1
|
Luo AR, Lipshutz S, Phillips J, Brumfield RT, Derryberry EP. Song and genetic divergence within a subspecies of white-crowned sparrow (Zonotrichia leucophrys nuttalli). PLoS One 2024; 19:e0304348. [PMID: 38809922 PMCID: PMC11135742 DOI: 10.1371/journal.pone.0304348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Animal culture evolves alongside genomes, and the two modes of inheritance-culture and genes-interact in myriad ways. For example, stable geographic variation in culture can act as a reproductive barrier, thereby facilitating genetic divergence between "cultural populations." White-crowned sparrows (Zonotrichia leucophrys) are a well-established model species for bird song learning and cultural evolution, as they have distinct, geographically discrete, and culturally transmitted song types (i.e., song dialects). In this study, we tested the hypothesis that divergence between culturally transmitted songs drives genetic divergence within Nuttall's white-crowned sparrows (Z. l. nuttalli). In accordance with sexual selection theory, we hypothesized that cultural divergence between mating signals both preceded and generated genetic divergence. We characterized the population structure and song variation in the subspecies and found two genetically differentiated populations whose boundary coincides with a major song boundary at Monterey Bay, California. We then conducted a song playback experiment that demonstrated males discriminate between songs based on their degree of divergence from their local dialect. These results support the idea that discrimination against non-local songs is driving genetic divergence between the northern and southern populations. Altogether, this study provides evidence that culturally transmitted bird songs can act as the foundation for speciation by sexual selection.
Collapse
Affiliation(s)
- Amy Rongyan Luo
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| | - Sara Lipshutz
- Department of Biology, Duke University, Durham, NC, United States of America
| | - Jennifer Phillips
- School of the Environment, Washington State University, Pullman, WA, United States of America
| | - Robb T. Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | | |
Collapse
|
2
|
Niemiller ML, Davis MA, Tan M, Apodaca JJ, Dooley KE, Cucalón RV, Benito JB, Niemiller KDK, Hardman RH, Istvanko D, Thames D. Mitochondrial DNA and Population Genomics Reveal Additional Cryptic Diversity in the Green Salamander (Subgenus Castaneides) Species Complex. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.890859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryptic species present particular challenges to biodiversity conservation, as true species diversity and distributional boundaries remain obscured. However, modern molecular tools have afforded unparalleled opportunities to elucidate cryptic species, define their distributions, and, ultimately, develop conservation interventions to extend their evolutionary trajectories into the future. The Green Salamander (Aneides aeneus) complex provides an evolutionary focal point and the Appalachian Highlands an ecological context for the exploration of cryptic speciation in an imperiled taxon. A recent study uncovered significant levels of genetic and genomic variation geographically structured across the Appalachian Highlands, including up to four lineages, one of which (A. caryaensis) was described therein. Here we extend the genetic and genomic examination of the Castaneides species complex by intensive sampling of additional populations along Cumberland Plateau and Appalachian Valley and Ridge of Alabama and Tennessee, employing both mtDNA and RADseq species delimitation approaches to delineate cryptic diversity and boundaries in this region. Analyses of two mitochondrial loci (nd4 and cytb) identified two reciprocally monophyletic lineages, which are also supported by population clustering and phylogenetic analyses of SNPs, that identified two population clusters with no evidence of gene flow. Our genetic and genomic results support the recognition of two additional cryptic lineages in the Castaneides species complex. Ultimately, this information is critical in developing successful adaptive management strategies for this important and endemic component of Appalachian Highland biodiversity.
Collapse
|
3
|
Phylogeography of an endemic California silkmoth genus suggests the importance of an unheralded central California province in generating regional endemic biodiversity. Mol Phylogenet Evol 2021; 164:107256. [PMID: 34256128 DOI: 10.1016/j.ympev.2021.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
The California Floristic province is a biodiversity hotspot. Understanding the phylogeographic patterns that exist in this diverse region is essential to understanding its evolution and for guiding conservation efforts. Calosaturnia is a charismatic silkmoth genus endemic to large portions of the region with three described species, C. mendocino, C. walterorum, and C. albofasciata. We sampled all three species from across their ranges, sequenced 1463 bp of mitochondrial COI and 1941 bp of nuclear DNA from three genes, and reconstructed phylogenetic relationships and estimated divergence times within the lineages. All three species show pronounced evidence of isolation and, in two cases, secondary reconnection. An unexpected monophyletic mtDNA lineage was found in the Central Coast region, in a region thought to represent an intergrade between C. mendocino and C. walterorum. Our genetic data also significantly revise previous hypotheses as to which species occur in which regions, suggesting that historical ecological changes around four Ma ago isolated some lineages, and a secondary isolation event two Ma ago led to isolation of populations both in the Central Coast region and the southern Sierra Nevada. Our results add to a currently under-appreciated pattern suggesting that coastal Central California is not a transition zone between Northern and Southern California Floristic Province faunas but rather its own unique, periodically isolated, biogeographic region. They also suggest cryptic diversity may be present in many other currently unrecognized groups. Additional research should focus on this central California region because many species may be highly restricted in range and in need of conservation attention.
