1
|
Gupta A, Unckless RL. Autosomal suppression of sex-ratio meiotic drive influences the dynamics of X and Y chromosome coevolution. J Hered 2024; 115:660-671. [PMID: 39212686 DOI: 10.1093/jhered/esae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Sex-ratio meiotic drivers are selfish genes or gene complexes that bias the transmission of sex chromosomes resulting in skewed sex ratios. Existing theoretical models have suggested the maintenance of a four-chromosome equilibrium (with driving and standard X and suppressing and susceptible Y) in a cyclic dynamic, but studies of natural populations have failed to capture this pattern. Although there are several plausible explanations for this lack of cycling, interference from autosomal suppressors has not been studied using a theoretical population genetic framework even though autosomal suppressors and Y-linked suppressors coexist in natural populations of some species. In this study, we use a simulation-based approach to investigate the influence of autosomal suppressors on the cycling of sex chromosomes. Our findings demonstrate that the presence of an autosomal suppressor can hinder the invasion of a Y-linked suppressor under some parameter space, thereby impeding the cyclic dynamics, or even the invasion of Y-linked suppression. Even when a Y-linked suppressor invades, the presence of an autosomal suppressor can prevent cycling. Our study demonstrates the potential role of autosomal suppressors in preventing sex chromosome cycling and provides insights into the conditions and consequences of maintaining both Y-linked and autosomal suppressors.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
2
|
Brand CL, Oliver GT, Farkas IZ, Buszczak M, Levine MT. Recurrent Duplication and Diversification of a Vital DNA Repair Gene Family Across Drosophila. Mol Biol Evol 2024; 41:msae113. [PMID: 38865490 PMCID: PMC11210505 DOI: 10.1093/molbev/msae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Maintaining genome integrity is vital for organismal survival and reproduction. Essential, broadly conserved DNA repair pathways actively preserve genome integrity. However, many DNA repair proteins evolve adaptively. Ecological forces like UV exposure are classically cited drivers of DNA repair evolution. Intrinsic forces like repetitive DNA, which also imperil genome integrity, have received less attention. We recently reported that a Drosophila melanogaster-specific DNA satellite array triggered species-specific, adaptive evolution of a DNA repair protein called Spartan/MH. The Spartan family of proteases cleave hazardous, covalent crosslinks that form between DNA and proteins ("DNA-protein crosslink repair"). Appreciating that DNA satellites are both ubiquitous and universally fast-evolving, we hypothesized that satellite DNA turnover spurs adaptive evolution of DNA-protein crosslink repair beyond a single gene and beyond the D. melanogaster lineage. This hypothesis predicts pervasive Spartan gene family diversification across Drosophila species. To study the evolutionary history of the Drosophila Spartan gene family, we conducted population genetic, molecular evolution, phylogenomic, and tissue-specific expression analyses. We uncovered widespread signals of positive selection across multiple Spartan family genes and across multiple evolutionary timescales. We also detected recurrent Spartan family gene duplication, divergence, and gene loss. Finally, we found that ovary-enriched parent genes consistently birthed functionally diverged, testis-enriched daughter genes. To account for Spartan family diversification, we introduce a novel mechanistic model of antagonistic coevolution that links DNA satellite evolution and adaptive regulation of Spartan protease activity. This framework promises to accelerate our understanding of how DNA repeats drive recurrent evolutionary innovation to preserve genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genevieve T Oliver
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella Z Farkas
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Buszczak
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Rico-Porras JM, Mora P, Palomeque T, Montiel EE, Cabral-de-Mello DC, Lorite P. Heterochromatin Is Not the Only Place for satDNAs: The High Diversity of satDNAs in the Euchromatin of the Beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes (Basel) 2024; 15:395. [PMID: 38674330 PMCID: PMC11049206 DOI: 10.3390/genes15040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The satellitome of the beetle Chrysolina americana Linneo, 1758 has been characterized through chromosomal analysis, genomic sequencing, and bioinformatics tools. C-banding reveals the presence of constitutive heterochromatin blocks enriched in A+T content, primarily located in pericentromeric regions. Furthermore, a comprehensive satellitome analysis unveils the extensive diversity of satellite DNA families within the genome of C. americana. Using fluorescence in situ hybridization techniques and the innovative CHRISMAPP approach, we precisely map the localization of satDNA families on assembled chromosomes, providing insights into their organization and distribution patterns. Among the 165 identified satDNA families, only three of them exhibit a remarkable amplification and accumulation, forming large blocks predominantly in pericentromeric regions. In contrast, the remaining, less abundant satDNA families are dispersed throughout euchromatic regions, challenging the traditional association of satDNA with heterochromatin. Overall, our findings underscore the complexity of repetitive DNA elements in the genome of C. americana and emphasize the need for further exploration to elucidate their functional significance and evolutionary implications.
Collapse
Affiliation(s)
- José M. Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Eugenia E. Montiel
- Department of Biology, Genetics, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
- Center for Research in Biodiversity and Global Change, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Diogo C. Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP—São Paulo State University, Rio Claro 13506-900, SP, Brazil;
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| |
Collapse
|
4
|
Sales-Oliveira VC, Dos Santos RZ, Goes CAG, Calegari RM, Garrido-Ramos MA, Altmanová M, Ezaz T, Liehr T, Porto-Foresti F, Utsunomia R, Cioffi MB. Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia). BMC Biol 2024; 22:47. [PMID: 38413947 PMCID: PMC10900743 DOI: 10.1186/s12915-024-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.
Collapse
Affiliation(s)
- Vanessa C Sales-Oliveira
- Departamento de Genética E Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | | | | | - Marcelo B Cioffi
- Departamento de Genética E Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
5
|
Courret C, Larracuente AM. High levels of intra-strain structural variation in Drosophila simulans X pericentric heterochromatin. Genetics 2023; 225:iyad176. [PMID: 37768175 PMCID: PMC10697818 DOI: 10.1093/genetics/iyad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Large genome structural variations can impact genome regulation and integrity. Repeat-rich regions like pericentric heterochromatin are vulnerable to structural rearrangements although we know little about how often these rearrangements occur over evolutionary time. Repetitive genome regions are particularly difficult to study with genomic approaches, as they are missing from most genome assemblies. However, cytogenetic approaches offer a direct way to detect large rearrangements involving pericentric heterochromatin. Here, we use a cytogenetic approach to reveal large structural rearrangements associated with the X pericentromeric region of Drosophila simulans. These rearrangements involve large blocks of satellite DNA-the 500-bp and Rsp-like satellites-which colocalize in the X pericentromeric heterochromatin. We find that this region is polymorphic not only among different strains, but between isolates of the same strain from different labs, and even within individual isolates. On the one hand, our observations raise questions regarding the potential impact of such variation at the phenotypic level and our ability to control for such genetic variability. On the other hand, this highlights the very rapid turnover of the pericentric heterochromatin most likely associated with genomic instability of the X pericentromere. It represents a unique opportunity to study the dynamics of pericentric heterochromatin, the evolution of associated satellites on a very short time scale, and to better understand how structural variation arises.
