1
|
Woravatin W, Stoneking M, Srikummool M, Kampuansai J, Arias L, Kutanan W. South Asian maternal and paternal lineages in southern Thailand and the role of sex-biased admixture. PLoS One 2023; 18:e0291547. [PMID: 37708147 PMCID: PMC10501589 DOI: 10.1371/journal.pone.0291547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Previous genome-wide studies have reported South Asian (SA) ancestry in several Mainland Southeast Asian (MSEA) populations; however, additional details concerning population history, in particular the role of sex-specific aspects of the SA admixture in MSEA populations can be addressed with uniparental markers. Here, we generated ∼2.3 mB sequences of the male-specific portions of the Y chromosome (MSY) of a Tai-Kadai (TK)-speaking Southern Thai group (SouthernThai_TK), and complete mitochondrial (mtDNA) genomes of the SouthernThai_TK and an Austronesian (AN)-speaking Southern Thai (SouthernThai_AN) group. We identified new mtDNA haplogroups, e.g. Q3, E1a1a1, B4a1a and M7c1c3 that have not previously reported in Thai populations, but are frequent in Island Southeast Asia and Oceania, suggesting interactions between MSEA and these regions. SA prevalent mtDNA haplogroups were observed at frequencies of ~35-45% in the Southern Thai groups; both of them showed more genetic relatedness to Austroasiatic (AA) speaking Mon than to any other group. For MSY, SouthernThai_TK had ~35% SA prevalent haplogroups and exhibited closer genetic affinity to Central Thais. We also analyzed published data from other MSEA populations and observed SA ancestry in some additional MSEA populations that also reflects sex-biased admixture; in general, most AA- and AN-speaking groups in MSEA were closer to SA than to TK groups based on mtDNA, but the opposite pattern was observed for the MSY. Overall, our results of new genetic lineages and sex-biased admixture from SA to MSEA groups attest to the additional value that uniparental markers can add to studies of genome-wide variation.
Collapse
Affiliation(s)
- Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for Linguistics, Faculty of Humanities, Leiden University, Leiden, The Netherlands
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
2
|
The impact of prehistoric human dispersals on the presence of tobacco-related oral cancer in Northeast India. Gene 2021; 813:146098. [PMID: 34952175 DOI: 10.1016/j.gene.2021.146098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Northeast (NE) India is a subject of debate for predicting its involvement in prehistoric anatomically modern human (AMH) dispersal. The unique lifestyle and genetic characteristics of native ethnic groups in this region are believed to be responsible for their susceptibility to tobacco-related oral cancer (TrOC). The present study assessed mitochondrial macro-haplogroup (mHG) diversity and TrOC susceptibility autosomal loci to evaluate the impact of prehistoric AMH dispersal on the present day's high TrOC prevalence in major NE Indian ethnics. METHODS We considered 175 unrelated individuals from 35 ethnic groups and previously published 374 sequences for sequencing-based assessment of mtDNA-based marker by subsequent analyses like haplogroup diversity, phylogenetic, genetic structure by AMOVA, and MDS, descriptive statistics of demographic parameters, and migration analysis. Besides, we selected prolonged tobacco-chewing 124 case-control individuals from similar ethnic backgrounds for genotyping 115 autosomal loci in Sequenom iPLEX MassARRAY™ platform and mined 1000genome data (n = 398) for consequent global admixture and ancestry-specific allele frequencies-based analyses. RESULTS Our mtDNA-based findings suggested that NE populations were distinct from other Indian populations, owing to the first wave of migration from ancient southern China (∼54kya) and two successive spatial expansion events at ∼45kya and ∼43kya. Consequently, it probably acted as another source for prehistoric AMH dispersal in N/NE Asia. Besides, the second wave of back-migration from SE Asia (∼40kya) probably replaced the mitochondrial footprints of survivors from the first migrants and introduced the TrOC susceptibility traits in this region. Afterward, the autosomal marker-based observations on the transition of the disease-associated admixture component 'K6' from SE Asia reconfirmed these results. Moreover, we also observed that the mitochondrial mHG 'R' is significantly associated with the risk of TrOC (OR > 9.5) in NE India. Furthermore, the possible onset of the phenotypic expression of those traits was predicted at ∼4kya, thus, contributing to present-day's TrOC prevalence. CONCLUSIONS This study reflects its uniqueness by revealing an updated AMH dispersal route for the peopling in and out of NE India, which probably introduced the disease-causing traits in the ancestral NE Indian population. Those traits were then imprinted in their genome to get transferred through their respective generations, forming the present-day's TrOC-prevalent NE Indian population.
