1
|
Herrig DK, Ridenbaugh RD, Vertacnik KL, Everson KM, Sim SB, Geib SM, Weisrock DW, Linnen CR. Whole Genomes Reveal Evolutionary Relationships and Mechanisms Underlying Gene-Tree Discordance in Neodiprion Sawflies. Syst Biol 2024; 73:839-860. [PMID: 38970484 DOI: 10.1093/sysbio/syae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024] Open
Abstract
Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting (ILS) and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and single nucleotide polymorphism-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported species tree that-except for three uncertain relationships-was robust to different strategies for analyzing whole-genome data. Nevertheless, underlying gene-tree discordance was high. To understand this genealogical variation, we used multiple linear regression to model site concordance factors estimated in 50-kb windows as a function of several genomic predictor variables. We found that site concordance factors tended to be higher in regions of the genome with more parsimony-informative sites, fewer singletons, less missing data, lower GC content, more genes, lower recombination rates, and lower D-statistics (less introgression). Together, these results suggest that ILS, introgression, and genotyping error all shape the genomic landscape of gene-tree discordance in Neodiprion. More generally, our findings demonstrate how combining phylogenomic analysis with knowledge of local genomic features can reveal mechanisms that produce topological heterogeneity across genomes.
Collapse
Affiliation(s)
- Danielle K Herrig
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Ryan D Ridenbaugh
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Kim L Vertacnik
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Kathryn M Everson
- Department of Natural Resources and Environmental Science, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
- Department of Integrative Biology, Oregon State University, 4575 SW Research Way, Corvallis, OR 97333, USA
| | - Sheina B Sim
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, 64 Nowelo St., Hilo, HI 96720, USA
| | - Scott M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, 64 Nowelo St., Hilo, HI 96720, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| |
Collapse
|
2
|
Bendall EE, Mattingly KM, Moehring AJ, Linnen CR. A Test of Haldane's Rule in Neodiprion Sawflies and Implications for the Evolution of Postzygotic Isolation in Haplodiploids. Am Nat 2023; 202:40-54. [PMID: 37384768 DOI: 10.1086/724820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractHaldane's rule-a pattern in which hybrid sterility or inviability is observed in the heterogametic sex of an interspecific cross-is one of the most widely obeyed rules in nature. Because inheritance patterns are similar for sex chromosomes and haplodiploid genomes, Haldane's rule may apply to haplodiploid taxa, predicting that haploid male hybrids will evolve sterility or inviability before diploid female hybrids. However, there are several genetic and evolutionary mechanisms that may reduce the tendency of haplodiploids to obey Haldane's rule. Currently, there are insufficient data from haplodiploids to determine how frequently they adhere to Haldane's rule. To help fill this gap, we crossed a pair of haplodiploid hymenopteran species (Neodiprion lecontei and Neodiprion pinetum) and evaluated the viability and fertility of female and male hybrids. Despite considerable divergence, we found no evidence of reduced fertility in hybrids of either sex, consistent with the hypothesis that hybrid sterility evolves slowly in haplodiploids. For viability, we found a pattern opposite to that of Haldane's rule: hybrid females, but not males, had reduced viability. This reduction was most pronounced in one direction of the cross, possibly due to a cytoplasmic-nuclear incompatibility. We also found evidence of extrinsic postzygotic isolation in hybrids of both sexes, raising the possibility that this form or reproductive isolation tends to emerge early in speciation in host-specialized insects. Our work emphasizes the need for more studies on reproductive isolation in haplodiploids, which are abundant in nature but underrepresented in the speciation literature.