Collapse
|
4
|
Phylogeographic Origin of California Slender Salamanders (Batrachoseps attenuatus) in the Sutter Buttes. J HERPETOL 2021. [DOI: 10.1670/20-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Jockusch EL, Hansen RW, Fisher RN, Wake DB. Slender salamanders (genus Batrachoseps) reveal Southern California to be a center for the diversification, persistence, and introduction of salamander lineages. PeerJ 2020; 8:e9599. [PMID: 32864205 PMCID: PMC7430267 DOI: 10.7717/peerj.9599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
Background The southern California biodiversity hotspot has had a complex geological history, with both plate tectonic forces and sea level changes repeatedly reconfiguring the region, and likely driving both lineage splittings and extinctions. Here we investigate patterns of genetic divergence in two species of slender salamanders (Plethodontidae: Batrachoseps) in this region. The complex geological history in combination with several organismal traits led us to predict that these species harbor multiple ancient mitochondrial lineages endemic to southern California. These species belong to a clade characterized by fine-scale mitochondrial structure, which has been shown to track ancient splits. Both focal species, Batrachoseps major and B. nigriventris, are relatively widely distributed in southern California, and estimated to have persisted there across millions of years. Recently several extralimital populations of Batrachoseps were found in the San Joaquin Valley of California, a former desert area that has been extensively modified for agriculture. The origins of these populations are unknown, but based on morphology, they are hypothesized to result from human-mediated introductions of B. major. Methods We sequenced the mitochondrial gene cytochrome b from a geographically comprehensive sampling of the mitochondrial lineages of B. major and B. nigriventris that are endemic to southern California. We used phylogenetic analyses to characterize phylogeographic structure and identify mitochondrial contact zones. We also included the San Joaquin Valley samples to test whether they resulted from introductions. We used a bootstrap resampling approach to compare the strength of isolation-by-distance in both Batrachoseps species and four other salamander species with which they co-occur in southern California. Results The northern lineage of B. major harbors at least eight deeply differentiated, geographically cohesive mitochondrial subclades. We identify geographic contact between many of these mtDNA lineages and some biogeographic features that are concordant with lineage boundaries. Batrachoseps nigriventris also has multiple deeply differentiated clades within the region. Comparative analyses highlight the smaller spatial scales over which mitochondrial divergence accumulates in Batrachoseps relative to most other salamander species in southern California. The extralimital populations of Batrachoseps from the San Joaquin Valley are assigned to B. major and are shown to result from at least two independent introductions from different source populations. We also suggest that B. major on Catalina Island, where it is considered native, may be the result of an introduction. Some of the same traits that facilitate the build-up of deep phylogeographic structure in Batrachoseps likely also contribute to its propensity for introductions, and we anticipate that additional introduced populations will be discovered.
Collapse
Affiliation(s)
- Elizabeth L Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, United States of America
| | - Robert W Hansen
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, United States of America
| | - Robert N Fisher
- Western Ecological Research Center, San Diego Field Station, San Diego, CA, U.S. Geological Survey, United States of America
| | - David B Wake
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, United States of America.,Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| |
Collapse
|
6
|
Multi-level patterns of genetic structure and isolation by distance in the widespread plant Mimulus guttatus. Heredity (Edinb) 2020; 125:227-239. [PMID: 32641721 DOI: 10.1038/s41437-020-0335-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
An understanding of genetic structure is essential for answering many questions in population genetics. However, complex population dynamics and scale-dependent processes can make it difficult to detect if there are distinct genetic clusters present in natural populations. Inferring discrete population structure is particularly challenging in the presence of continuous genetic variation such as isolation by distance. Here, we use the plant species Mimulus guttatus as a case study for understanding genetic structure at three spatial scales. We use reduced-representation sequencing and marker-based genotyping to understand dispersal dynamics and to characterise genetic structure. Our results provide insight into the spatial scale of genetic structure in a widespread plant species, and demonstrate how dispersal affects spatial genetic variation at the local, regional, and range-wide scale. At a fine-spatial scale, we show dispersal is rampant with little evidence of spatial genetic structure within populations. At a regional-scale, we show continuous differentiation driven by isolation by distance over hundreds of kilometres, with broad geographic genetic clusters that span major barriers to dispersal. Across Western North America, we observe geographic genetic structure and the genetic signature of multiple postglacial recolonisation events, with historical gene flow linking isolated populations. Our genetic analyses show M. guttatus is highly dispersive and maintains large metapopulations with high intrapopulation variation. This high diversity and dispersal confounds the inference of genetic structure, with multi-level sampling and spatially-explicit analyses required to understand population history.
