1
|
Prokai L, Zaman K, Prokai-Tatrai K. Mass spectrometry-based retina proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1032-1062. [PMID: 35670041 PMCID: PMC9730434 DOI: 10.1002/mas.21786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A subfield of neuroproteomics, retina proteomics has experienced a transformative growth since its inception due to methodological advances in enabling chemical, biochemical, and molecular biology techniques. This review focuses on mass spectrometry's contributions to facilitate mammalian and avian retina proteomics to catalog and quantify retinal protein expressions, determine their posttranslational modifications, as well as its applications to study the proteome of the retina in the context of biology, health and diseases, and therapy developments.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
2
|
Thomson K, Game J, Karouta C, Morgan IG, Ashby R. Correlation between small-scale methylation changes and gene expression during the development of myopia. FASEB J 2021; 36:e22129. [PMID: 34958689 DOI: 10.1096/fj.202101487r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Visually induced changes in the expression of early growth response-1 (EGR1), FBJ osteosarcoma oncogene (FOS), and NGFI-A binding protein-2 (NAB2) appear to form a part of a retinal network fundamental to ocular growth regulation, and thus, the development of myopia (short-sightedness). However, it is unclear how environmental (visual) cues are translated into these molecular changes. One possibility is through epigenetic modifications such as DNA methylation, a known regulator of such processes. By sequencing bisulfite-converted DNA amplicons, this study examined whether changes in DNA methylation occur within specific regulatory and promoter regions of EGR1, FOS, and NAB2 during the periods of increased and decreased ocular growth in chicks. Visually induced changes in ocular growth rates were associated with single-point, but not large-scale, shifts in methylation levels within the investigated regions. Analysis of methylation pattern variability (entropy) demonstrated that the observed methylation changes are occurring within small subpopulations of retinal cells. This concurs with previous observations that EGR1 and FOS are differentially regulated at the peptide level within specific retinal cell types. Together, the findings of this study support a potential role for DNA methylation in the translation of external visual cues into molecular changes critical for ocular growth regulation and myopia development.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Jeremy Game
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ian G Morgan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Karouta C, Kucharski R, Hardy K, Thomson K, Maleszka R, Morgan I, Ashby R. Transcriptome-based insights into gene networks controlling myopia prevention. FASEB J 2021; 35:e21846. [PMID: 34405458 DOI: 10.1096/fj.202100350rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Myopia (short-sightedness), usually caused by excessive elongation of the eye during development, has reached epidemic proportions worldwide. In animal systems including the chicken model, several treatments have been shown to inhibit ocular elongation and experimental myopia. Although diverse in their apparent mechanism of action, each one leads to a reduction in the rate of ocular growth. We hypothesize that a defined set of retinal molecular changes may underlie growth inhibition, irrespective of the treatment agent used. Accordingly, across five well-established but diverse methods of inhibiting myopia, significant overlap is seen in the retinal transcriptome profile (transcript levels and alternative splicing events) in chicks when analyzed by RNA-seq. Within the two major pathway networks enriched during growth inhibition, that of cell signaling and circadian entrainment, transcription factors form the largest functional grouping. Importantly, a large percentage of those genes forming the defined retinal response are downstream targets of the transcription factor EGR1 which itself shows a universal response to all five growth-inhibitory treatments. This supports EGR1's previously implicated role in ocular growth regulation. Finally, by contrasting our data with human linkage and GWAS studies on refractive error, we confirm the applicability of our study to the human condition. Together, these findings suggest that a universal set of transcriptome changes, which sit within a well-defined retinal network that cannot be bypassed, is fundamental to growth regulation, thus paving a way for designing novel targets for myopia therapies.