Collapse
|
3
|
Peláez JN, Gloss AD, Ray JF, Chaturvedi S, Haji D, Charboneau JLM, Verster KI, Whiteman NK. Evolution and genomic basis of the plant-penetrating ovipositor: a key morphological trait in herbivorous Drosophilidae. Proc Biol Sci 2022; 289:20221938. [PMID: 36350206 PMCID: PMC9653217 DOI: 10.1098/rspb.2022.1938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Herbivorous insects are extraordinarily diverse, yet are found in only one-third of insect orders. This skew may result from barriers to plant colonization, coupled with phylogenetic constraint on plant-colonizing adaptations. The plant-penetrating ovipositor, however, is one trait that surmounts host plant physical defences and may be evolutionarily labile. Ovipositors densely lined with hard bristles have evolved repeatedly in herbivorous lineages, including within the Drosophilidae. However, the evolution and genetic basis of this innovation has not been well studied. Here, we focused on the evolution of this trait in Scaptomyza, a genus sister to Hawaiian Drosophila, that contains a herbivorous clade. Our phylogenetic approach revealed that ovipositor bristle number increased as herbivory evolved in the Scaptomyza lineage. Through a genome-wide association study, we then dissected the genomic architecture of variation in ovipositor bristle number within S. flava. Top-associated variants were enriched for transcriptional repressors, and the strongest associations included genes contributing to peripheral nervous system development. Individual genotyping supported the association at a variant upstream of Gαi, a neural development gene, contributing to a gain of 0.58 bristles/major allele. These results suggest that regulatory variation involving conserved developmental genes contributes to this key morphological trait involved in plant colonization.
Collapse
Affiliation(s)
- Julianne N. Peláez
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA
| | - Andrew D. Gloss
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10012, USA,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Julianne F. Ray
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Samridhi Chaturvedi
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA
| | - Diler Haji
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA
| | | | - Kirsten I. Verster
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, 94720 CA, USA
| |
Collapse
|
4
|
Bendall EE, Bagley RK, Sousa VC, Linnen CR. Faster-haplodiploid evolution under divergence-with-gene-flow: simulations and empirical data from pine-feeding hymenopterans. Mol Ecol 2022; 31:2348-2366. [PMID: 35231148 DOI: 10.1111/mec.16410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Although haplodiploidy is widespread in nature, the evolutionary consequences of this mode of reproduction are not well characterized. Here, we examine how genome-wide hemizygosity and a lack of recombination in haploid males affects genomic differentiation in populations that diverge via natural selection while experiencing gene flow. First, we simulated diploid and haplodiploid "genomes" (500-kb loci) evolving under an isolation-with-migration model with mutation, drift, selection, migration, and recombination; and examined differentiation at neutral sites both tightly and loosely linked to a divergently selected site. So long as there is divergent selection and migration, sex-limited hemizygosity and recombination cause elevated differentiation (i.e., produce a "faster-haplodiploid effect") in haplodiploid populations relative to otherwise equivalent diploid populations, for both recessive and codominant mutations. Second, we used genome-wide SNP data to model divergence history and describe patterns of genomic differentiation between sympatric populations of Neodiprion lecontei and N. pinetum, a pair of pine sawfly species (order: Hymenoptera; family: Diprionidae) that are specialized on different pine hosts. These analyses support a history of continuous gene exchange throughout divergence and reveal a pattern of heterogeneous genomic differentiation that is consistent with divergent selection on many unlinked loci. Third, using simulations of haplodiploid and diploid populations evolving according to the estimated divergence history of N. lecontei and N. pinetum, we found that divergent selection would lead to higher differentiation in haplodiploids. Based on these results, we hypothesize that haplodiploids undergo divergence-with-gene-flow and sympatric speciation more readily than diploids.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Robin K Bagley
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Lima, Lima, OH, 45804, USA
| | - Vitor C Sousa
- CE3C - Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Campo Grande 1749-016, Lisboa, Portugal
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA
| |
Collapse
|
5
|
Chhina AK, Thompson KA, Schluter D. Adaptive divergence and the evolution of hybrid trait mismatch in threespine stickleback. Evol Lett 2022; 6:34-45. [PMID: 35127136 PMCID: PMC8802241 DOI: 10.1002/evl3.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/31/2021] [Indexed: 12/31/2022] Open
Abstract
Selection against mismatched traits in hybrids is the phenotypic analogue of intrinsic hybrid incompatibilities. Mismatch occurs when hybrids resemble one parent population for some phenotypic traits and the other parent population for other traits, and is caused by dominance in opposing directions or from segregation of alleles in recombinant hybrids. In this study, we used threespine stickleback fish (Gasterosteus aculeatus L.) to test the theoretical prediction that trait mismatch in hybrids should increase with the magnitude of phenotypic divergence between parent populations. We measured morphological traits in parents and hybrids in crosses between a marine population representing the ancestral form and twelve freshwater populations that have diverged from this ancestral state to varying degrees according to their environments. We found that trait mismatch was greater in more divergent crosses for both F1 and F2 hybrids. In the F1, the divergence–mismatch relationship was caused by traits having dominance in different directions, whereas it was caused by increasing segregating phenotypic variation in the F2. Our results imply that extrinsic hybrid incompatibilities accumulate as phenotypic divergence proceeds.