Collapse
Affiliation(s)
- Cécile Courret
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
6
|
Ebrahimzadegan R, Fuchs J, Chen J, Schubert V, Meister A, Houben A, Mirzaghaderi G. Meiotic segregation and post-meiotic drive of the Festuca pratensis B chromosome. Chromosome Res 2023; 31:26. [PMID: 37658970 PMCID: PMC10474989 DOI: 10.1007/s10577-023-09728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as "chromosome drive". Here, we studied the behavior of the 103 Mbp-large B chromosome of Festuca pratensis during all meiotic and mitotic stages of microsporogenesis. Mostly, the B chromosome of F. pratensis segregates during meiosis like standard A chromosomes (As). In some cases, the B passes through meiosis in a non-Mendelian segregation leading to their accumulation already in meiosis. However, a true drive of the B happens during the first pollen mitosis, by which the B preferentially migrates to the generative nucleus. During second pollen mitosis, B divides equally between the two sperms. Despite some differences in the frequency of drive between individuals with different numbers of Bs, at least 82% of drive was observed. Flow cytometry-based quantification of B-containing sperm nuclei agrees with the FISH data.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| | - Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
7
|
Reinhardt JA, Baker RH, Zimin AV, Ladias C, Paczolt KA, Werren JH, Hayashi CY, Wilkinson GS. Impacts of Sex Ratio Meiotic Drive on Genome Structure and Function in a Stalk-Eyed Fly. Genome Biol Evol 2023; 15:evad118. [PMID: 37364298 PMCID: PMC10319772 DOI: 10.1093/gbe/evad118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Stalk-eyed flies in the genus Teleopsis carry selfish genetic elements that induce sex ratio (SR) meiotic drive and impact the fitness of male and female carriers. Here, we assemble and describe a chromosome-level genome assembly of the stalk-eyed fly, Teleopsis dalmanni, to elucidate patterns of divergence associated with SR. The genome contains tens of thousands of transposable element (TE) insertions and hundreds of transcriptionally and insertionally active TE families. By resequencing pools of SR and ST males using short and long reads, we find widespread differentiation and divergence between XSR and XST associated with multiple nested inversions involving most of the SR haplotype. Examination of genomic coverage and gene expression data revealed seven X-linked genes with elevated expression and coverage in SR males. The most extreme and likely drive candidate involves an XSR-specific expansion of an array of partial copies of JASPer, a gene necessary for maintenance of euchromatin and associated with regulation of TE expression. In addition, we find evidence for rapid protein evolution between XSR and XST for testis expressed and novel genes, that is, either recent duplicates or lacking a Dipteran ortholog, including an X-linked duplicate of maelstrom, which is also involved in TE silencing. Overall, the evidence suggests that this ancient XSR polymorphism has had a variety of impacts on repetitive DNA and its regulation in this species.
Collapse
Affiliation(s)
| | - Richard H Baker
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chloe Ladias
- Biology Department, State University of New York at Geneseo, Geneseo, New York, USA
| | - Kimberly A Paczolt
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Cheryl Y Hayashi
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
8
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
9
|
Park JI, Bell GW, Yamashita YM. Derepression of Y-linked multicopy protamine-like genes interferes with sperm nuclear compaction in D. melanogaster. Proc Natl Acad Sci U S A 2023; 120:e2220576120. [PMID: 37036962 PMCID: PMC10120018 DOI: 10.1073/pnas.2220576120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
Across species, sperm maturation involves the dramatic reconfiguration of chromatin into highly compact nuclei that enhance hydrodynamic ability and ensure paternal genomic integrity. This process is mediated by the replacement of histones by sperm nuclear basic proteins, also referred to as protamines. In humans, a carefully balanced dosage between two known protamine genes is required for optimal fertility. However, it remains unknown how their proper balance is regulated and how defects in balance may lead to compromised fertility. Here, we show that a nucleolar protein, modulo, a homolog of nucleolin, mediates the histone-to-protamine transition during Drosophila spermatogenesis. We find that modulo mutants display nuclear compaction defects during late spermatogenesis due to decreased expression of autosomal protamine genes (including Mst77F) and derepression of Y-linked multicopy Mst77F homologs (Mst77Y), leading to the mutant's known sterility. Overexpression of Mst77Y in a wild-type background is sufficient to cause nuclear compaction defects, similar to modulo mutant, indicating that Mst77Y is a dominant-negative variant interfering with the process of histone-to-protamine transition. Interestingly, ectopic overexpression of Mst77Y caused decompaction of X-bearing spermatids nuclei more frequently than Y-bearing spermatid nuclei, although this did not greatly affect the sex ratio of offspring. We further show that modulo regulates these protamine genes at the step of transcript polyadenylation. We conclude that the regulation of protamines mediated by modulo, ensuring the expression of functional ones while repressing dominant-negative ones, is critical for male fertility.
Collapse
Affiliation(s)
- Jun I. Park
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI48109
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI48109
| | - George W. Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, School of Science, Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Cambridge, MA02142
| |
Collapse
|
10
|
Šatović-Vukšić E, Plohl M. Satellite DNAs-From Localized to Highly Dispersed Genome Components. Genes (Basel) 2023; 14:genes14030742. [PMID: 36981013 PMCID: PMC10048060 DOI: 10.3390/genes14030742] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
According to the established classical view, satellite DNAs are defined as abundant non-coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. Advances in sequencing methodologies and development of specialized bioinformatics tools enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. Supported by various non-model species included in recent studies, the patterns of satellite DNAs and satellitomes as a whole showed much more diversity and complexity than initially thought. Differences are not only in number and abundance of satellite DNAs but also in their distribution across the genome, array length, interspersion patterns, association with transposable elements, localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic organizational features of satellite DNAs and satellitomes across different animal and plant species in order to summarize organizational forms and evolutionary processes that may lead to satellitomes' diversity and revisit some basic notions regarding repetitive DNA landscapes in genomes.
Collapse
Affiliation(s)
- Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Peona V, Kutschera VE, Blom MPK, Irestedt M, Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol 2023; 32:1288-1305. [PMID: 35488497 DOI: 10.1111/mec.16484] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
Satellite DNA (satDNA) is a fast-evolving portion of eukaryotic genomes. The homogeneous and repetitive nature of such satDNA causes problems during the assembly of genomes, and therefore it is still difficult to study it in detail in nonmodel organisms as well as across broad evolutionary timescales. Here, we combined the use of short- and long-read data to explore the diversity and evolution of satDNA between individuals of the same species and between genera of birds spanning ~40 millions of years of bird evolution using birds-of-paradise (Paradisaeidae) and crow (Corvus) species. These avian species highlighted the presence of a GC-rich Corvoidea satellitome composed of 61 satellite families and provided a set of candidate satDNA monomers for being centromeric on the basis of length, abundance, homogeneity and transcription. Surprisingly, we found that the satDNA of crow species rapidly diverged between closely related species while the satDNA appeared more similar between birds-of-paradise species belonging to different genera.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Mozes P K Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biological Sciences-Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Lama J, Srivastav S, Tasnim S, Hubbard D, Hadjipanteli S, Smith BR, Macdonald SJ, Green L, Kelleher ES. Genetic variation in P-element dysgenic sterility is associated with double-strand break repair and alternative splicing of TE transcripts. PLoS Genet 2022; 18:e1010080. [PMID: 36477699 PMCID: PMC9762592 DOI: 10.1371/journal.pgen.1010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/19/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
The germline mobilization of transposable elements (TEs) by small RNA mediated silencing pathways is conserved across eukaryotes and critical for ensuring the integrity of gamete genomes. However, genomes are recurrently invaded by novel TEs through horizontal transfer. These invading TEs are not targeted by host small RNAs, and their unregulated activity can cause DNA damage in germline cells and ultimately lead to sterility. Here we use hybrid dysgenesis-a sterility syndrome of Drosophila caused by transposition of invading P-element DNA transposons-to uncover host genetic variants that modulate dysgenic sterility. Using a panel of highly recombinant inbred lines of Drosophila melanogaster, we identified two linked quantitative trait loci (QTL) that determine the severity of dysgenic sterility in young and old females, respectively. We show that ovaries of fertile genotypes exhibit increased expression of splicing factors that suppress the production of transposase encoding transcripts, which likely reduces the transposition rate and associated DNA damage. We also show that fertile alleles are associated with decreased sensitivity to double-stranded breaks and enhanced DNA repair, explaining their ability to withstand high germline transposition rates. Together, our work reveals a diversity of mechanisms whereby host genotype modulates the cost of an invading TE, and points to genetic variants that were likely beneficial during the P-element invasion.
