1
|
Hudson CM, Cuenca Cambronero M, Moosmann M, Narwani A, Spaak P, Seehausen O, Matthews B. Environmentally independent selection for hybrids between divergent freshwater stickleback lineages in semi-natural ponds. J Evol Biol 2023; 36:1166-1184. [PMID: 37394735 DOI: 10.1111/jeb.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.
Collapse
Affiliation(s)
- Cameron Marshall Hudson
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Maria Cuenca Cambronero
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Aquatic Ecology Group, University of Vic, Central University of Catalonia, Vic, Spain
| | - Marvin Moosmann
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
| |
Collapse
|
2
|
Okubo K, Kaneko K. Heterosis of fitness and phenotypic variance in the evolution of a diploid gene regulatory network. PNAS NEXUS 2022; 1:pgac097. [PMID: 36741431 PMCID: PMC9896930 DOI: 10.1093/pnasnexus/pgac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Heterosis describes the phenomenon, whereby a hybrid population has higher fitness than an inbred population, which has previously been explained by either Mendelian dominance or overdominance under the general assumption of a simple genotype-phenotype relationship. However, recent studies have demonstrated that genes interact through a complex gene regulatory network (GRN). Furthermore, phenotypic variance is reportedly lower for heterozygotes, and the origin of such variance-related heterosis remains elusive. Therefore, a theoretical analysis linking heterosis to GRN evolution and stochastic gene expression dynamics is required. Here, we investigated heterosis related to fitness and phenotypic variance in a system with interacting genes by numerically evolving diploid GRNs. According to the results, the heterozygote population exhibited higher fitness than the homozygote population, indicating fitness-related heterosis resulting from evolution. In addition, the heterozygote population exhibited lower noise-related phenotypic variance in expression levels than the homozygous population, implying that the heterozygote population is more robust to noise. Furthermore, the distribution of the ratio of heterozygote phenotypic variance to homozygote phenotypic variance exhibited quantitative similarity with previous experimental results. By applying dominance and differential gene expression rather than only a single gene expression model, we confirmed the correlation between heterosis and differential gene expression. We explain our results by proposing that the convex high-fitness region is evolutionarily shaped in the genetic space to gain noise robustness under genetic mixing through sexual reproduction. These results provide new insights into the effects of GRNs on variance-related heterosis and differential gene expression.
Collapse
Affiliation(s)
- Kenji Okubo
- Research Center for Integrative Evolutionary Science, the Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, 240-0193, Japan
| | | |
Collapse
|
3
|
Marku M, Verstraete N, Raynal F, Madrid-Mencía M, Domagala M, Fournié JJ, Ysebaert L, Poupot M, Pancaldi V. Insights on TAM Formation from a Boolean Model of Macrophage Polarization Based on In Vitro Studies. Cancers (Basel) 2020; 12:cancers12123664. [PMID: 33297362 PMCID: PMC7762229 DOI: 10.3390/cancers12123664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The recent success of immunotherapy treatments against cancer relies on helping our own body’s defenses in the fight against tumours, namely reinvigorating the cancer killing action of T cells. Unfortunately, in a large proportion of patients these therapies are ineffective, in part due to the presence of other immune cells, macrophages, which are mis-educated by the cancer cells into promoting tumour growth. Here we start from an existing model of macrophage polarization and extend it to the specific conditions encountered inside a tumour by adding signals, receptors, transcription factors and cytokines that are known to be the key components in establishing the cancer cell-macrophage interaction. Then we use a mathematical Boolean model applied to a gene regulatory network of this biological process to simulate its temporal behaviour and explore scenarios that have not been experimentally tested so far. Additionally, the KO and overexpression simulations successfully reproduce the known experimental results while predicting the potential role of regulators (such as STAT1 and EGF) in preventing the formation of pro-tumoural macrophages, which can be tested experimentally. Abstract The tumour microenvironment is the surrounding of a tumour, including blood vessels, fibroblasts, signaling molecules, the extracellular matrix and immune cells, especially neutrophils and monocyte-derived macrophages. In a tumour setting, macrophages encompass a spectrum between a tumour-suppressive (M1) or tumour-promoting (M2) state. The biology of macrophages found in tumours (Tumour Associated Macrophages) remains unclear, but understanding their impact on tumour progression is highly important. In this paper, we perform a comprehensive analysis of a macrophage polarization network, following two lines of enquiry: (i) we reconstruct the macrophage polarization network based on literature, extending it to include important stimuli in a tumour setting, and (ii) we build a dynamical model able to reproduce macrophage polarization in the presence of different stimuli, including the contact with cancer cells. Our simulations recapitulate the documented macrophage phenotypes and their dependencies on specific receptors and transcription factors, while also unravelling the formation of a special type of tumour associated macrophages in an in vitro model of chronic lymphocytic leukaemia. This model constitutes the first step towards elucidating the cross-talk between immune and cancer cells inside tumours, with the ultimate goal of identifying new therapeutic targets that could control the formation of tumour associated macrophages in patients.