Collapse
|
7
|
Patton A, Apodaca JJ, Corser JD, Wilson CR, Williams LA, Cameron AD, Wake DB. A New Green Salamander in the Southern Appalachians: Evolutionary History of Aneides aeneus and Implications for Management and Conservation with the Description of a Cryptic Microendemic Species. COPEIA 2019. [DOI: 10.1643/ch-18-052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Austin Patton
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Joseph J. Apodaca
- Amphibian and Reptile Conservancy and Tangled Bank Conservation, 128 Bingham Road, Suite 1150, Asheville, North Carolina 28806; . Send reprint requests to this address
| | - Jeffrey D. Corser
- New York Natural Heritage Program, SUNY College of Environmental Science and Forestry, 625 Broadway, 5th Floor, Albany, New York 12233
| | | | - Lori A. Williams
- North Carolina Wildlife Resources Commission, 177 Mountain Laurel Lane, Fletcher, North Carolina 28732
| | - Alan D. Cameron
- North Carolina Wildlife Resources Commission, 177 Mountain Laurel Lane, Fletcher, North Carolina 28732
| | - David B. Wake
- Museum of Vertebrate Zoology, University of California, Berkeley, California 94720-3160
| |
Collapse
|
8
|
Kuchta SR, Brown AD, Highton R. Disintegrating over space and time: Paraphyly and species delimitation in the Wehrle's Salamander complex. ZOOL SCR 2018. [DOI: 10.1111/zsc.12281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shawn R. Kuchta
- Department of Biological Sciences; Ohio Center for Ecology and Evolutionary Studies; Ohio University; Athens OH USA
| | - Ashley D. Brown
- Department of Biological Sciences; Ohio Center for Ecology and Evolutionary Studies; Ohio University; Athens OH USA
| | - Richard Highton
- Department of Biology; University of Maryland; College Park MD USA
| |
Collapse
|
9
|
López-Villalobos A, Eckert CG. Consequences of multiple mating-system shifts for population and range-wide genetic structure in a coastal dune plant. Mol Ecol 2018; 27:675-693. [PMID: 29319906 DOI: 10.1111/mec.14484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022]
Abstract
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating-system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne ) caused by selfing, small-flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large-flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage-wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating-system differentiation observed across the range of this species.
Collapse
Affiliation(s)
| | - C G Eckert
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
10
|
Starrett J, Hayashi CY, Derkarabetian S, Hedin M. Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada. Mol Phylogenet Evol 2018; 118:403-413. [DOI: 10.1016/j.ympev.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/24/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
11
|
Comparative phylogeography clarifies the complexity and problems of continental distribution that drove A. R. Wallace to favor islands. Proc Natl Acad Sci U S A 2017; 113:7970-7. [PMID: 27432953 DOI: 10.1073/pnas.1601072113] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines.
Collapse
|
12
|
Cryptic genetic diversity of Neverita didyma in the coast of China revealed by phylogeographic analysis: implications for management and conservation. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0998-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Noguerales V, Cordero PJ, Ortego J. Testing the role of ancient and contemporary landscapes on structuring genetic variation in a specialist grasshopper. Ecol Evol 2017; 7:3110-3122. [PMID: 28480010 PMCID: PMC5415511 DOI: 10.1002/ece3.2810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding the processes underlying spatial patterns of genetic diversity and structure of natural populations is a central topic in evolutionary biogeography. In this study, we combine data on ancient and contemporary landscape composition to get a comprehensive view of the factors shaping genetic variation across the populations of the scrub‐legume grasshopper (Chorthippus binotatus binotatus) from the biogeographically complex region of southeast Iberia. First, we examined geographical patterns of genetic structure and employed an approximate Bayesian computation (ABC) approach to compare different plausible scenarios of population divergence. Second, we used a landscape genetic framework to test for the effects of (1) Late Miocene paleogeography, (2) Pleistocene climate fluctuations, and (3) contemporary topographic complexity on the spatial patterns of population genetic differentiation. Genetic structure and ABC analyses supported the presence of three genetic clusters and a sequential west‐to‐east splitting model that predated the last glacial maximum (LGM, c. 21 Kya). Landscape genetic analyses revealed that population genetic differentiation was primarily shaped by contemporary topographic complexity, but was not explained by any paleogeographic scenario or resistance distances based on climate suitability in the present or during the LGM. Overall, this study emphasizes the need of integrating information on ancient and contemporary landscape composition to get a comprehensive view of their relative importance to explain spatial patterns of genetic variation in organisms inhabiting regions with complex biogeographical histories.
Collapse
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| |
Collapse
|