverMD 21076USA
- Optical Sciences Division, Code 5600, Code 6900U.S. Naval Research LaboratoryWashingtonDC 20375USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashingtonDC 20375USA
| | | | - Niko Hildebrandt
- nanoFRET.comLaboratoire COBRA (UMR6014 & FR3038)Université de Rouen Normandie, CNRS, INSANormandie Université76000RouenFrance
- Université Paris-Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)91198Gif-sur-YvetteFrance
- Department of ChemistrySeoul National UniversitySeoul08826South Korea
| |
Collapse
|
5
|
Su R, Wu Y, Doulkeridou S, Qiu X, Sørensen TJ, Susumu K, Medintz IL, van Bergen en Henegouwen PMP, Hildebrandt N. A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruifang Su
- nanoFRET.com Laboratoire COBRA (UMR6014 & FR3038) Université de Rouen Normandie, CNRS, INSA Normandie Université 76000 Rouen France
- Nano-Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Yu‐Tang Wu
- Université Paris-Saclay, CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Sofia Doulkeridou
- Cell Biology Neurobiology and Biophysics Department of Biology Science Faculty Utrecht University 3508 TB Utrecht The Netherlands
- Princess Maxima Center Heidelberglaan 25 3584CS Utrecht The Netherlands
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Key Laboratory of Marine Drug Ministry of Education School of Medicine and Pharmacy Ocean University of China 266003 Qingdao China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology 266237 Qingdao China
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Kimihiro Susumu
- Jacobs Corporation Hanover MD 21076 USA
- Optical Sciences Division, Code 5600, Code 6900 U.S. Naval Research Laboratory Washington DC 20375 USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900 U.S. Naval Research Laboratory Washington DC 20375 USA
| | | | - Niko Hildebrandt
- nanoFRET.com Laboratoire COBRA (UMR6014 & FR3038) Université de Rouen Normandie, CNRS, INSA Normandie Université 76000 Rouen France
- Université Paris-Saclay, CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Department of Chemistry Seoul National University Seoul 08826 South Korea
| |
Collapse
|
6
|
Comez D, Glenn J, Anbuhl SM, Heukers R, Smit MJ, Hill SJ, Kilpatrick LE. Fluorescently tagged nanobodies and NanoBRET to study ligand-binding and agonist-induced conformational changes of full-length EGFR expressed in living cells. Front Immunol 2022; 13:1006718. [PMID: 36505413 PMCID: PMC9726709 DOI: 10.3389/fimmu.2022.1006718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction The Epidermal Growth Factor Receptor is a member of the Erb receptor tyrosine kinase family. It binds several ligands including EGF, betacellulin (BTC) and TGF-α, controls cellular proliferation and invasion and is overexpressed in various cancer types. Nanobodies (VHHs) are the antigen binding fragments of heavy chain only camelid antibodies. In this paper we used NanoBRET to compare the binding characteristics of fluorescent EGF or two distinct fluorescently labelled EGFR directed nanobodies (Q44c and Q86c) to full length EGFR. Methods Living HEK293T cells were stably transfected with N terminal NLuc tagged EGFR. NanoBRET saturation, displacement or kinetics experiments were then performed using fluorescently labelled EGF ligands (EGF-AF488 or EGF-AF647) or fluorescently labelled EGFR targeting nanobodies (Q44c-HL488 and Q86c-HL488). Results These data revealed that the EGFR nanobody Q44c was able to inhibit EGF binding to full length EGFR, while Q86c was able to recognise agonist bound EGFR and act as a conformational sensor. The specific binding of fluorescent Q44c-HL488 and EGF-AF488 was inhibited by a range of EGFR ligands (EGF> BTC>TGF-α). Discussion EGFR targeting nanobodies are powerful tools for studying the role of the EGFR in health and disease and allow real time quantification of ligand binding and distinct ligand induced conformational changes.
Collapse
Affiliation(s)
- Dehan Comez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Jacqueline Glenn
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Stephanie M Anbuhl
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands.,QVQ Holding BV, Utrecht, Netherlands
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands.,QVQ Holding BV, Utrecht, Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom.,Division of Bimolecular Science and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|