1
|
Kim DY, Kim S, Song H, Shin S. Phylogeny and biogeography of the wingless orthopteran family Rhaphidophoridae. Commun Biol 2024; 7:401. [PMID: 38565627 PMCID: PMC10987581 DOI: 10.1038/s42003-024-06068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cave crickets (Rhaphidophoridae) are insects of an ancient and wingless lineage within Orthoptera that are distributed worldwide except in Antarctica, and each subfamily has a high level of endemicity. Here, we show the comprehensive phylogeny of cave crickets using multi-gene datasets from mitochondrial and nuclear loci, including all extant subfamilies for the first time. We reveal phylogenetic relationships between subfamilies, including the sister relationship between Anoplophilinae and Gammarotettiginae, based on which we suggest new synapomorphies. Through biogeographic analyses based on divergence time estimations and ancestral range reconstruction, we propose novel hypotheses regarding the biogeographic history of cave crickets. We suggest that Gammarotettiginae in California originated from the Asian lineage when Asia and the Americas were connected by the Bering land bridge, and the opening of the western interior seaway affected the division of Ceuthophilinae from Tropidischiinae in North America. We estimate that Rhaphidophoridae originated at 138 Mya throughout Pangea. We further hypothesize that the loss of wings in Rhaphidophoridae could be the result of their adaptation to low temperatures in the Mesozoic era.
Collapse
Affiliation(s)
- Do-Yoon Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangil Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Seunggwan Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
When the Utility of Micro-Computed Tomography Collides with Insect Sample Preparation: An Entomologist User Guide to Solve Post-Processing Issues and Achieve Optimal 3D Models. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Many techniques are used today to study insect morphology, including light and electron microscopy. Most of them require to specifically prepare the sample, precluding its use for further investigation. In contrast, micro-CT allows a sample to be studied in a non-destructive and rapid process, even without specific treatments that might hinder the use of rare and hard-to-find species in nature. We used synchrotron radiation (SR) micro-CT and conventional micro-CT to prepare 3D reconstructions of Diptera, Coleoptera, and Hymenoptera species that had been processed with 4 common preparation procedures: critical-point drying, sputter-coating, resin embedding, and air-drying. Our results showed that it is possible to further utilize insect samples prepared with the aforementioned preparation techniques for the creation of 3D models. Specimens dried at the critical point showed the best results, allowing us to faithfully reconstruct both their external surface and their internal structures, while sputter-coated insects were the most troublesome for the 3D reconstruction procedure. Air-dried specimens were suitable for external morphological analyses, while anatomical investigation of soft internal organs was not possible due to their shrinking and collapsing. The sample included in resin allowed us to reconstruct and appreciate the external cuticle and the internal parts. In this work, we demonstrate that insect samples destined to different analyses can be used for new micro-CT studies, further deepening the possibility of state-of-the-art morphological analyses.
Collapse
|
3
|
Jugovic J, Šumer N. Differences in Troglomorphism and Sexual Dimorphism in Two Sympatric Subtroglophile Crickets of Genus Troglophilus (Insecta: Orthoptera). POLISH JOURNAL OF ECOLOGY 2021. [DOI: 10.3161/15052249pje2021.69.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jure Jugovic
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Nika Šumer
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| |
Collapse
|
4
|
Silva TSR, Feitosa RM. Using controlled vocabularies in anatomical terminology: A case study with Strumigenys (Hymenoptera: Formicidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 52:100877. [PMID: 31357032 DOI: 10.1016/j.asd.2019.100877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Morphological studies of insects can help us to understand the concomitant or sequential functionality of complex structures and may be used to hypothetize distinct levels of phylogenetic relationship among groups. Traditional morphological works, generally, have encompassed a set of elements, including descriptions of structures and their respective conditions, literature references and images, all combined in a single document. Fast forward to the digital era, it is now possible to release this information simultaneously but also independently as data sets linked to the original publication in an external environment. In order to link data from various fields of knowledge, disseminating morphological information in an open environment, it is important to use tools that enhance interoperability. For example, semantic annotations facilitate the dissemination and retrieval of phenotypic data in digital environments. The integration of semantic (i.e. web-based) components with anatomic treatments can be used to generate a traditional description in natural language along with a set of semantic annotations. The ant genus Strumigenys currently comprises about 840 described species distributed worldwide. In the Neotropical region, almost 200 species are currently known, but it is possible that much of the species' diversity there remains unexplored and undescribed. The morphological diversity in the genus is high, reflecting an extreme generic reclassification that occurred in the late 20th and early 21st centuries. Here we define the anatomical concepts in this highly diverse group of ants using semantic annotations to enrich the anatomical ontologies available online, focussing on the definition of terms through subjacent conceptualization.