Collapse
Affiliation(s)
- Avneet K. Chhina
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
6
|
Herrig DK, Vertacnik KL, Kohrs AR, Linnen CR. Support for the adaptive decoupling hypothesis from whole-transcriptome profiles of a hypermetamorphic and sexually dimorphic insect, Neodiprion lecontei. Mol Ecol 2021; 30:4551-4566. [PMID: 34174126 DOI: 10.1111/mec.16041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Though seemingly bizarre, the dramatic morphological and ecological transformation that occurs when immature life stages metamorphose into reproductive adults is one of the most successful developmental strategies on the planet. The adaptive decoupling hypothesis (ADH) proposes that metamorphosis is an adaptation for breaking developmental links between traits expressed in different life stages, thereby facilitating their independent evolution when exposed to opposing selection pressures. Here, we draw inspiration from the ADH to develop a conceptual framework for understanding changes in gene expression across ontogeny. We hypothesized that patterns of stage-biased and sex-biased gene expression are the product of both decoupling mechanisms and selection history. To test this hypothesis, we characterized transcriptome-wide patterns of gene-expression traits for three ecologically distinct larval stages (all male) and adult males and females of a hypermetamorphic insect (Neodiprion lecontei). We found that stage-biased gene expression was most pronounced between larval and adult males, which is consistent with the ADH. However, even in the absence of a metamorphic transition, considerable stage-biased expression was observed among morphologically and behaviourally distinct larval stages. Stage-biased expression was also observed across ecologically relevant Gene Ontology categories and genes, highlighting the role of ecology in shaping patterns of gene expression. We also found that the magnitude and prevalence of stage-biased expression far exceeded adult sex-biased expression. Overall, our results highlight how the ADH can shed light on transcriptome-wide patterns of gene expression in organisms with complex life cycles. For maximal insight, detailed knowledge of organismal ecology is also essential.
Collapse
Affiliation(s)
- Danielle K Herrig
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Kim L Vertacnik
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Anna R Kohrs
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
7
|
Serrato-Capuchina A, Schwochert TD, Zhang S, Roy B, Peede D, Koppelman C, Matute DR. Pure species discriminate against hybrids in the Drosophila melanogaster species subgroup. Evolution 2021; 75:1753-1774. [PMID: 34043234 DOI: 10.1111/evo.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Introgression, the exchange of alleles between species, is a common event in nature. This transfer of alleles between species must happen through fertile hybrids. Characterizing the traits that cause defects in hybrids illuminates how and when gene flow is expected to occur. Inviability and sterility are extreme examples of fitness reductions but are not the only type of defects in hybrids. Some traits specific to hybrids are more subtle but are important to determine their fitness. In this report, we study whether F1 hybrids between two species pairs of Drosophila are as attractive as the parental species. We find that in both species pairs, the sexual attractiveness of the F1 hybrids is reduced and that pure species discriminate strongly against them. We also find that the cuticular hydrocarbon (CHC) profile of the female hybrids is intermediate between the parental species. Perfuming experiments show that modifying the CHC profile of the female hybrids to resemble pure species improves their chances of mating. Our results show that behavioral discrimination against hybrids might be an important component of the persistence of species that can hybridize.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Timothy D Schwochert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Stephania Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Baylee Roy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - David Peede
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Caleigh Koppelman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Daniel R Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
8
|
Styga JM, Welsh DP. Spawning substrate shift associated with the evolution of a female sexual characteristic in a family of fishes. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Because ‘primary’ sexual characteristics (i.e. those directly associated with reproduction) can be extremely variable, evolve quickly, and can be impacted by both natural and sexual selection, they are often considered excellent model systems in which to study evolution. Here, we explore the evolution of the anal sheath, a trait hypothesized to facilitate the release and proper placement of eggs on the spawning substrate, and its relationship to spawning habitat and maximum body size in a family of fish (Fundulidae). In addition to using phylogenetically informed statistics to determine the role of preferred spawning habitat and maximum body size on the evolution of anal sheath length, we reconstruct the evolutionary history of the anal sheath and preferred spawning habitat. We then test for significant phylogenetic signal and evolutionary rate shifts in the size of the anal sheath and the preferred spawning habitat. Our results indicate that preferred spawning habitat, and not maximum body length, significantly influences anal sheath size, which is associated with a significant phylogenetic signal, and an evolutionary rate similar to that of preferred spawning substrate. We discuss these results in terms of potential evolutionary mechanisms driving anal sheath length.