Collapse
Affiliation(s)
- Jyoti Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Satyam Srivastav
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sadia Tasnim
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Donald Hubbard
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Savana Hadjipanteli
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Llewellyn Green
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
13
|
Arora UP, Dumont BL. Meiotic drive in house mice: mechanisms, consequences, and insights for human biology. Chromosome Res 2022; 30:165-186. [PMID: 35829972 PMCID: PMC9509409 DOI: 10.1007/s10577-022-09697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Meiotic drive occurs when one allele at a heterozygous site cheats its way into a disproportionate share of functional gametes, violating Mendel's law of equal segregation. This genetic conflict typically imposes a fitness cost to individuals, often by disrupting the process of gametogenesis. The evolutionary impact of meiotic drive is substantial, and the phenomenon has been associated with infertility and reproductive isolation in a wide range of organisms. However, cases of meiotic drive in humans remain elusive, a finding that likely reflects the inherent challenges of detecting drive in our species rather than unique features of human genome biology. Here, we make the case that house mice (Mus musculus) present a powerful model system to investigate the mechanisms and consequences of meiotic drive and facilitate translational inferences about the scope and potential mechanisms of drive in humans. We first detail how different house mouse resources have been harnessed to identify cases of meiotic drive and the underlying mechanisms utilized to override Mendel's rules of inheritance. We then summarize the current state of knowledge of meiotic drive in the mouse genome. We profile known mechanisms leading to transmission bias at several established drive elements. We discuss how a detailed understanding of meiotic drive in mice can steer the search for drive elements in our own species. Lastly, we conclude with a prospective look into how new technologies and molecular tools can help resolve lingering mysteries about the prevalence and mechanisms of selfish DNA transmission in mammals.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
14
|
Huang Y, Shukla H, Lee YCG. Species-specific chromatin landscape determines how transposable elements shape genome evolution. eLife 2022; 11:81567. [PMID: 35997258 PMCID: PMC9398452 DOI: 10.7554/elife.81567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic parasites that increase their copy number at the expense of host fitness. The ‘success’, or genome-wide abundance, of TEs differs widely between species. Deciphering the causes for this large variety in TE abundance has remained a central question in evolutionary genomics. We previously proposed that species-specific TE abundance could be driven by the inadvertent consequences of host-direct epigenetic silencing of TEs—the spreading of repressive epigenetic marks from silenced TEs into adjacent sequences. Here, we compared this TE-mediated local enrichment of repressive marks, or ‘the epigenetic effect of TEs’, in six species in the Drosophila melanogaster subgroup to dissect step-by-step the role of such effect in determining genomic TE abundance. We found that TE-mediated local enrichment of repressive marks is prevalent and substantially varies across and even within species. While this TE-mediated effect alters the epigenetic states of adjacent genes, we surprisingly discovered that the transcription of neighboring genes could reciprocally impact this spreading. Importantly, our multi-species analysis provides the power and appropriate phylogenetic resolution to connect species-specific host chromatin regulation, TE-mediated epigenetic effects, the strength of natural selection against TEs, and genomic TE abundance unique to individual species. Our findings point toward the importance of host chromatin landscapes in shaping genome evolution through the epigenetic effects of a selfish genetic parasite. All the instructions required for life are encoded in the set of DNA present in a cell. It therefore seems natural to think that every bit of this genetic information should serve the organism. And yet most species carry parasitic ‘transposable’ sequences, or transposons, whose only purpose is to multiply and insert themselves at other positions in the genome. It is possible for cells to suppress these selfish elements. Chemical marks can be deposited onto the DNA to temporarily ‘silence’ transposons and prevent them from being able to move and replicate. However, this sometimes comes at a cost: the repressive chemical modifications can spread to nearby genes that are essential for the organism and perturb their function. Strangely, the prevalence of transposons varies widely across the tree of life. These sequences form the majority of the genome of certain species – in fact, they represent about half of the human genetic information. But their abundance is much lower in other organisms, forming a measly 6% of the genome of puffer fish for instance. Even amongst fruit fly species, the prevalence of transposable elements can range between 2% and 25%. What explains such differences? Huang et al. set out to examine this question through the lens of transposon silencing, systematically comparing how this process impacts nearby regions in six species of fruit flies. This revealed variations in the strength of the side effects associated with transposon silencing, resulting in different levels of perturbation on neighbouring genes. A stronger impact was associated with the species having fewer transposons in its genome, suggesting that an evolutionary pressure is at work to keep the abundance of transposons at a low level in these species. Further analyses showed that the genes which determine how silencing marks are distributed may also be responsible for the variations in the impact of transposon silencing. They could therefore be the ones driving differences in the abundance of transposons between species. Overall, this work sheds light on the complex mechanisms shaping the evolution of genomes, and it may help to better understand how transposons are linked to processes such as aging and cancer.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Harsh Shukla
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
15
|
Navarro-Dominguez B, Chang CH, Brand CL, Muirhead CA, Presgraves DC, Larracuente AM. Epistatic selection on a selfish Segregation Distorter supergene - drive, recombination, and genetic load. eLife 2022; 11:e78981. [PMID: 35486424 PMCID: PMC9122502 DOI: 10.7554/elife.78981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive-the driver and the target-linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.
Collapse
Affiliation(s)
| | - Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Cara L Brand
- Department of Biology, University of RochesterRochesterUnited States
| | - Christina A Muirhead
- Department of Biology, University of RochesterRochesterUnited States
- Ronin InstituteMontclairUnited States
| | | | | |
Collapse
|
16
|
Affiliation(s)
| | - Francisco J. Ruiz-Ruano
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, Norwich Research Park University of East Anglia, Norwich, UK
| |
Collapse
|
17
|
Lo Furno E, Busseau I, Aze A, Lorenzi C, Saghira C, Danzi MC, Zuchner S, Maiorano D. Translesion DNA synthesis-driven mutagenesis in very early embryogenesis of fast cleaving embryos. Nucleic Acids Res 2021; 50:885-898. [PMID: 34939656 PMCID: PMC8789082 DOI: 10.1093/nar/gkab1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
In early embryogenesis of fast cleaving embryos, DNA synthesis is short and surveillance mechanisms preserving genome integrity are inefficient, implying the possible generation of mutations. We have analyzed mutagenesis in Xenopus laevis and Drosophila melanogaster early embryos. We report the occurrence of a high mutation rate in Xenopus and show that it is dependent upon the translesion DNA synthesis (TLS) master regulator Rad18. Unexpectedly, we observed a homology-directed repair contribution of Rad18 in reducing the mutation load. Genetic invalidation of TLS in the pre-blastoderm Drosophila embryo resulted in reduction of both the hatching rate and single-nucleotide variations on pericentromeric heterochromatin in adult flies. Altogether, these findings indicate that during very early Xenopus and Drosophila embryos TLS strongly contributes to the high mutation rate. This may constitute a previously unforeseen source of genetic diversity contributing to the polymorphisms of each individual with implications for genome evolution and species adaptation.