Collapse
|
3
|
Agrawal P, Katragadda S, Hariharan AK, Raghavendrachar VG, Agarwal A, Dayalu R, Awasthy D, Sharma SC, Sivasamy YK, Lakshmana P, Shanmugam A, Veeramachaneni V, Gupta V, Vani BP, Subaiya L, Syamala TS, Hariharan R, Chandru V, Bloom DE. Validation of whole genome sequencing from dried blood spots. BMC Med Genomics 2021; 14:110. [PMID: 33879142 PMCID: PMC8056537 DOI: 10.1186/s12920-021-00951-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dried blood spots (DBS) are a relatively inexpensive source of nucleic acids and are easy to collect, transport, and store in large-scale field surveys, especially in resource-limited settings. However, their performance in whole-genome sequencing (WGS) relative to that of venous blood DNA has not been analyzed for various downstream applications. METHODS This study compares the WGS performance of DBS paired with venous blood samples collected from 12 subjects. RESULTS Results of standard quality checks of coverage, base quality, and mapping quality were found to be near identical between DBS and venous blood. Concordance for single-nucleotide variants, insertions and deletions, and copy number variants was high between these two sample types. Additionally, downstream analyses typical of population-based studies were performed, such as mitochondrial heteroplasmy detection, haplotype analysis, mitochondrial copy number changes, and determination of telomere lengths. The absolute mitochondrial copy number values were higher for DBS than for venous blood, though the trend in sample-to-sample variation was similar between DBS and blood. Telomere length estimates in most DBS samples were on par with those from venous blood. CONCLUSION DBS samples can serve as a robust and feasible alternative to venous blood for studies requiring WGS analysis.
Collapse
Affiliation(s)
- Pooja Agrawal
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - Shanmukh Katragadda
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - Arun K Hariharan
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | | | - Arunika Agarwal
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, 02115, USA
| | - Rashmi Dayalu
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, 02115, USA
| | - Disha Awasthy
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - Sanjay C Sharma
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - Yasodha Kannan Sivasamy
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - P Lakshmana
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - Ashwini Shanmugam
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - Vamsi Veeramachaneni
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - Vaijayanti Gupta
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - B P Vani
- The Institute for Social and Economic Change, Dr. VKRV Rao Road, Teachers Colony, Nagarabhavi, Bangalore, Karnataka, 560072, India
| | - Lekha Subaiya
- The Institute for Social and Economic Change, Dr. VKRV Rao Road, Teachers Colony, Nagarabhavi, Bangalore, Karnataka, 560072, India
| | - T S Syamala
- The Institute for Social and Economic Change, Dr. VKRV Rao Road, Teachers Colony, Nagarabhavi, Bangalore, Karnataka, 560072, India
| | - Ramesh Hariharan
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India
| | - Vijay Chandru
- Strand Life Sciences Pvt. Ltd., Ground Floor, UAS Alumni Association Building, Veterinary College Campus, Bellary Road, Bangalore, Karnataka, 560024, India.