Collapse
Affiliation(s)
- Cindy Karouta
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robert Kucharski
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kristine Hardy
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kate Thomson
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ian Morgan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
4
|
Summers JA, Schaeffel F, Marcos S, Wu H, Tkatchenko AV. Functional integration of eye tissues and refractive eye development: Mechanisms and pathways. Exp Eye Res 2021; 209:108693. [PMID: 34228967 DOI: 10.1016/j.exer.2021.108693] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
Refractive eye development is a tightly coordinated developmental process. The general layout of the eye and its various components are established during embryonic development, which involves a complex cross-tissue signaling. The eye then undergoes a refinement process during the postnatal emmetropization process, which relies heavily on the integration of environmental and genetic factors and is controlled by an elaborate genetic network. This genetic network encodes a multilayered signaling cascade, which converts visual stimuli into molecular signals that guide the postnatal growth of the eye. The signaling cascade underlying refractive eye development spans across all ocular tissues and comprises multiple signaling pathways. Notably, tissue-tissue interaction plays a key role in both embryonic eye development and postnatal eye emmetropization. Recent advances in eye biometry, physiological optics and systems genetics of refractive error have significantly advanced our understanding of the biological processes involved in refractive eye development and provided a framework for the development of new treatment options for myopia. In this review, we summarize the recent data on the mechanisms and signaling pathways underlying refractive eye development and discuss new evidence suggesting a wide-spread signal integration across different tissues and ocular components involved in visually guided eye growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Susana Marcos
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hao Wu
- Department of Ophthalmology, Columbia University, New York, USA
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
5
|
Tkatchenko TV, Tkatchenko AV. Genome-wide analysis of retinal transcriptome reveals common genetic network underlying perception of contrast and optical defocus detection. BMC Med Genomics 2021; 14:153. [PMID: 34107987 PMCID: PMC8190860 DOI: 10.1186/s12920-021-01005-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Refractive eye development is regulated by optical defocus in a process of emmetropization. Excessive exposure to negative optical defocus often leads to the development of myopia. However, it is still largely unknown how optical defocus is detected by the retina. METHODS Here, we used genome-wide RNA-sequencing to conduct analysis of the retinal gene expression network underlying contrast perception and refractive eye development. RESULTS We report that the genetic network subserving contrast perception plays an important role in optical defocus detection and emmetropization. Our results demonstrate an interaction between contrast perception, the retinal circadian clock pathway and the signaling pathway underlying optical defocus detection. We also observe that the relative majority of genes causing human myopia are involved in the processing of optical defocus. CONCLUSIONS Together, our results support the hypothesis that optical defocus is perceived by the retina using contrast as a proxy and provide new insights into molecular signaling underlying refractive eye development.
Collapse
Affiliation(s)
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY USA
- Edward S. Harkness Eye Institute, Research Annex Room 415, 635 W. 165th Street, New York, NY 10032 USA
| |
Collapse
|
6
|
Riddell N, Murphy MJ, Crewther SG. Electroretinography and Gene Expression Measures Implicate Phototransduction and Metabolic Shifts in Chick Myopia and Hyperopia Models. Life (Basel) 2021; 11:life11060501. [PMID: 34072440 PMCID: PMC8228081 DOI: 10.3390/life11060501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
The Retinal Ion-Driven Fluid Efflux (RIDE) model theorizes that phototransduction-driven changes in trans-retinal ion and fluid transport underlie the development of myopia (short-sightedness). In support of this model, previous functional studies have identified the attenuation of outer retinal contributions to the global flash electroretinogram (gfERG) following weeks of myopia induction in chicks, while discovery-driven transcriptome studies have identified changes to the expression of ATP-driven ion transport and mitochondrial metabolism genes in the retina/RPE/choroid at the mid- to late-induction time-points. Less is known about the early time-points despite biometric analyses demonstrating changes in eye growth by 3 h in the chick lens defocus model. Thus, the present study compared gfERG and transcriptome profiles between 3 h and 3 days of negative lens-induced myopia and positive lens-induced hyperopia in chicks. Photoreceptor (a-wave and d-wave) and bipolar (b-wave and late-stage d-wave) cell responses were suppressed following negative lens-wear, particularly at the 3–4 h and 3-day time-points when active shifts in the rate of ocular growth were expected. Transcriptome measures revealed the up-regulation of oxidative phosphorylation genes following 6 h of negative lens-wear, concordant with previous reports at 2 days in this model. Signal transduction pathways, with core genes involved in glutamate and G-protein coupled receptor signalling, were down-regulated at 6 h. These findings contribute to a growing body of evidence for the dysregulation of phototransduction and mitochondrial metabolism in animal models of myopia.