Collapse
Affiliation(s)
- Thiago S R Silva
- Department of Zoology, Universidade Federal do Paraná, Francisco Heráclito dos Santos Ave., Curitiba, PR, Brazil.
| | - Rodrigo M Feitosa
- Department of Zoology, Universidade Federal do Paraná, Francisco Heráclito dos Santos Ave., Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Leubner F, Bradler S, Wipfler B. The thoracic morphology of the wingless dune cricket Comicus calcaris (Orthoptera: Schizodactylidae): Novel apomorphic characters for the group and adaptations to sand desert environments. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:449-461. [PMID: 28365228 DOI: 10.1016/j.asd.2017.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Schizodactylidae, splay-footed or dune crickets, represents a distinct lineage among the highly diverse orthopteran subgroup Ensifera (crickets, katydids and allies). Only two extant genera belong to the Schizodactylidae: the winged Eurasian genus Schizodactylus, whose ecology and morphology is well documented, and the wingless South African Comicus, for which hardly any studies providing morphological descriptions have been conducted since its taxonomic description in 1888. Based on the first in-depth study of the skeletomuscular system of the thorax of Comicus calcaris Irish 1986, we provide information on some unique characteristics of this character complex in Schizodactylidae. They include a rigid connection of prospinasternite and mesosternum, a T-shaped mesospina, and a fused meso- and metasternum. Although Schizodactylidae is mainly characterized by group-specific anatomical traits of the thorax, its bifurcated profuca supports a closer relationship to the tettigonioid ensiferans, like katydids, wetas, and hump-winged crickets. Some specific features of the thoracic musculature of Comicus seem to be correlated to the skeletal morphology, e.g., due to the rigid connection of the tergites and pleurites in the pterothorax not a single direct flight muscle is developed. We show that many of the thoracic adaptations in these insects are directly related to their psammophilous way of life. These include a characteristic setation of thoracic sclerites that prevent sand grains from intrusion into vulnerable membranous areas, the striking decrease in size of the thoracic spiracles that reduces the respirational water loss, and a general trend towards a fusion of sclerites in the thorax.
Collapse
Affiliation(s)
- Fanny Leubner
- Department of Morphology, Systematics & Evolutionary Biology, J-F-Blumenbach Institute for Zoology & Anthropology, University of Goettingen, Berliner Str. 28, 37073 Göttingen, Germany.
| | - Sven Bradler
- Department of Morphology, Systematics & Evolutionary Biology, J-F-Blumenbach Institute for Zoology & Anthropology, University of Goettingen, Berliner Str. 28, 37073 Göttingen, Germany.
| | - Benjamin Wipfler
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743 Jena, Germany.
| |
Collapse
|
6
|
Wipfler B, Pohl H, Yavorskaya MI, Beutel RG. A review of methods for analysing insect structures - the role of morphology in the age of phylogenomics. CURRENT OPINION IN INSECT SCIENCE 2016; 18:60-68. [PMID: 27939712 DOI: 10.1016/j.cois.2016.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Techniques currently used in insect morphology are outlined briefly. Scanning electron microscopy (SEM) and microphotography are used mainly for documenting external features, the former providing more information on tiny surface structures and the latter on coloration, transparency and degree of sclerotization. A broad spectrum of methods is now available for anatomical studies: histological serial sections, confocal laser scanning microscopy (CLSM), light-sheet fluorescence microscopy (LSFM), serial block-face scanning electron microscopy (SBFSEM), dual beam scanning electron microscopy (FIB-SEM), nuclear magnetic resonance imaging (NMRI), and μ-computed tomography (micro-CT). The use of SBFSEM and FIB-SEM is restricted to extremely small samples. NMRI is used mainly in in vivo studies. Micro-computed tomography, in combination with computer-based reconstruction, has greatly accelerated the acquisition of high quality data in a phylogenetic context. Morphology will continue to play a vital role in phylogenetic and evolutionary investigations. It provides independent data for checking the plausibility of molecular phylogenies and is the only source of information for placing extinct taxa. It is the necessary basis for reconstructing character evolution on the phenotypic level and for developing complex evolutionary scenarios. Computer-based anatomical ontologies are an additional future perspective of morphological work.
Collapse
Affiliation(s)
- Benjamin Wipfler
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Hans Pohl
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Margarita I Yavorskaya
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Rolf G Beutel
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany.
| |
Collapse
|
7
|
Büsse S, Hörnschemeyer T, Fischer C. Three-dimensional reconstruction on cell level: case study elucidates the ultrastructure of the spinning apparatus of Embia sp. (Insecta: Embioptera). ROYAL SOCIETY OPEN SCIENCE 2016; 3:160563. [PMID: 27853574 PMCID: PMC5098999 DOI: 10.1098/rsos.160563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Spinning is a phenomenon not only present in spiders, but also in many other arthropods. The functional morphology and complexity of spinning organs is often poorly understood. Their elements are minute and studying them poses substantial methodological difficulties. This study presents a three-dimensional reconstruction of a silk gland of Embia sp. on cellular level, based on serial sections acquired with serial block-face scanning electron microscopy (SBFSEM) to showcase the power of this method. Previous studies achieved either high resolution to elucidate the ultrastructure or satisfying three-dimensional representations. The high-resolution achieved by SBFSEM can be easily used to reconstruct the three-dimensional ultrastructural organization of cellular structures. The herein investigated spinning apparatus of Embioptera can be taken as an example demonstrating the potential of this method. It was possible to reconstruct a multinucleated silk gland containing 63 nuclei. We focused on the applicability of this method in the field of morphological research and provide a step-by-step guide to the methodology. This will help in applying the method to other arthropod taxa and will help significantly in adapting the method to other animals, animal parts and tissues.
Collapse
Affiliation(s)
- Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| | - Thomas Hörnschemeyer
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| | - Christian Fischer
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| |
Collapse
|