- Centre for BioSystems Science and Engineering, 3rd Floor, C Wing, Biological Sciences Building, Indian Institute of Science, Bangalore, 560012, India.
| | - David E Bloom
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, 02115, USA.
| |
Collapse
|
4
|
Dryomov SV, Nazhmidenova AM, Starikovskaya EB, Shalaurova SA, Rohland N, Mallick S, Bernardos R, Derevianko AP, Reich D, Sukernik RI. Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia. PLoS One 2021; 16:e0244228. [PMID: 33507977 PMCID: PMC7842996 DOI: 10.1371/journal.pone.0244228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 11/18/2022] Open
Abstract
The Central Siberian Plateau was the last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through a comprehensive dataset of mitochondrial DNA (mtDNA) genomes retained in the remnats of earlier ("Old") Siberians, primarily the Ket, Tofalar, and Todzhi, we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia (best represented by the Yukaghir) over the last 10,000 years. We generated 218 new complete mtDNA sequences and placed them into compound phylogenies with 7 newly obtained and 70 published ancient mitochondrial genomes. We have considerably extended the mtDNA sequence diversity (at the entire mtDNA genome level) of autochthonous Siberians, which remain poorly sampled, and these new data may have a broad impact on the study of human migration. We compared present-day mtDNA diversity in these groups with complete mitochondrial genomes from ancient samples from the region and placed the samples into combined genealogical trees. The resulting components were used to clarify the origins and expansion history of mtDNA lineages that evolved in the refugia of south-central Siberia and beyond, as well as multiple phases of connection between this region and distant parts of Eurasia.
Collapse
Affiliation(s)
- Stanislav V. Dryomov
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| | - Azhar M. Nazhmidenova
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| | - Elena B. Starikovskaya
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| | - Sofia A. Shalaurova
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rem I. Sukernik
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| |
Collapse
|
5
|
Moreno-Mayar JV, Vinner L, de Barros Damgaard P, de la Fuente C, Chan J, Spence JP, Allentoft ME, Vimala T, Racimo F, Pinotti T, Rasmussen S, Margaryan A, Iraeta Orbegozo M, Mylopotamitaki D, Wooller M, Bataille C, Becerra-Valdivia L, Chivall D, Comeskey D, Devièse T, Grayson DK, George L, Harry H, Alexandersen V, Primeau C, Erlandson J, Rodrigues-Carvalho C, Reis S, Bastos MQR, Cybulski J, Vullo C, Morello F, Vilar M, Wells S, Gregersen K, Hansen KL, Lynnerup N, Mirazón Lahr M, Kjær K, Strauss A, Alfonso-Durruty M, Salas A, Schroeder H, Higham T, Malhi RS, Rasic JT, Souza L, Santos FR, Malaspinas AS, Sikora M, Nielsen R, Song YS, Meltzer DJ, Willerslev E. Early human dispersals within the Americas. Science 2018; 362:science.aav2621. [DOI: 10.1126/science.aav2621] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Studies of the peopling of the Americas have focused on the timing and number of initial migrations. Less attention has been paid to the subsequent spread of people within the Americas. We sequenced 15 ancient human genomes spanning from Alaska to Patagonia; six are ≥10,000 years old (up to ~18× coverage). All are most closely related to Native Americans, including those from an Ancient Beringian individual and two morphologically distinct “Paleoamericans.” We found evidence of rapid dispersal and early diversification that included previously unknown groups as people moved south. This resulted in multiple independent, geographically uneven migrations, including one that provides clues of a Late Pleistocene Australasian genetic signal, as well as a later Mesoamerican-related expansion. These led to complex and dynamic population histories from North to South America.