Collapse
|
7
|
RNA-seq and GSEA identifies suppression of ligand-gated chloride efflux channels as the major gene pathway contributing to form deprivation myopia. Sci Rep 2021; 11:5280. [PMID: 33674625 PMCID: PMC7935918 DOI: 10.1038/s41598-021-84338-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Currently there is no consensus regarding the aetiology of the excessive ocular volume that characterizes high myopia. Thus, we aimed to test whether the gene pathways identified by gene set enrichment analysis of RNA-seq transcriptomics refutes the predictions of the Retinal Ion Driven Efflux (RIDE) hypothesis when applied to the induction of form-deprivation myopia (FDM) and subsequent recovery (post-occluder removal). We found that the induction of profound FDM led to significant suppression in the ligand-gated chloride ion channel transport pathway via suppression of glycine, GABAA and GABAC ionotropic receptors. Post-occluder removal for short term recovery from FDM of 6 h and 24 h, induced significant upregulation of the gene families linked to cone receptor phototransduction, mitochondrial energy, and complement pathways. These findings support a model of form deprivation myopia as a Cl− ion driven adaptive fluid response to the modulation of the visual signal cascade by form deprivation that in turn affects the resultant ionic environment of the outer and inner retinal tissues, axial and vitreal elongation as predicted by the RIDE model. Occluder removal and return to normal light conditions led to return to more normal upregulation of phototransduction, slowed growth rate, refractive recovery and apparent return towards physiological homeostasis.
Collapse
|
8
|
Abstract
Myopia is a globally emerging issue, with multiple medical and socio-economic burdens and no well-established causal treatment thus far. A better insight into altered biochemical pathways and underlying pathogenesis might facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the metabolomics and proteomics of myopia in humans and present various experimental approaches and animal models, along with their strengths and weaknesses. We also discuss the potential applicability of these findings to medical practice and suggest directions for future research.
Collapse
|
9
|
Achour B, Al-Majdoub ZM, Rostami-Hodjegan A, Barber J. Mass Spectrometry of Human Transporters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:223-247. [PMID: 32084322 DOI: 10.1146/annurev-anchem-091719-024553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transporters are key to understanding how an individual will respond to a particular dose of a drug. Two patients with similar systemic concentrations may have quite different local concentrations of a drug at the required site. The transporter profile of any individual depends upon a variety of genetic and environmental factors, including genotype, age, and diet status. Robust models (virtual patients) are therefore required and these models are data hungry. Necessary data include quantitative transporter profiles at the relevant organ. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is currently the most powerful method available for obtaining this information. Challenges include sourcing the tissue, isolating the hydrophobic membrane-embedded transporter proteins, preparing the samples for MS (including proteolytic digestion), choosing appropriate quantification methodology, and optimizing the LC-MS/MS conditions. Great progress has been made with all of these, especially within the last few years, and is discussed here.
Collapse
Affiliation(s)
- Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
- Certara, Princeton, New Jersey 08540, USA
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
10
|
Tkatchenko TV, Tkatchenko AV. Pharmacogenomic Approach to Antimyopia Drug Development: Pathways Lead the Way. Trends Pharmacol Sci 2019; 40:833-852. [PMID: 31676152 DOI: 10.1016/j.tips.2019.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
Abstract
Myopia is the most common eye disorder in the world which is caused by a mismatch between the optical power of the eye and its excessively long axial length. Recent studies revealed that the regulation of the axial length of the eye occurs via a complex signaling cascade, which originates in the retina and propagates across all ocular tissues to the sclera. The complexity of this regulatory cascade has made it particularly difficult to develop effective antimyopia drugs. The current pharmacological treatment options for myopia are limited to atropine and 7-methylxanthine, which have either significant adverse effects or low efficacy. In this review, we focus on the recent advances in genome-wide studies of the signaling pathways underlying myopia development and discuss the potential of systems genetics and pharmacogenomic approaches for the development of antimyopia drugs.
Collapse
Affiliation(s)
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|