Collapse
Affiliation(s)
- Elena Lo Furno
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Isabelle Busseau
- Systemic Impact of Small Regulatory RNAs Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Antoine Aze
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Claudio Lorenzi
- Machine Learning and Gene Regulation Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Cima Saghira
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Matt C Danzi
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Stephan Zuchner
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| |
Collapse
|
18
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
19
|
Kuhn GCS, Heringer P, Dias GB. Structure, Organization, and Evolution of Satellite DNAs: Insights from the Drosophila repleta and D. virilis Species Groups. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:27-56. [PMID: 34386871 DOI: 10.1007/978-3-030-74889-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fact that satellite DNAs (satDNAs) in eukaryotes are abundant genomic components, can perform functional roles, but can also change rapidly across species while being homogenous within a species, makes them an intriguing and fascinating genomic component to study. It is also becoming clear that satDNAs represent an important piece in genome architecture and that changes in their structure, organization, and abundance can affect the evolution of genomes and species in many ways. Since the discovery of satDNAs more than 50 years ago, species from the Drosophila genus have continuously been used as models to study several aspects of satDNA biology. These studies have been largely concentrated in D. melanogaster and closely related species from the Sophophora subgenus, even though the vast majority of all Drosophila species belong to the Drosophila subgenus. This chapter highlights some studies on the satDNA structure, organization, and evolution in two species groups from the Drosophila subgenus: the repleta and virilis groups. We also discuss and review the classification of other abundant tandem repeats found in these species in the light of the current information available.
Collapse
Affiliation(s)
- Gustavo C S Kuhn
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Pedro Heringer
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Guilherme Borges Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| |
Collapse
|
20
|
Martí E, Milani D, Bardella VB, Albuquerque L, Song H, Palacios-Gimenez OM, Cabral-de-Mello DC. Cytogenomic analysis unveils mixed molecular evolution and recurrent chromosomal rearrangements shaping the multigene families on Schistocerca grasshopper genomes. Evolution 2021; 75:2027-2041. [PMID: 34155627 DOI: 10.1111/evo.14287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Multigene families are essential components of eukaryotic genomes and play key roles either structurally and functionally. Their modes of evolution remain elusive even in the era of genomics, because multiple multigene family sequences coexist in genomes, particularly in large repetitive genomes. Here, we investigate how the multigene families 18S rDNA, U2 snDNA, and H3 histone evolved in 10 species of Schistocerca grasshoppers with very large and repeat-enriched genomes. Using sequenced genomes and fluorescence in situ hybridization mapping, we find substantial differences between species, including the number of chromosomal clusters, changes in sequence abundance and nucleotide composition, pseudogenization, and association with transposable elements (TEs). The intragenomic analysis of Schistocerca gregaria using long-read sequencing and genome assembly unveils conservation for H3 histone and recurrent pseudogenization for 18S rDNA and U2 snDNA, likely promoted by association with TEs and sequence truncation. Remarkably, TEs were frequently associated with truncated copies, were also among the most abundant in the genome, and revealed signatures of recent activity. Our findings suggest a combined effect of concerted and birth-and-death models driving the evolution of multigene families in Schistocerca over the last 8 million years, and the occurrence of intra- and interchromosomal rearrangements shaping their chromosomal distribution. Despite the conserved karyotype in Schistocerca, our analysis highlights the extensive reorganization of repetitive DNAs in Schistocerca, contributing to the advance of comparative genomics for this important grasshopper genus.
Collapse
Affiliation(s)
- Emiliano Martí
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Lucas Albuquerque
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, Texas, 77843
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden.,Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, DE-07743, Germany
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| |
Collapse
|
21
|
Presgraves DC, Meiklejohn CD. Hybrid Sterility, Genetic Conflict and Complex Speciation: Lessons From the Drosophila simulans Clade Species. Front Genet 2021; 12:669045. [PMID: 34249091 PMCID: PMC8261240 DOI: 10.3389/fgene.2021.669045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
The three fruitfly species of the Drosophila simulans clade- D. simulans, D. mauritiana, and D. sechellia- have served as important models in speciation genetics for over 40 years. These species are reproductively isolated by geography, ecology, sexual signals, postmating-prezygotic interactions, and postzygotic genetic incompatibilities. All pairwise crosses between these species conform to Haldane's rule, producing fertile F1 hybrid females and sterile F1 hybrid males. The close phylogenetic proximity of the D. simulans clade species to the model organism, D. melanogaster, has empowered genetic analyses of their species differences, including reproductive incompatibilities. But perhaps no phenotype has been subject to more continuous and intensive genetic scrutiny than hybrid male sterility. Here we review the history, progress, and current state of our understanding of hybrid male sterility among the D. simulans clade species. Our aim is to integrate the available information from experimental and population genetics analyses bearing on the causes and consequences of hybrid male sterility. We highlight numerous conclusions that have emerged as well as issues that remain unresolved. We focus on the special role of sex chromosomes, the fine-scale genetic architecture of hybrid male sterility, and the history of gene flow between species. The biggest surprises to emerge from this work are that (i) genetic conflicts may be an important general force in the evolution of hybrid incompatibility, (ii) hybrid male sterility is polygenic with contributions of complex epistasis, and (iii) speciation, even among these geographically allopatric taxa, has involved the interplay of gene flow, negative selection, and positive selection. These three conclusions are marked departures from the classical views of speciation that emerged from the modern evolutionary synthesis.
Collapse
Affiliation(s)
- Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Colin D. Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
22
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
23
|
Negm S, Greenberg A, Larracuente A, Sproul J. RepeatProfiler: A pipeline for visualization and comparative analysis of repetitive DNA profiles. Mol Ecol Resour 2021; 21:969-981. [PMID: 33277787 PMCID: PMC7954937 DOI: 10.1111/1755-0998.13305] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Study of repetitive DNA elements in model organisms highlights the role of repetitive elements (REs) in many processes that drive genome evolution and phenotypic change. Because REs are much more dynamic than single-copy DNA, repetitive sequences can reveal signals of evolutionary history over short time scales that may not be evident in sequences from slower-evolving genomic regions. Many tools for studying REs are directed toward organisms with existing genomic resources, including genome assemblies and repeat libraries. However, signals in repeat variation may prove especially valuable in disentangling evolutionary histories in diverse non-model groups, for which genomic resources are limited. Here, we introduce RepeatProfiler, a tool for generating, visualizing, and comparing repetitive element DNA profiles from low-coverage, short-read sequence data. RepeatProfiler automates the generation and visualization of RE coverage depth profiles (RE profiles) and allows for statistical comparison of profile shape across samples. In addition, RepeatProfiler facilitates comparison of profiles by extracting signal from sequence variants across profiles which can then be analysed as molecular morphological characters using phylogenetic analysis. We validate RepeatProfiler with data sets from ground beetles (Bembidion), flies (Drosophila), and tomatoes (Solanum). We highlight the potential of RE profiles as a high-resolution data source for studies in species delimitation, comparative genomics, and repeat biology.
Collapse
Affiliation(s)
- S. Negm
- University of Rochester, Department of Biology, 337 Hutchison Hall, Rochester, NY, 14627
| | - A. Greenberg
- University of Rochester, Department of Biology, 337 Hutchison Hall, Rochester, NY, 14627
| | - A.M. Larracuente
- University of Rochester, Department of Biology, 337 Hutchison Hall, Rochester, NY, 14627
| | - J.S. Sproul
- University of Rochester, Department of Biology, 337 Hutchison Hall, Rochester, NY, 14627
| |
Collapse
|
24
|
Chakraborty M, Chang CH, Khost DE, Vedanayagam J, Adrion JR, Liao Y, Montooth KL, Meiklejohn CD, Larracuente AM, Emerson JJ. Evolution of genome structure in the Drosophila simulans species complex. Genome Res 2021; 31:380-396. [PMID: 33563718 PMCID: PMC7919458 DOI: 10.1101/gr.263442.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Danielle E Khost
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
- FAS Informatics and Scientific Applications, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yi Liao
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | | | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
25
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
26
|
de Lima LG, Hanlon SL, Gerton JL. Origins and Evolutionary Patterns of the 1.688 Satellite DNA Family in Drosophila Phylogeny. G3 (BETHESDA, MD.) 2020; 10:4129-4146. [PMID: 32934018 PMCID: PMC7642928 DOI: 10.1534/g3.120.401727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Satellite DNAs (satDNAs) are a ubiquitous feature of eukaryotic genomes and are usually the major components of constitutive heterochromatin. The 1.688 satDNA, also known as the 359 bp satellite, is one of the most abundant repetitive sequences in Drosophila melanogaster and has been linked to several different biological functions. We investigated the presence and evolution of the 1.688 satDNA in 16 Drosophila genomes. We find that the 1.688 satDNA family is much more ancient than previously appreciated, being shared among part of the melanogaster group that diverged from a common ancestor ∼27 Mya. We found that the 1.688 satDNA family has two major subfamilies spread throughout Drosophila phylogeny (∼360 bp and ∼190 bp). Phylogenetic analysis of ∼10,000 repeats extracted from 14 of the species revealed that the 1.688 satDNA family is present within heterochromatin and euchromatin. A high number of euchromatic repeats are gene proximal, suggesting the potential for local gene regulation. Notably, heterochromatic copies display concerted evolution and a species-specific pattern, whereas euchromatic repeats display a more typical evolutionary pattern, suggesting that chromatin domains may influence the evolution of these sequences. Overall, our data indicate the 1.688 satDNA as the most perduring satDNA family described in Drosophila phylogeny to date. Our study provides a strong foundation for future work on the functional roles of 1.688 satDNA across many Drosophila species.