Collapse
Affiliation(s)
- Malvina Marku
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Correspondence: (M.M.); (V.P.); Tel.: +33-5-82-74-17-74 (M.M.)
| | - Nina Verstraete
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Flavien Raynal
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Miguel Madrid-Mencía
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Marcin Domagala
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Jean-Jacques Fournié
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Loïc Ysebaert
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, 31330 Toulouse, France
| | - Mary Poupot
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Vera Pancaldi
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Barcelona Supercomputing Center, Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Correspondence: (M.M.); (V.P.); Tel.: +33-5-82-74-17-74 (M.M.)
| |
Collapse
|
4
|
Vacher M, Small I. Simulation of heterosis in a genome-scale metabolic network provides mechanistic explanations for increased biomass production rates in hybrid plants. NPJ Syst Biol Appl 2019; 5:24. [PMID: 31341636 PMCID: PMC6639380 DOI: 10.1038/s41540-019-0101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/28/2019] [Indexed: 01/13/2023] Open
Abstract
Heterosis, or hybrid vigour, is said to occur when F1 individuals exhibit increased performance for a number of traits compared to their parental lines. Improved traits can include increased size, better yield, faster development and a higher tolerance to pathogens or adverse conditions. The molecular basis for the phenomenon remains disputed, despite many decades of theorising and experimentation. In this study, we add a genetics layer to a constraint-based model of plant (Arabidopsis) primary metabolism and show that we can realistically reproduce and quantify heterosis in a highly complex trait (the rate of biomass production). The results demonstrate that additive effects coupled to the complex patterns of epistasis generated by a large metabolic network are sufficient to explain most or all the heterosis seen in typical F1 hybrids. Such models provide a simple approach to exploring and understanding heterosis and should assist in designing breeding strategies to exploit this phenomenon in the future.
Collapse
Affiliation(s)
- Michael Vacher
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009 Australia
- Present Address: Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA 6014 Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009 Australia
| |
Collapse
|
5
|
Zhu C, Zhang X, Zhao Q, Chen Q. Hybrid marriages and phenotypic heterosis in offspring: Evidence from China. ECONOMICS AND HUMAN BIOLOGY 2018; 29:102-114. [PMID: 29547802 DOI: 10.1016/j.ehb.2018.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/21/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
In genetics, heterosis refers to the phenomenon that cross-breeding within species leads to offspring that are genetically fitter than their parents and exhibit improved phenotypic characteristics. Based on the theory of heterosis and existing genetic evidence, offspring of "hybrid" marriages (spouses originating from different states/provinces/countries/areas), though relatively rare due to physical boundaries, may exhibit greater genetic fitness in terms of intelligence, height, or physical attractiveness (the "distance-performance" hypothesis). This study explores whether heterosis is a contributing factor to offspring's educational attainment in China by applying a high-dimensional fixed effects (HDFE) modelling framework to the unique 0.1% micro-sample of the 2000 Chinese Population Census data. Concerning potential endogeneity of hybrid marriages, we conduct a series of robustness checks. Reassuringly, the estimated heterosis effect remains significantly positive across various measurements, after controlling for parental educational attainments/height, environmental influences, and over a thousand region and region-by-year fixed effects. The effects in male and higher-educated offspring are found to be stronger. Results are replicated when analyzing body height using data from the China Health and Nutrition Survey. Although endogeneity of "hybrid marriages" may not be completely ruled out, the current study sheds light on the potentially beneficial effects of interprovincial migration on population-level human capital accumulation, and we hope that this paper can intrigue future studies that further address endogeneity. The implied heterosis effect could, therefore, be profound for Homo sapiens as a species from an evolutionary point of view. An additional important implication is that the overall genetic influences of parents on offspring's performance may be further decomposed into a conventional heredity effect and a heterosis effect that has been neglected previously.
