1
|
Acharya A, Tripathi G, Bhat RAH. Structural and functional characterization of haemoglobin genes in Labeo catla: Insights into hypoxic adaptation and survival. Int J Biol Macromol 2024; 281:136235. [PMID: 39366609 DOI: 10.1016/j.ijbiomac.2024.136235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Haemoglobin (HB) protein comprises four subunits: two identical α-subunits (HBA) and two identical β-subunits (HBB), encoded by the HBA and HBB genes. In this investigation, 5'/3' RACE PCR (Rapid Amplification of cDNA Ends) was used to obtain complete coding sequences (CDSs) of both the genes from farmed Labeo catla. The resulting CDSs were 432 base pairs and 447 base pairs for HBA and HBB, respectively, corresponding to 143 and 148 amino acids. Phylogenetic analysis revealed close relationships with other cyprinids, with Labeo rohita being the closest relative. Functional analysis and protein structure prediction were conducted using bioinformatics tools. Expression profiling of both genes was checked in various tissues under control (C) and hypoxic (H) conditions. Notably, under hypoxia, HBA and HBB genes were significantly upregulated (P < 0.05) initially, followed by a return to normal expression levels. Similar trends were observed for Hif1α (Hypoxia-inducible factor one alpha) and EPO (Erythropoietin) genes. Additionally, haematological indices also significantly increased corresponding to the gene expressions. However, with the decrease in the expression of these genes an onset of mortality was observed in the hypoxia (H) treated groups. The results of the current study explored the role of haemoglobin genes in adaptation to the hypoxic condition.
Collapse
Affiliation(s)
- Arpit Acharya
- ICAR- Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India.
| | - Gayatri Tripathi
- ICAR- Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India.
| | | |
Collapse
|
2
|
Elbassiouny AA, Buck LT, Abatti LE, Mitchell JA, Crampton WGR, Lovejoy NR, Chang BSW. Evolution of a novel regulatory mechanism of hypoxia inducible factor in hypoxia-tolerant electric fishes. J Biol Chem 2024; 300:105727. [PMID: 38325739 PMCID: PMC10958119 DOI: 10.1016/j.jbc.2024.105727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Hypoxia is a significant source of metabolic stress that activates many cellular pathways involved in cellular differentiation, proliferation, and cell death. Hypoxia is also a major component in many human diseases and a known driver of many cancers. Despite the challenges posed by hypoxia, there are animals that display impressive capacity to withstand lethal levels of hypoxia for prolonged periods of time and thus offer a gateway to a more comprehensive understanding of the hypoxic response in vertebrates. The weakly electric fish genus Brachyhypopomus inhabits some of the most challenging aquatic ecosystems in the world, with some species experiencing seasonal anoxia, thus providing a unique system to study the cellular and molecular mechanisms of hypoxia tolerance. In this study, we use closely related species of Brachyhypopomus that display a range of hypoxia tolerances to probe for the underlying molecular mechanisms via hypoxia inducible factors (HIFs)-transcription factors known to coordinate the cellular response to hypoxia in vertebrates. We find that HIF1⍺ from hypoxia tolerant Brachyhypopomus species displays higher transactivation in response to hypoxia than that of intolerant species, when overexpressed in live cells. Moreover, we identified two SUMO-interacting motifs near the oxygen-dependent degradation and transactivation domains of the HIF1⍺ protein that appear to boost transactivation of HIF1, regardless of the genetic background. Together with computational analyses of selection, this shows that evolution of HIF1⍺ are likely to underlie adaptations to hypoxia tolerance in Brachyhypopomus electric fishes, with changes in two SUMO-interacting motifs facilitating the mechanism of this tolerance.