Collapse
Affiliation(s)
| | - Stacey L Hanlon
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | | |
Collapse
|
27
|
Sproul JS, Khost DE, Eickbush DG, Negm S, Wei X, Wong I, Larracuente AM. Dynamic Evolution of Euchromatic Satellites on the X Chromosome in Drosophila melanogaster and the simulans Clade. Mol Biol Evol 2020; 37:2241-2256. [PMID: 32191304 PMCID: PMC7403614 DOI: 10.1093/molbev/msaa078] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Satellite DNAs (satDNAs) are among the most dynamically evolving components of eukaryotic genomes and play important roles in genome regulation, genome evolution, and speciation. Despite their abundance and functional impact, we know little about the evolutionary dynamics and molecular mechanisms that shape satDNA distributions in genomes. Here, we use high-quality genome assemblies to study the evolutionary dynamics of two complex satDNAs, Rsp-like and 1.688 g/cm3, in Drosophila melanogaster and its three nearest relatives in the simulans clade. We show that large blocks of these repeats are highly dynamic in the heterochromatin, where their genomic location varies across species. We discovered that small blocks of satDNA that are abundant in X chromosome euchromatin are similarly dynamic, with repeats changing in abundance, location, and composition among species. We detail the proliferation of a rare satellite (Rsp-like) across the X chromosome in D. simulans and D. mauritiana. Rsp-like spread by inserting into existing clusters of the older, more abundant 1.688 satellite, in events likely facilitated by microhomology-mediated repair pathways. We show that Rsp-like is abundant on extrachromosomal circular DNA in D. simulans, which may have contributed to its dynamic evolution. Intralocus satDNA expansions via unequal exchange and the movement of higher order repeats also contribute to the fluidity of the repeat landscape. We find evidence that euchromatic satDNA repeats experience cycles of proliferation and diversification somewhat analogous to bursts of transposable element proliferation. Our study lays a foundation for mechanistic studies of satDNA proliferation and the functional and evolutionary consequences of satDNA movement.
Collapse
Affiliation(s)
- John S Sproul
- Department of Biology, University of Rochester, Rochester, NY
| | | | | | - Sherif Negm
- Department of Biology, University of Rochester, Rochester, NY
| | - Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY
| | - Isaac Wong
- Department of Biology, University of Rochester, Rochester, NY
| | | |
Collapse
|
28
|
Heat Stress Affects H3K9me3 Level at Human Alpha Satellite DNA Repeats. Genes (Basel) 2020; 11:genes11060663. [PMID: 32570830 PMCID: PMC7348797 DOI: 10.3390/genes11060663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Satellite DNAs are tandemly repeated sequences preferentially assembled into large arrays within constitutive heterochromatin and their transcription is often activated by stress conditions, particularly by heat stress. Bioinformatic analyses of sequenced genomes however reveal single repeats or short arrays of satellite DNAs dispersed in the vicinity of genes within euchromatin. Here, we analyze transcription of a major human alpha satellite DNA upon heat stress and follow the dynamics of “silent” H3K9me3 and “active” H3K4me2/3 histone marks at dispersed euchromatic and tandemly arranged heterochromatic alpha repeats. The results show H3K9me3 enrichment at alpha repeats upon heat stress, which correlates with the dynamics of alpha satellite DNA transcription activation, while no change in H3K4me2/3 level is detected. Spreading of H3K9me3 up to 1–2 kb from the insertion sites of the euchromatic alpha repeats is detected, revealing the alpha repeats as modulators of local chromatin structure. In addition, expression of genes containing alpha repeats within introns as well as of genes closest to the intergenic alpha repeats is downregulated upon heat stress. Further studies are necessary to reveal the possible contribution of H3K9me3 enriched alpha repeats, in particular those located within introns, to the silencing of their associated genes.
Collapse
|
29
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Palacios-Gimenez OM, Milani D, Song H, Marti DA, López-León MD, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC. Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis. Genome Biol Evol 2020; 12:88-102. [PMID: 32211863 PMCID: PMC7093836 DOI: 10.1093/gbe/evaa018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Satellite DNA (satDNA) is an abundant class of tandemly repeated noncoding sequences, showing high rate of change in sequence, abundance, and physical location. However, the mechanisms promoting these changes are still controversial. The library model was put forward to explain the conservation of some satDNAs for long periods, predicting that related species share a common collection of satDNAs, which mostly experience quantitative changes. Here, we tested the library model by analyzing three satDNAs in ten species of Schistocerca grasshoppers. This group represents a valuable material because it diversified during the last 7.9 Myr across the American continent from the African desert locust (Schistocerca gregaria), and this thus illuminates the direction of evolutionary changes. By combining bioinformatic and cytogenetic, we tested whether these three satDNA families found in S. gregaria are also present in nine American species, and whether differential gains and/or losses have occurred in the lineages. We found that the three satDNAs are present in all species but display remarkable interspecies differences in their abundance and sequences while being highly consistent with genus phylogeny. The number of chromosomal loci where satDNA is present was also consistent with phylogeny for two satDNA families but not for the other. Our results suggest eminently chance events for satDNA evolution. Several evolutionary trends clearly imply either massive amplifications or contractions, thus closely fitting the library model prediction that changes are mostly quantitative. Finally, we found that satDNA amplifications or contractions may influence the evolution of monomer consensus sequences and by chance playing a major role in driftlike dynamics.
Collapse
Affiliation(s)
- Octavio M Palacios-Gimenez
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Hojun Song
- Department of Entomology, Texas A&M University
| | - Dardo A Marti
- Laboratorio de Genética Evolutiva, IBS, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, CONICET, Posadas, Argentina
| | - Maria D López-León
- Departamento de Genética, Facultad de Ciencias, UGR - Univ de Granada, Spain
| | - Francisco J Ruiz-Ruano
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
31
|
Louzada S, Lopes M, Ferreira D, Adega F, Escudeiro A, Gama-Carvalho M, Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair. Genes (Basel) 2020; 11:E72. [PMID: 31936645 PMCID: PMC7017282 DOI: 10.3390/genes11010072] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Repetitive DNA is a major organizational component of eukaryotic genomes, being intrinsically related with their architecture and evolution. Tandemly repeated satellite DNAs (satDNAs) can be found clustered in specific heterochromatin-rich chromosomal regions, building vital structures like functional centromeres and also dispersed within euchromatin. Interestingly, despite their association to critical chromosomal structures, satDNAs are widely variable among species due to their high turnover rates. This dynamic behavior has been associated with genome plasticity and chromosome rearrangements, leading to the reshaping of genomes. Here we present the current knowledge regarding satDNAs in the light of new genomic technologies, and the challenges in the study of these sequences. Furthermore, we discuss how these sequences, together with other repeats, influence genome architecture, impacting its evolution and association with disease.