Collapse
|
6
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
7
|
Alexandar SP, Dhinakaran I, Ravi V, Parthasarathy N, Ganesan S, Bhaskaran M, Arun Kumar GP. Meta-Analysis of Association of Mitochondrial DNA Mutations with Type 2 Diabetes and Gestational Diabetes Mellitus. INT J HUM GENET 2018. [DOI: 10.1080/09723757.2018.1430110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Soundarya Priya Alexandar
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Indhumathi Dhinakaran
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Vidhya Ravi
- K.A.P. Viswanatham Govt. Medical College, Trichy, 620 001, Tamil Nadu, India
| | - Nandhini Parthasarathy
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Somasundari Ganesan
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Muthumeenakshi Bhaskaran
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Ganesh Prasad Arun Kumar
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
8
|
Malhotra S, Singh S, Sarkar S. Whole genome variant analysis in three ethnically diverse Indians. Genes Genomics 2018; 40:497-510. [PMID: 29892955 DOI: 10.1007/s13258-018-0650-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
Abstract
India represents an amazing confluence of geographically, linguistically and socially disparate ethnic populations (Indian Genome Variation Consortium, J Genet 87:3-20, 2008). Understanding the genetic diversity of Indian population remains a daunting task. In this paper we present detailed analysis of genomic variations (high-depth coverage (~ 30×) using Illumina Hiseq 2000 platform) from three healthy Indian male individuals each belonging to three geographically delineated regions and linguistic phylum viz. high altitude region of Ladakh (Tibeto-Burman linguistic phylum), sub mountainous region of Kumaun (Indo-European linguistic phylum) and sea level region of Telangana (Dravidian linguistic phylum) for probing the extent of genetic diversity in our population. The sequencing analysis provided high quality data (~ 95% of the total reads aligned to the human reference genome for each sample) and very good alignment quality (> 80% of the filtered mapped reads had a quality score of 60). A total of 4.3, 3.7 and 4.3 million single nucleotide variations were identified in the genome of high altitude, sub mountainous and sea level respectively by comparing with human reference genome. Approximately 17.3, 18.2, 17.4% of the variants were unique in the three genomes. The study identified many novel variations in the three diverse genomes (132,970 in Ladakh, 112,317 in Kumaun and 128,881 in Telangana individual) and is an important resource for creating a baseline and a comprehensive catalogue of human genomic variation across the Indian as well as the Asian continent.
Collapse
Affiliation(s)
- Seema Malhotra
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Delhi, 110054, India
| | - Sayar Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Delhi, 110054, India
| | - Soma Sarkar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Delhi, 110054, India.
| |
Collapse
|
9
|
Bhatti S, Abbas S, Aslamkhan M, Attimonelli M, Trinidad MS, Aydin HH, de Souza EMS, Gonzalez GR. Genetic perspective of uniparental mitochondrial DNA landscape on the Punjabi population, Pakistan. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:714-726. [PMID: 28745560 DOI: 10.1080/24701394.2017.1350951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To investigate the uniparental genetic structure of the Punjabi population from mtDNA aspect and to set up an appropriate mtDNA forensic database, we studied maternally unrelated Punjabi (N = 100) subjects from two caste groups (i.e. Arain and Gujar) belonging to territory of Punjab. The complete control region was elucidated by Sanger sequencing and the subsequent 58 different haplotypes were designated into appropriate haplogroups according to the most recently updated mtDNA phylogeny. We found a homogenous dispersal of Eurasian haplogroup uniformity among the Punjab Province and exhibited a strong connotation with the European populations. Punjabi castes are primarily a composite of substantial South Asian, East Asian and West Eurasian lineages. Moreover, for the first time we have defined the newly sub-haplogroup M52b1 characterized by 16223 T, 16275 G and 16438 A in Gujar caste. The vast array of mtDNA variants displayed in this study suggested that the haplogroup composition radiates signals of extensive genetic conglomeration, population admixture and demographic expansion that was equipped with diverse origin, whereas matrilineal gene pool was phylogeographically homogenous across the Punjab. This context was further fully acquainted with the facts supported by PCA scatterplot that Punjabi population clustered with South Asian populations. Finally, the high power of discrimination (0.8819) and low random match probability (0.0085%) proposed a worthy contribution of mtDNA control region dataset as a forensic database that considered a gold standard of today to get deeper insight into the genetic ancestry of contemporary matrilineal phylogeny.