Collapse
Affiliation(s)
- Ahmed A Elbassiouny
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Nathan R Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada; Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Liu W, Lin S, Li L, Tai Z, Liu JX. Zebrafish ELL-associated factors Eaf1/2 modulate erythropoiesis via regulating gata1a expression and WNT signaling to facilitate hypoxia tolerance. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:10. [PMID: 37002435 PMCID: PMC10066051 DOI: 10.1186/s13619-022-00154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 04/04/2023]
Abstract
EAF1 and EAF2, the eleven-nineteen lysine-rich leukemia (ELL)-associated factors which can assemble to the super elongation complex (AFF1/4, AF9/ENL, ELL, and P-TEFb), are reported to participate in RNA polymerase II to actively regulate a variety of biological processes, including leukemia and embryogenesis, but whether and how EAF1/2 function in hematopoietic system related hypoxia tolerance during embryogenesis remains unclear. Here, we unveiled that deletion of EAF1/2 (eaf1-/- and eaf2-/-) caused reduction in hypoxia tolerance in zebrafish, leading to reduced erythropoiesis during hematopoietic processes. Meanwhile, eaf1-/- and eaf2-/- mutants showed significant reduction in the expression of key transcriptional regulators scl, lmo2, and gata1a in erythropoiesis at both 24 h post fertilization (hpf) and 72 hpf, with gata1a downregulated while scl and lmo2 upregulated at 14 hpf. Mechanistically, eaf1-/- and eaf2-/- mutants exhibited significant changes in the expression of epigenetic modified histones, with a significant increase in the binding enrichment of modified histone H3K27me3 in gata1a promoter rather than scl and lmo2 promoters. Additionally, eaf1-/- and eaf2-/- mutants exhibited a dynamic expression of canonical WNT/β-catenin signaling during erythropoiesis, with significant reduction in p-β-Catenin level and in the binding enrichment of both scl and lmo2 promoters with the WNT transcriptional factor TCF4 at 24 hpf. These findings demonstrate an important role of Eaf1/2 in erythropoiesis in zebrafish and may have shed some light on regeneration medicine for anemia and related diseases and on molecular basis for fish economic or productive traits, such as growth, disease resistance, hypoxia tolerance, and so on.
Collapse
Affiliation(s)
- WenYe Liu
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - ShuHui Lin
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - LingYa Li
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - ZhiPeng Tai
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jing-Xia Liu
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
4
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
5
|
Li M, Pan D, Sun H, Zhang L, Cheng H, Shao T, Wang Z. The hypoxia adaptation of small mammals to plateau and underground burrow conditions. Animal Model Exp Med 2021; 4:319-328. [PMID: 34977483 PMCID: PMC8690988 DOI: 10.1002/ame2.12183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen is one of the important substances for the survival of most life systems on the earth, and plateau and underground burrow systems are two typical hypoxic environments. Small mammals living in hypoxic environments have evolved different adaptation strategies, which include increased oxygen delivery, metabolic regulation of physiological responses and other physiological responses that change tissue oxygen utilization. Multi-omics predictions have also shown that these animals have evolved different adaptations to extreme environments. In particular, vascular endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific functions in the control of O2 delivery, have evolved adaptively in small mammals in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic model animals as they have some resistance to cancer. This review primarily summarizes the main living environment of hypoxia tolerant small mammals, as well as the changes of phenotype, physiochemical characteristics and gene expression mode of their long-term living in hypoxia environment.
Collapse
Affiliation(s)
- Mengke Li
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Dan Pan
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
- Centre for Nutritional EcologyZhengzhou UniversityZhengzhouP.R. China
| | - Lei Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
6
|
Ma X, Su B, Bangs M, Alston V, Backenstose NJC, Simora RM, Wang W, Xing D, Li S, Ye Z, Moss AG, Duong TY, Wang X, Dunham RA. Comparative Genomic and Transcriptomic Analyses Revealed Twenty-Six Candidate Genes Involved in the Air-Breathing Development and Function of the Bighead Catfish Clarias macrocephalus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:90-105. [PMID: 33113010 DOI: 10.1007/s10126-020-10005-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Nathan J C Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Rhoda Mae Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, 5023, Iloilo, Philippines
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anthony G Moss
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thuy-Yen Duong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, 94000, Vietnam
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA.
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA.
| |
Collapse
|
7
|
Sun H, Ye K, Liu D, Pan D, Gu S, Wang Z. Evolution of Hemoglobin Genes in a Subterranean Rodent Species ( Lasiopodomys mandarinus). BIOLOGY 2020; 9:E106. [PMID: 32443792 PMCID: PMC7284791 DOI: 10.3390/biology9050106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/20/2022]
Abstract
The Mandarin vole (Lasiopodomys mandarinus), a typical subterranean rodent, has undergone hematological adaptations to tolerate the hypoxic/hypercapnic underground environment. Hemoglobin (Hb) genes encode respiratory proteins functioning principally in oxygen binding and transport to various tissues and organs. To investigate the evolution of α- and β-hemoglobin (Hb) in subterranean rodent species, we sequenced Hb genes of the Mandarin vole and the related aboveground Brandt's vole (L. brandtii). Sequencing showed that in both voles, α-globin was encoded by a cluster of five functional genes in the following linkage order: HBZ, HBA-T1, HBQ-T1, HBA-T2, and HBQ-T2; among these, HBQ-T2 is a pseudogene in both voles. The β-globin gene cluster in both voles also included five functional genes in the following linkage order: HBE, HBE/HBG, HBG, HBB-T1, and HBB-T2. Phylogenetic analysis revealed that the Mandarin vole underwent convergent evolution with its related aboveground species (Brandt's vole) but not with other subterranean rodent species. Selection pressure analyses revealed that α- and β-globin genes are under strong purifying selection (ω < 1), and branch-site analyses identified positive selection sites on HBAT-T1 and HBB-T1 in different subterranean rodent species. This suggests that the adaptive evolution of these genes enhanced the ability of Hb to store and transport oxygen in subterranean rodent species. Our findings highlight the critical roles of Hb genes in the evolution of hypoxia tolerance in subterranean rodent species.