Collapse
Affiliation(s)
- Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| |
Collapse
|
32
|
Courret C, Chang CH, Wei KHC, Montchamp-Moreau C, Larracuente AM. Meiotic drive mechanisms: lessons from Drosophila. Proc Biol Sci 2019; 286:20191430. [PMID: 31640520 DOI: 10.1098/rspb.2019.1430] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Meiotic drivers are selfish genetic elements that bias their transmission into gametes, often to the detriment of the rest of the genome. The resulting intragenomic conflicts triggered by meiotic drive create evolutionary arms races and shape genome evolution. The phenomenon of meiotic drive is widespread across taxa but is particularly prominent in the Drosophila genus. Recent studies in Drosophila have provided insights into the genetic origins of drivers and their molecular mechanisms. Here, we review the current literature on mechanisms of drive with an emphasis on sperm killers in Drosophila species. In these systems, meiotic drivers often evolve from gene duplications and targets are generally linked to heterochromatin. While dense in repetitive elements and difficult to study using traditional genetic and genomic approaches, recent work in Drosophila has made progress on the heterochromatic compartment of the genome. Although we still understand little about precise drive mechanisms, studies of male drive systems are converging on common themes such as heterochromatin regulation, small RNA pathways, and nuclear transport pathways. Meiotic drive systems are therefore promising models for discovering fundamental features of gametogenesis.
Collapse
Affiliation(s)
- Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California, Berkley, CA, USA
| | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | | |
Collapse
|
33
|
Helleu Q, Levine MT. Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Mol Biol Evol 2019; 35:2375-2389. [PMID: 29924345 PMCID: PMC6188558 DOI: 10.1093/molbev/msy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterochromatic genome compartment mediates strictly conserved cellular processes such as chromosome segregation, telomere integrity, and genome stability. Paradoxically, heterochromatic DNA sequence is wildly unconserved. Recent reports that many hybrid incompatibility genes encode heterochromatin proteins, together with the observation that interspecies hybrids suffer aberrant heterochromatin-dependent processes, suggest that heterochromatic DNA packaging requires species-specific innovations. Testing this model of coevolution between fast-evolving heterochromatic DNA and its packaging proteins begins with defining the latter. Here we describe many such candidates encoded by the Heterochromatin Protein 1 (HP1) gene family across Diptera, an insect Order that encompasses dramatic episodes of heterochromatic sequence turnover. Using BLAST, synteny analysis, and phylogenetic tree building across 64 Diptera genomes, we discovered a staggering 121 HP1 duplication events. In contrast, we observed virtually no gene duplication in gene families that share a common “chromodomain” with HP1s, including Polycomb and Su(var)3-9. The remarkably high number of Dipteran HP1 paralogs arises from distant clades undergoing convergent HP1 family amplifications. These independently derived, young HP1s span diverse ages, domain structures, and rates of molecular evolution, including episodes of positive selection. Moreover, independently derived HP1s exhibit convergent expression evolution. While ancient HP1 parent genes are transcribed ubiquitously, young HP1 paralogs are transcribed primarily in male germline tissue, a pattern typical of young genes. Pervasive gene youth, rapid evolution, and germline specialization implicate heterochromatin-encoded selfish elements driving recurrent HP1 gene family expansions. The 121 young genes offer valuable experimental traction for elucidating the germline processes shaped by Diptera’s many dramatic episodes of heterochromatin turnover.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Utsunomia R, Silva DMZDA, Ruiz-Ruano FJ, Goes CAG, Melo S, Ramos LP, Oliveira C, Porto-Foresti F, Foresti F, Hashimoto DT. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci Rep 2019; 9:5856. [PMID: 30971780 PMCID: PMC6458115 DOI: 10.1038/s41598-019-42383-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/26/2019] [Indexed: 11/09/2022] Open
Abstract
The accumulation of repetitive DNA sequences on the sex-limited W or Y chromosomes is a well-known process that is likely triggered by the suppression of recombination between the sex chromosomes, which leads to major differences in their sizes and genetic content. Here, we report an analysis conducted on the satellitome of Megaleporinus macrocephalus that focuses specifically on the satDNAs that have been shown to have higher abundances in females and are putatively located on the W chromosome in this species. We characterized 164 satellite families in M. macrocephalus, which is, by far, the most satellite-rich species discovered to date. Subsequently, we mapped 30 satellites, 22 of which were located on the W chromosome, and 14 were shown to exist only on the W chromosome. Finally, we report two simple, quick and reliable methods that can be used for sex identification in M. macrocephalus individuals using fin clips or scales, which could be applicable to future studies conducted in the field of aquaculture.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil. .,Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.
| | | | | | - Caio Augusto Gomes Goes
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista - UNESP, Campus de Bauru, 17033-360, Bauru, SP, Brazil
| | - Silvana Melo
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil
| | - Lucas Peres Ramos
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista - UNESP, Campus de Bauru, 17033-360, Bauru, SP, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil
| | - Diogo Teruo Hashimoto
- CAUNESP, Universidade Estadual Paulista - UNESP, Campus Jaboticabal, 14884-900, Jaboticabal, SP, Brazil
| |
Collapse
|
35
|
Ross KG, Shoemaker D. Unexpected patterns of segregation distortion at a selfish supergene in the fire ant Solenopsis invicta. BMC Genet 2018; 19:101. [PMID: 30404617 PMCID: PMC6223060 DOI: 10.1186/s12863-018-0685-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Sb supergene in the fire ant Solenopsis invicta determines the form of colony social organization, with colonies whose inhabitants bear the element containing multiple reproductive queens and colonies lacking it containing only a single queen. Several features of this supergene - including suppressed recombination, presence of deleterious mutations, association with a large centromere, and "green-beard" behavior - suggest that it may be a selfish genetic element that engages in transmission ratio distortion (TRD), defined as significant departures in progeny allele frequencies from Mendelian inheritance ratios. We tested this possibility by surveying segregation ratios in embryo progenies of 101 queens of the "polygyne" social form (3512 embryos) using three supergene-linked markers and twelve markers outside the supergene. RESULTS Significant departures from Mendelian ratios were observed at the supergene loci in 3-5 times more progenies than expected in the absence of TRD and than found, on average, among non-supergene loci. Also, supergene loci displayed the greatest mean deviations from Mendelian ratios among all study loci, although these typically were modest. A surprising feature of the observed inter-progeny variation in TRD was that significant deviations involved not only excesses of supergene alleles but also similarly frequent excesses of the alternate alleles on the homologous chromosome. As expected given the common occurrence of such "drive reversal" in this system, alleles associated with the supergene gain no consistent transmission advantage over their alternate alleles at the population level. Finally, we observed low levels of recombination and incomplete gametic disequilibrium across the supergene, including between adjacent markers within a single inversion. CONCLUSIONS Our data confirm the prediction that the Sb supergene is a selfish genetic element capable of biasing its own transmission during reproduction, yet counterselection for suppressor loci evidently has produced an evolutionary stalemate in TRD between the variant homologous haplotypes on the "social chromosome". Evidence implicates prezygotic segregation distortion as responsible for the TRD we document, with "true" meiotic drive the most likely mechanism. Low levels of recombination and incomplete gametic disequilibrium across the supergene suggest that selection does not preserve a single uniform supergene haplotype responsible for inducing polygyny.