Collapse
Affiliation(s)
- Chen Zhu
- College of Economics and Management, China Agricultural University, Beijing 100083, China; Institute for Population and Labor Economics, Chinese Academy of Social Sciences, Beijing, China
| | - Xiaohui Zhang
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qiran Zhao
- College of Economics and Management, China Agricultural University, Beijing 100083, China
| | - Qihui Chen
- Center for Food and Health Economic Research, College of Economics and Management, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Seifert F, Thiemann A, Grant-Downton R, Edelmann S, Rybka D, Schrag TA, Frisch M, Dickinson HG, Melchinger AE, Scholten S. Parental Expression Variation of Small RNAs Is Negatively Correlated with Grain Yield Heterosis in a Maize Breeding Population. FRONTIERS IN PLANT SCIENCE 2018; 9:13. [PMID: 29441076 PMCID: PMC5797689 DOI: 10.3389/fpls.2018.00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/04/2018] [Indexed: 05/26/2023]
Abstract
Heterosis refers to a quantitative phenomenon in which F1 hybrid trait values exceed the mean of the parental values in a positive direction. Generally, it is dependent on a high degree of heterozygosity, which is maintained in hybrid breeding by developing parental lines in separate, genetically distinct heterotic groups. The mobility of small RNAs (sRNAs) that mediate epigenetic regulation of gene expression renders them promising candidates for modulating the action of combined diverse genomes in trans-and evidence already indicates their contribution to transgressive phenotypes. By sequencing small RNA libraries of a panel of 21 maize parental inbred lines we found a low overlap of 35% between the sRNA populations from both distinct heterotic groups. Surprisingly, in contrast to genetic or gene expression variation, parental sRNA expression variation is negatively correlated with grain yield (GY) heterosis. Among 0.595 million expressed sRNAs, we identified 9,767, predominantly 22- and 24-nt long sRNAs, which showed an association of their differential expression between parental lines and GY heterosis of the respective hybrids. Of these sRNAs, 3,485 or 6,282 showed an association with high or low GY heterosis, respectively, thus the low heterosis associated group prevailing at 64%. The heterosis associated sRNAs map more frequently to genes that show differential expression between parental lines than reference sets. Together these findings suggest that trans-chromosomal actions of sRNAs in hybrids might add up to a negative contribution in heterosis formation, mediated by unfavorable gene expression regulation. We further revealed an exclusive accumulation of 22-nt sRNAs that are associated with low GY heterosis in pericentromeric genomic regions. That recombinational suppression led to this enrichment is indicated by its close correlation with low recombination rates. The existence of this enrichment, which we hypothesize resulted from the separated breeding of inbred lines within heterotic groups, may have implications for hybrid breeding strategies addressing the recombinational constraints characteristic of complex crop genomes.
Collapse
Affiliation(s)
- Felix Seifert
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | | | | | - Susanne Edelmann
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Dominika Rybka
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Tobias A. Schrag
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Matthias Frisch
- Institute of Agronomy and Plant Breeding II, Justus-Liebig University, Giessen, Germany
| | - Hugh G. Dickinson
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Albrecht E. Melchinger
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Stefan Scholten
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Bar-Zvi D, Lupo O, Levy AA, Barkai N. Hybrid vigor: The best of both parents, or a genomic clash? ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|