Collapse
Affiliation(s)
- Hong Sun
- School of Physical Education (Main campus), Zhengzhou University, Zhengzhou 450000, China;
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; (K.Y.); (D.L.); (D.P.); (S.G.)
| | - Kaihong Ye
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; (K.Y.); (D.L.); (D.P.); (S.G.)
| | - Denghui Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; (K.Y.); (D.L.); (D.P.); (S.G.)
| | - Dan Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; (K.Y.); (D.L.); (D.P.); (S.G.)
| | - Shiming Gu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; (K.Y.); (D.L.); (D.P.); (S.G.)
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; (K.Y.); (D.L.); (D.P.); (S.G.)
| |
Collapse
|
8
|
Burggren WW, Arriaga-Bernal JC, Méndez-Arzate PM, Méndez-Sánchez JF. Metabolic physiology of the Mayan cichlid fish (Mayaheros uropthalmus): Re-examination of classification as an oxyconformer. Comp Biochem Physiol A Mol Integr Physiol 2019; 237:110538. [DOI: 10.1016/j.cbpa.2019.110538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
|
9
|
Alda F, Tagliacollo VA, Bernt MJ, Waltz BT, Ludt WB, Faircloth BC, Alfaro ME, Albert JS, Chakrabarty P. Resolving Deep Nodes in an Ancient Radiation of Neotropical Fishes in the Presence of Conflicting Signals from Incomplete Lineage Sorting. Syst Biol 2018; 68:573-593. [DOI: 10.1093/sysbio/syy085] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fernando Alda
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Victor A Tagliacollo
- Museu de Zoologia da Universidade de São Paulo (MZUSP), Ipirianga, 04263-000, São Paulo, São Paulo, Brazil
| | - Maxwell J Bernt
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Brandon T Waltz
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - William B Ludt
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brant C Faircloth
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Prosanta Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Hasan MM, Ushio H, Ochiai Y. Expression levels of myoglobin in muscle and non-muscle tissues of rainbow trout Oncorhynchus mykiss, a hypoxia intolerant species. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:48-57. [PMID: 30026102 DOI: 10.1016/j.cbpb.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022]
Abstract
Myoglobin (Mb) is one of the most intensively studied intracellular respiratory muscle proteins. Since the discovery of the fascinating fact that Mb is not confined only to oxidative muscle tissues but also is co-localized in different non-muscle tissues of cyprinids, hypoxia tolerant cyprinids have been established as the model teleost. Mb both at mRNA and protein levels have been reported in this study for the first time from a number of muscle and non-muscle tissues of rainbow trout Oncorhynchus mykiss, a hypoxia intolerant species. Mb transcript levels were high in the heart and slow skeletal muscle, and were comparatively high in the gonad and gill among the non-muscle tissues. Western-blotting by using anti-rainbow trout Mb peptide rabbit antibody detected Mb protein in the muscles and several non-muscle tissues. By both RNA in situ hybridization and immunofluorescence, Mb was localized in the cardiomyocytes and oxidative muscle fibers. On the other hand, Mb both at mRNA and protein levels was restricted to the lamellar epithelial cells of the gill, epithelial layers of hepato-biliary duct, neurons and endothelial cells of brain, ooplasm of gonad, kidney tubules, endothelial cells, and epithelial layer of intestine. Neuroglobin isoform 1 and 2 mRNAs along with Mb mRNA were localized in the granular layer of cerebellum. Considering the previous data reported for cyprinids, the expression sites of Mb in the muscle and non-muscle tissues of teleost could be universal, where Mb concerted with the other globins might play meaningful physiological roles.
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan; Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Hideki Ushio
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yoshihiro Ochiai
- Graduate School of Agriculture, Tohoku University, Aramaki, Aoba, Sendai 980-0845, Japan
| |
Collapse
|
11
|
Barts N, Greenway R, Passow CN, Arias-Rodriguez L, Kelley JL, Tobler M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018; 61:273-286. [DOI: 10.1139/gen-2017-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S—along with related lineages from non-sulfidic environments—to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.
Collapse
Affiliation(s)
- Nicholas Barts
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Ryan Greenway
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Courtney N. Passow
- Ecology, Evolution and Behavior, University of Minnesota St. Paul, 205 Cargill Building, St. Paul, MN 55108, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, 431 Heald Hall, Pullman, WA 99164, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|