Collapse
Affiliation(s)
- Kenneth G. Ross
- Department of Entomology, University of Georgia, Athens, GA USA
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN USA
| |
Collapse
|
36
|
Palacios-Gimenez OM, Bardella VB, Lemos B, Cabral-de-Mello DC. Satellite DNAs are conserved and differentially transcribed among Gryllus cricket species. DNA Res 2018; 25:137-147. [PMID: 29096008 PMCID: PMC5909420 DOI: 10.1093/dnares/dsx044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022] Open
Abstract
Satellite DNA (satDNA) is an abundant class of non-coding repetitive DNA that is preferentially found as tandemly repeated arrays in gene-poor heterochromatin but is also present in gene-rich euchromatin. Here, we used DNA- and RNA-seq from Gryllus assimilis to address the content and transcriptional patterns of satDNAs. We also mapped RNA-seq libraries for other Gryllus species against the satDNAs found in G. assimilis and G. bimaculatus genomes to investigate their evolutionary conservation and transcriptional profiles in Gryllus. Through DNA-seq read clustering analysis using RepeatExplorer, dotplots analysis and fluorescence in situ hybridization mapping, we found that ∼4% of the G. assimilis genome is represented by 11 well-defined A + T-rich satDNA families. These are mainly located in heterochromatic areas, with some repeats able to form high-order repeat structures. By in silico transcriptional analysis we identified satDNAs that are conserved in Gryllus but differentially transcribed. The data regarding satDNA presence in G. assimilis genome were discussed in an evolutionary context, with transcriptional data enabling comparisons between sexes and across tissues when possible. We discuss hypotheses for the conservation and transcription of satDNAs in Gryllus, which might result from their role in sexual differentiation at the chromatin level, heterochromatin formation and centromeric function.
Collapse
Affiliation(s)
- Octavio Manuel Palacios-Gimenez
- Departamento de Biologia, Instituto de Biociências/IB, UNESP-Univ Estadual Paulista, Rio Claro, São Paulo, Brazil.,Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Vanessa Bellini Bardella
- Departamento de Biologia, Instituto de Biociências/IB, UNESP-Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
O'Neill MJ, O'Neill RJ. Sex chromosome repeats tip the balance towards speciation. Mol Ecol 2018; 27:3783-3798. [PMID: 29624756 DOI: 10.1111/mec.14577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create suboptimal sex ratios but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex-determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation.
Collapse
Affiliation(s)
- Michael J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
38
|
McGurk MP, Barbash DA. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res 2018; 28:714-725. [PMID: 29588362 PMCID: PMC5932611 DOI: 10.1101/gr.231472.117] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomes are replete with repeated sequences in the form of transposable elements (TEs) dispersed across the genome or as satellite arrays, large stretches of tandemly repeated sequences. Many satellites clearly originated as TEs, but it is unclear how mobile genetic parasites can transform into megabase-sized tandem arrays. Comprehensive population genomic sampling is needed to determine the frequency and generative mechanisms of tandem TEs, at all stages from their initial formation to their subsequent expansion and maintenance as satellites. The best available population resources, short-read DNA sequences, are often considered to be of limited utility for analyzing repetitive DNA due to the challenge of mapping individual repeats to unique genomic locations. Here we develop a new pipeline called ConTExt that demonstrates that paired-end Illumina data can be successfully leveraged to identify a wide range of structural variation within repetitive sequence, including tandem elements. By analyzing 85 genomes from five populations of Drosophila melanogaster, we discover that TEs commonly form tandem dimers. Our results further suggest that insertion site preference is the major mechanism by which dimers arise and that, consequently, dimers form rapidly during periods of active transposition. This abundance of TE dimers has the potential to provide source material for future expansion into satellite arrays, and we discover one such copy number expansion of the DNA transposon hobo to approximately 16 tandem copies in a single line. The very process that defines TEs—transposition—thus regularly generates sequences from which new satellites can arise.
Collapse
Affiliation(s)
- Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
39
|
Dispersion Profiles and Gene Associations of Repetitive DNAs in the Euchromatin of the Beetle Tribolium castaneum. G3-GENES GENOMES GENETICS 2018; 8:875-886. [PMID: 29311112 PMCID: PMC5844308 DOI: 10.1534/g3.117.300267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Satellite DNAs are tandemly repeated sequences clustered within heterochromatin. However, in some cases, such as the major TCAST1 satellite DNA from the beetle Tribolium castaneum, they are found partially dispersed within euchromatin. Such organization together with transcriptional activity enables TCAST1 to modulate the activity of neighboring genes. In order to explore if other T. castaneum repetitive families have features that could provide them with a possible gene-modulatory role, we compare here the structure, organization, dispersion profiles, and transcription activity of 10 distinct TCAST repetitive families including TCAST1. The genome organization of TCAST families exhibit either satellite-like or transposon-like characteristics. In addition to heterochromatin localization, bioinformatic searches of the assembled genome have revealed dispersion of all families within euchromatin, preferentially in the form of single repeats. Dispersed TCAST repeats are mutually correlated in distribution and are grouped in distinct regions of euchromatin. The repeats are associated with genes, are enriched in introns relative to intergenic regions, and very rarely overlap exons. In spite of the different mechanisms of repeat proliferation, such as transposition and homologous recombination, all TCAST families share a similar frequency of spreading as well as dispersion and gene association profiles. Additionally, TCAST families are transcribed and their transcription is significantly activated by heat stress. A possibility that such common features of TCAST families might be related to their potential gene-modulatory role is discussed.
Collapse
|
40
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
41
|
de Lima LG, Svartman M, Kuhn GCS. Dissecting the Satellite DNA Landscape in Three Cactophilic Drosophila Sequenced Genomes. G3 (BETHESDA, MD.) 2017; 7:2831-2843. [PMID: 28659292 PMCID: PMC5555486 DOI: 10.1534/g3.117.042093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 01/12/2023]
Abstract
Eukaryote genomes are replete with repetitive DNAs. This class includes tandemly repeated satellite DNAs (satDNA) which are among the most abundant, fast evolving (yet poorly studied) genomic components. Here, we used high-throughput sequencing data from three cactophilic Drosophila species, D. buzzatii, D. seriema, and D. mojavensis, to access and study their whole satDNA landscape. In total, the RepeatExplorer software identified five satDNAs, three previously described (pBuM, DBC-150 and CDSTR198) and two novel ones (CDSTR138 and CDSTR130). Only pBuM is shared among all three species. The satDNA repeat length falls within only two classes, between 130 and 200 bp or between 340 and 390 bp. FISH on metaphase and polytene chromosomes revealed the presence of satDNA arrays in at least one of the following genomic compartments: centromeric, telomeric, subtelomeric, or dispersed along euchromatin. The chromosomal distribution ranges from a single chromosome to almost all chromosomes of the complement. Fiber-FISH and sequence analysis of contigs revealed interspersion between pBuM and CDSTR130 in the microchromosomes of D. mojavensis Phylogenetic analyses showed that the pBuM satDNA underwent concerted evolution at both interspecific and intraspecific levels. Based on RNA-seq data, we found transcription activity for pBuM (in D. mojavensis) and CDSTR198 (in D. buzzatii) in all five analyzed developmental stages, most notably in pupae and adult males. Our data revealed that cactophilic Drosophila present the lowest amount of satDNAs (1.9-2.9%) within the Drosophila genus reported so far. We discuss how our findings on the satDNA location, abundance, organization, and transcription activity may be related to functional aspects.