Collapse
Affiliation(s)
- Shahzad Bhatti
- a Department of Human Genetics and Molecular Biology , University of Health Sciences Lahore , Lahore , Pakistan.,b Institute of Molecular Biology and Biotechnology , University of Lahore , Lahore , Pakistan
| | - Sana Abbas
- b Institute of Molecular Biology and Biotechnology , University of Lahore , Lahore , Pakistan
| | - Muhammad Aslamkhan
- a Department of Human Genetics and Molecular Biology , University of Health Sciences Lahore , Lahore , Pakistan
| | - Marcella Attimonelli
- c Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari , Bari , Italy
| | - Magali Segundo Trinidad
- d Universidad National Autonoma de Mexico , Facultad de Medicinia , Ciudad de Mexico , Mexico
| | - Hikmet Hakan Aydin
- e Department of Medical Biochemistry , Ege University School of Medicine , Izmir , Turkey
| | - Erica Martinha Silva de Souza
- f Instituto Nacional de Pesquisa, Manaus Programa de Pós Graduação em Genética , Conservação e Biologia Evolutiva , Manaus , Brazil
| | | |
Collapse
|
10
|
Larruga JM, Marrero P, Abu-Amero KK, Golubenko MV, Cabrera VM. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area. BMC Evol Biol 2017; 17:115. [PMID: 28535779 PMCID: PMC5442693 DOI: 10.1186/s12862-017-0964-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.
Collapse
Affiliation(s)
- Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Patricia Marrero
- Research Support General Service, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
11
|
Silva M, Oliveira M, Vieira D, Brandão A, Rito T, Pereira JB, Fraser RM, Hudson B, Gandini F, Edwards C, Pala M, Koch J, Wilson JF, Pereira L, Richards MB, Soares P. A genetic chronology for the Indian Subcontinent points to heavily sex-biased dispersals. BMC Evol Biol 2017; 17:88. [PMID: 28335724 PMCID: PMC5364613 DOI: 10.1186/s12862-017-0936-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND India is a patchwork of tribal and non-tribal populations that speak many different languages from various language families. Indo-European, spoken across northern and central India, and also in Pakistan and Bangladesh, has been frequently connected to the so-called "Indo-Aryan invasions" from Central Asia ~3.5 ka and the establishment of the caste system, but the extent of immigration at this time remains extremely controversial. South India, on the other hand, is dominated by Dravidian languages. India displays a high level of endogamy due to its strict social boundaries, and high genetic drift as a result of long-term isolation which, together with a very complex history, makes the genetic study of Indian populations challenging. RESULTS We have combined a detailed, high-resolution mitogenome analysis with summaries of autosomal data and Y-chromosome lineages to establish a settlement chronology for the Indian Subcontinent. Maternal lineages document the earliest settlement ~55-65 ka (thousand years ago), and major population shifts in the later Pleistocene that explain previous dating discrepancies and neutrality violation. Whilst current genome-wide analyses conflate all dispersals from Southwest and Central Asia, we were able to tease out from the mitogenome data distinct dispersal episodes dating from between the Last Glacial Maximum to the Bronze Age. Moreover, we found an extremely marked sex bias by comparing the different genetic systems. CONCLUSIONS Maternal lineages primarily reflect earlier, pre-Holocene processes, and paternal lineages predominantly episodes within the last 10 ka. In particular, genetic influx from Central Asia in the Bronze Age was strongly male-driven, consistent with the patriarchal, patrilocal and patrilineal social structure attributed to the inferred pastoralist early Indo-European society. This was part of a much wider process of Indo-European expansion, with an ultimate source in the Pontic-Caspian region, which carried closely related Y-chromosome lineages, a smaller fraction of autosomal genome-wide variation and an even smaller fraction of mitogenomes across a vast swathe of Eurasia between 5 and 3.5 ka.
Collapse
Affiliation(s)
- Marina Silva
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Marisa Oliveira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Daniel Vieira
- Department of Informatics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreia Brandão
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Teresa Rito
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana B Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Ross M Fraser
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,Synpromics Ltd, Nine Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - Bob Hudson
- Archaeology Department, University of Sydney, Sydney, NSW, 2006, Australia
| | - Francesca Gandini
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Ceiridwen Edwards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - John Koch
- University of Wales Centre for Advanced Welsh and Celtic Studies, National Library of Wales, Aberystwyth, SY23 3HH, Wales, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, Scotland, UK
| | - Luísa Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Pedro Soares
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|