Collapse
Affiliation(s)
| | - Daniel P Welsh
- Fitchburg State University, Department of Biology and Chemistry, Fitchburg, MA, USA
| |
Collapse
|
9
|
Matute DR, Cooper BS. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 2021; 75:764-778. [PMID: 33491225 PMCID: PMC8247902 DOI: 10.1111/evo.14181] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Understanding the processes of population divergence and speciation remains a core question in evolutionary biology. For nearly a hundred years evolutionary geneticists have characterized reproductive isolation (RI) mechanisms and specific barriers to gene flow required for species formation. The seminal work of Coyne and Orr provided the first comprehensive comparative analysis of speciation. By combining phylogenetic hypotheses and species range data with estimates of genetic divergence and multiple mechanisms of RI across Drosophila, Coyne and Orr's influential meta-analyses answered fundamental questions and motivated new analyses that continue to push the field forward today. Now 30 years later, we revisit the five questions addressed by Coyne and Orr, identifying results that remain well supported and others that seem less robust with new data. We then consider the future of speciation research, with emphasis on areas where novel methods and data motivate potential progress. While the literature remains biased towards Drosophila and other model systems, we are enthusiastic about the future of the field.
Collapse
Affiliation(s)
- Daniel R. Matute
- Biology DepartmentUniversity of North CarolinaChapel HillNorth Carolina27510
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontana59812
| |
Collapse
|
10
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
11
|
Thompson KA, Urquhart-Cronish M, Whitney KD, Rieseberg LH, Schluter D. Patterns, Predictors, and Consequences of Dominance in Hybrids. Am Nat 2021; 197:E72-E88. [PMID: 33625966 DOI: 10.1086/712603] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCompared to those of their parents, are the traits of first-generation (F1) hybrids typically intermediate, biased toward one parent, or mismatched for alternative parental phenotypes? To address this empirical gap, we compiled data from 233 crosses in which traits were measured in a common environment for two parent taxa and their F1 hybrids. We find that individual traits in F1s are halfway between the parental midpoint and one parental value. Considering pairs of traits together, a hybrid's bivariate phenotype tends to resemble one parent (parent bias) about 50% more than the other, while also exhibiting a similar magnitude of mismatch due to different traits having dominance in conflicting directions. Using data from an experimental field planting of recombinant hybrid sunflowers, we illustrate that parent bias improves fitness, whereas mismatch reduces fitness. Our study has three major conclusions. First, hybrids are not phenotypically intermediate but rather exhibit substantial mismatch. Second, dominance is likely determined by the idiosyncratic evolutionary trajectories of individual traits and populations. Finally, selection against hybrids likely results from selection against both intermediate and mismatched phenotypes.
Collapse
|
12
|
Sousa VC, Zélé F, Rodrigues LR, Godinho DP, Charlery de la Masselière M, Magalhães S. Rapid host-plant adaptation in the herbivorous spider mite Tetranychus urticae occurs at low cost. CURRENT OPINION IN INSECT SCIENCE 2019; 36:82-89. [PMID: 31539789 DOI: 10.1016/j.cois.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The herbivorous spider mite Tetranychus urticae is a generalist world crop pest. Early evidence for host races, its fully sequenced genome resolved to the chromosome level, and the development of other molecular tools in this species suggest that this arthropod can be a good model to address host plant adaptation and early stages of speciation. Here, we evaluate this possibility by reviewing recent studies of host-plant adaptation in T. urticae. We find that evidence for costs of adaptation are relatively scarce and that studies involving molecular-genetics and genomics are mostly disconnected from those with phenotypic tests. Still, with the ongoing development of genetic and genomic tools for this species, T. urticae is becoming an attractive model to understand the molecular basis of host-plant adaptation.