Collapse
Affiliation(s)
- Leonardo G de Lima
- Laboratório de Citogenômica Evolutiva, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Marta Svartman
- Laboratório de Citogenômica Evolutiva, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gustavo C S Kuhn
- Laboratório de Citogenômica Evolutiva, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
42
|
Palacios-Gimenez OM, Dias GB, de Lima LG, Kuhn GCES, Ramos É, Martins C, Cabral-de-Mello DC. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci Rep 2017; 7:6422. [PMID: 28743997 PMCID: PMC5527012 DOI: 10.1038/s41598-017-06822-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Satellite DNAs (satDNAs) constitute large portion of eukaryote genomes, comprising non-protein-coding sequences tandemly repeated. They are mostly found in heterochromatic regions of chromosomes such as around centromere or near telomeres, in intercalary heterochromatin, and often in non-recombining segments of sex chromosomes. We examined the satellitome in the cricket Eneoptera surinamensis (2n = 9, neo-X1X2Y, males) to characterize the molecular evolution of its neo-sex chromosomes. To achieve this, we analyzed illumina reads using graph-based clustering and complementary analyses. We found an unusually high number of 45 families of satDNAs, ranging from 4 bp to 517 bp, accounting for about 14% of the genome and showing different modular structures and high diversity of arrays. FISH mapping revealed that satDNAs are located mostly in C-positive pericentromeric regions of the chromosomes. SatDNAs enrichment was also observed in the neo-sex chromosomes in comparison to autosomes. Especially astonishing accumulation of satDNAs loci was found in the highly differentiated neo-Y, including 39 satDNAs over-represented in this chromosome, which is the greatest satDNAs diversity yet reported for sex chromosomes. Our results suggest possible involvement of satDNAs in genome increasing and in molecular differentiation of the neo-sex chromosomes in this species, contributing to the understanding of sex chromosome composition and evolution in Orthoptera.
Collapse
Affiliation(s)
| | - Guilherme Borges Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Gomes de Lima
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Érica Ramos
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| | - Cesar Martins
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
43
|
Khost DE, Eickbush DG, Larracuente AM. Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster. Genome Res 2017; 27:709-721. [PMID: 28373483 PMCID: PMC5411766 DOI: 10.1101/gr.213512.116] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022]
Abstract
Highly repetitive satellite DNA (satDNA) repeats are found in most eukaryotic genomes. SatDNAs are rapidly evolving and have roles in genome stability and chromosome segregation. Their repetitive nature poses a challenge for genome assembly and makes progress on the detailed study of satDNA structure difficult. Here, we use single-molecule sequencing long reads from Pacific Biosciences (PacBio) to determine the detailed structure of all major autosomal complex satDNA loci in Drosophila melanogaster, with a particular focus on the 260-bp and Responder satellites. We determine the optimal de novo assembly methods and parameter combinations required to produce a high-quality assembly of these previously unassembled satDNA loci and validate this assembly using molecular and computational approaches. We determined that the computationally intensive PBcR-BLASR assembly pipeline yielded better assemblies than the faster and more efficient pipelines based on the MHAP hashing algorithm, and it is essential to validate assemblies of repetitive loci. The assemblies reveal that satDNA repeats are organized into large arrays interrupted by transposable elements. The repeats in the center of the array tend to be homogenized in sequence, suggesting that gene conversion and unequal crossovers lead to repeat homogenization through concerted evolution, although the degree of unequal crossing over may differ among complex satellite loci. We find evidence for higher-order structure within satDNA arrays that suggest recent structural rearrangements. These assemblies provide a platform for the evolutionary and functional genomics of satDNAs in pericentric heterochromatin.
Collapse
Affiliation(s)
- Daniel E Khost
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Danna G Eickbush
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
44
|
Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex. G3-GENES GENOMES GENETICS 2017; 7:693-704. [PMID: 28007840 PMCID: PMC5295612 DOI: 10.1534/g3.116.035352] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia) has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia) using multi-color fluorescent in situ hybridization (FISH) probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia), and suggests the presence of unidentified satellite sequences in these species.
Collapse
|
45
|
|
46
|
Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep 2016; 6:28333. [PMID: 27385065 PMCID: PMC4935994 DOI: 10.1038/srep28333] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA (satDNA) is a major component yet the great unknown of eukaryote genomes and clearly underrepresented in genome sequencing projects. Here we show the high-throughput analysis of satellite DNA content in the migratory locust by means of the bioinformatic analysis of Illumina reads with the RepeatExplorer and RepeatMasker programs. This unveiled 62 satDNA families and we propose the term "satellitome" for the whole collection of different satDNA families in a genome. The finding that satDNAs were present in many contigs of the migratory locust draft genome indicates that they show many genomic locations invisible by fluorescent in situ hybridization (FISH). The cytological pattern of five satellites showing common descent (belonging to the SF3 superfamily) suggests that non-clustered satDNAs can become into clustered through local amplification at any of the many genomic loci resulting from previous dissemination of short satDNA arrays. The fact that all kinds of satDNA (micro- mini- and satellites) can show the non-clustered and clustered states suggests that all these elements are mostly similar, except for repeat length. Finally, the presence of VNTRs in bacteria, showing similar properties to non-clustered satDNAs in eukaryotes, suggests that this kind of tandem repeats show common properties in all living beings.
Collapse
Affiliation(s)
| | | | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
47
|
Pavlek M, Gelfand Y, Plohl M, Meštrović N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res 2015; 22:387-401. [PMID: 26428853 PMCID: PMC4675708 DOI: 10.1093/dnares/dsv021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022] Open
Abstract
Although satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1-Cast9 extracted from the assembly comprise ∼4.3% of the entire genome and reside almost exclusively in euchromatic regions. Among them, seven families that build ∼3.9% of the genome are based on ∼170 and ∼340 bp long monomers. Results of phylogenetic analyses of 2500 monomers originating from these families show high-sequence dynamics, evident by extensive exchanges between arrays on non-homologous chromosomes. In addition, our analysis shows that concerted evolution acts more efficiently on longer than on shorter arrays. Efficient genome-wide distribution of nine TR families implies the role of transposition only in expansion of the most dispersed family, and involvement of other mechanisms is anticipated. Despite similarities in sequence features, FISH experiments indicate high-level compartmentalization of centromeric and euchromatic tandem repeats.
Collapse
Affiliation(s)
- Martina Pavlek
- Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10002, Croatia
| | - Yevgeniy Gelfand
- Laboratory for Biocomputing and Informatics, Boston University, Boston, MA 02215, USA
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10002, Croatia
| | | |
Collapse
|
48
|
Abstract
The different dose of X chromosomes in males and females produces a potentially fatal imbalance in X-linked gene products. This imbalance is addressed by dosage compensation, a process that modulates expression from an entire X chromosome in one sex. Dosage compensation acts on thousands of genes with disparate expression patterns. Both flies and mammals accomplish this with remarkable specificity by targeting epigenetic chromatin modifications to a single chromosome. Long noncoding RNAs that are expressed from the X chromosome are essential elements of the targeting mechanism in both lineages. We recently discovered that the siRNA pathway, as well as small RNA from satellite repeats that are strikingly enriched on the fly X chromosome, also promote X recognition. In this article we review the current understanding of X recognition in flies and discuss potential mechanisms by which the siRNA pathway, repetitive elements and long noncoding RNAs might cooperate to promote X recognition.
Collapse
Affiliation(s)
- Debashish U Menon
- a Department of Genetics ; University of North Carolina ; Chapel Hill , NC USA
| | - Victoria H Meller
- b Department of Biological Sciences ; Wayne State University ; Detroit , MI USA
| |
Collapse
|
49
|
Larracuente AM. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive. BMC Evol Biol 2014; 14:233. [PMID: 25424548 PMCID: PMC4280042 DOI: 10.1186/s12862-014-0233-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/05/2014] [Indexed: 01/29/2023] Open
Abstract
Background Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)— an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. Results I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. Conclusions The genomic organization of the Rsp repeat in the D. melanogaster genome is complex—it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years). Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0233-9) contains supplementary material, which is available to authorized users.
Collapse
|