Collapse
Affiliation(s)
- Vitor C Sousa
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal.
| | - Flore Zélé
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Leonor R Rodrigues
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Diogo P Godinho
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Maud Charlery de la Masselière
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Sara Magalhães
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal.
| |
Collapse
|
13
|
Understanding Admixture: Haplodiploidy to the Rescue. Trends Ecol Evol 2019; 35:34-42. [PMID: 31703819 DOI: 10.1016/j.tree.2019.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023]
Abstract
Hybridization has broad evolutionary consequences, from fueling or counteracting speciation to facilitating adaptation to novel environments. Hybridization and subsequent introgression appear widespread along the tree of life. However, our understanding of how distinct evolutionary forces shape admixed genomes and the fate of introgressed genetic variants remains scarce. Most admixture research in animals has focused on diploid organisms. We propose that haplodiploid organisms can help resolve open questions about the genomic consequences of hybridization in natural populations. The ploidy difference between haploid males and diploid females, the availability of genome-wide male haplotypes, and ongoing cases of admixture make haplodiploid organisms promising models to improve our knowledge with regards to the evolution of hybrid genomes.
Collapse
|
14
|
Hora KH, Marec F, Roessingh P, Menken SBJ. Limited intrinsic postzygotic reproductive isolation despite chromosomal rearrangements between closely related sympatric species of small ermine moths (Lepidoptera: Yponomeutidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
In evolutionarily young species and sympatric host races of phytophagous insects, postzygotic incompatibility is often not yet fully developed, but reduced fitness of hybrids is thought to facilitate further divergence. However, empirical evidence supporting this hypothesis is limited. To assess the role of reduced hybrid fitness, we studied meiosis and fertility in hybrids of two closely related small ermine moths, Yponomeuta padella and Yponomeuta cagnagella, and determined the extent of intrinsic postzygotic reproductive isolation. We found extensive rearrangements between the karyotypes of the two species and irregularities in meiotic chromosome pairing in their hybrids. The fertility of reciprocal F1 and, surprisingly, also of backcrosses with both parental species was not significantly decreased compared with intraspecific offspring. The results indicate that intrinsic postzygotic reproductive isolation between these closely related species is limited. We conclude that the observed chromosomal rearrangements are probably not the result of an accumulation of postzygotic incompatibilities preventing hybridization. Alternative explanations, such as adaptation to new host plants, are discussed.
Collapse
Affiliation(s)
- Katerina H Hora
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Peter Roessingh
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Steph B J Menken
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Genetic Basis of Body Color and Spotting Pattern in Redheaded Pine Sawfly Larvae ( Neodiprion lecontei). Genetics 2018; 209:291-305. [PMID: 29496749 DOI: 10.1534/genetics.118.300793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/22/2018] [Indexed: 11/18/2022] Open
Abstract
Pigmentation has emerged as a premier model for understanding the genetic basis of phenotypic evolution, and a growing catalog of color loci is starting to reveal biases in the mutations, genes, and genetic architectures underlying color variation in the wild. However, existing studies have sampled a limited subset of taxa, color traits, and developmental stages. To expand the existing sample of color loci, we performed QTL mapping analyses on two types of larval pigmentation traits that vary among populations of the redheaded pine sawfly (Neodiprion lecontei): carotenoid-based yellow body color and melanin-based spotting pattern. For both traits, our QTL models explained a substantial proportion of phenotypic variation and suggested a genetic architecture that is neither monogenic nor highly polygenic. Additionally, we used our linkage map to anchor the current N. lecontei genome assembly. With these data, we identified promising candidate genes underlying (1) a loss of yellow pigmentation in populations in the mid-Atlantic/northeastern United States [C locus-associated membrane protein homologous to a mammalian HDL receptor-2 gene (Cameo2) and lipid transfer particle apolipoproteins II and I gene (apoLTP-II/I)], and (2) a pronounced reduction in black spotting in Great Lakes populations [members of the yellow gene family, tyrosine hydroxylase gene (pale), and dopamine N-acetyltransferase gene (Dat)]. Several of these genes also contribute to color variation in other wild and domesticated taxa. Overall, our findings are consistent with the hypothesis that predictable genes of large effect contribute to color evolution in nature.
Collapse
|