1
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Drath J, Machalski G, Holicki M, Dowejko J, Szargut M, Spradley K, Parafiniuk M, Ossowski A. Title: Skeletal evidence of the ethnic cleansing actions in the Free City of Danzig (1939-1942) based on the KL Stutthof victims analysis. Sci Justice 2023; 63:313-326. [PMID: 37169456 DOI: 10.1016/j.scijus.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
In the early days of World War II, many of the prominent and influential people of Polish nationality from the Free City of Danzig were arrested by the Germans and sent to the nearby concentration camp KL Stutthof. Nearly a hundred of them died within the next seven months upon their arrival, and were buried in a clandestine mass grave in a nearby forest. However, the exact nature of their death is unknown, as it is unclear what the attitude of the aggressors was toward the victims. We do not know whether there was only one executioner or there were several assassins, nor if the killing methodology was consistent with the other state-regulated executions. The studied material represents the commingled remains of a minimum thirty-four people, possibly all male, aged from under eighteen to over sixty at the time of death. Perimortem traumatic lesions are shown mainly on the skull bones. We asked whether the perimortem trauma lesions visible on the victims' skeletons could be informative on the cause and manner of their death. Our results show the prevalence of the perimortem trauma inflicted by a blunt object are on the parietal bones above the Hat Brim Line (HBL), which is commonly associated with a violent attack. The gunshot trauma was usually localized on the occipital bone or posterior parietal, which could indicate a shot to the back of the head, and this was commonly encountered during executions. No signs of defensive injuries can be explained either by restraining of the hands or by a surprise attack. The abundance and variability of the trauma type can be evident of multiple assailants. Moreover, the multiple impact points detected on several crania prove unnecessary overkill and brutality, which reflects the personal attitudes of the executioners towards the victims.
Collapse
|
3
|
Liu Y, Wang T, Wu X, Fan X, Wang W, Xie G, Li Z, Yang Q, Cao P, Yang R, Liu F, Dai Q, Feng X, Ping W, Miao B, Wu Y, Liu Y, Fu Q. Maternal genetic history of southern East Asians over the past 12,000 years. J Genet Genomics 2021; 48:899-907. [PMID: 34419425 DOI: 10.1016/j.jgg.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
Southern East Asia, including Guangxi and Fujian provinces in China, is home to diverse ethnic groups, languages, and cultures. Previous studies suggest a high complexity regarding population dynamics and the history of southern East Asians. However, large-scale genetic studies on ancient populations in this region are hindered by limited sample preservation. Here, using highly efficient DNA capture techniques, we obtain 48 complete mitochondrial genomes of individuals from Guangxi and Fujian in China and reconstruct their maternal genetic history over the past 12,000 years. We find a strong connection between southern East Asians dating to ~12,000-6000 years ago and present-day Southeast Asians. In addition, stronger genetic affinities to northern East Asians are observed in historical southern East Asians than Neolithic southern East Asians, suggesting increased interactions between northern and southern East Asians over time. Overall, we reveal dynamic connections between ancient southern East Asians and populations located in surrounding regions, as well as a shift in maternal genetic structure within the populations over time.
Collapse
Affiliation(s)
- Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Sino-Danish Center, University of the Chinese Academy of Sciences, Beijing 100049, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Northwest University, Xi'an 710069, China
| | - Xichao Wu
- Fujian Longyan Museum, Longyan 364000, China
| | - Xuechun Fan
- International Research Center for Austronesian Archaeology, Pingtan 350000, China; Fujian Museum, Fuzhou 350001, China
| | - Wei Wang
- Institute of Cultural Heritage, Shandong University, Qingdao 266237, China
| | - Guangmao Xie
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China; College of History, Culture and Tourism, Guangxi Normal University, Guilin 541001, China
| | - Zhen Li
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China
| | - Qingping Yang
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Northwest University, Xi'an 710069, China
| | - Yun Wu
- Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Jaimes Díaz H, Martínez Covarrubias EI, Murcia Garzón JE, Flores Valdez M, Muñoz Ramírez ZY, Ramírez Calzada CA, Bohra R, Méndez Tenorio A. Phylogenomic study and classification of mitochondrial DNA through virtual genomic fingerprints. Mitochondrion 2020; 57:294-299. [PMID: 33301927 DOI: 10.1016/j.mito.2020.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022]
Abstract
In the present study, we evaluated the ability of the Virtual Analysis Method for Phylogenomic fingerprint Estimation (VAMPhyRE) toolkit to classify human mitochondrial DNA (mtDNA) haplogroups. In total, 357 random mtDNA sequences were obtained from different haplogroups, based on the classification of PhyloTree. Additionally, we included a control group of five sequences (Pan paniscus, Pan troglodytes, Homo sapiens neanderthalensis, Yoruba15, and the revised Cambridge reference sequence). VAMPhyRE employs a virtual hybridization technique, using probes that specifically bind to their complementary sequences in the genome. We used 65,536 probes of 8 nucleotides to identify potential sites where hybridization occurs between the mtDNA and the specific probe, forming different heteroduplexes and thus, creating a unique and specific genomic fingerprint for each sequence. Genomic fingerprints were compared, and a table of distances was calculated to obtain a mitochondrial phylogenomic tree with the macrohaplogroups, L, N, M, and R, and their corresponding haplogroups, according to universal nomenclature. The results obtained suggest an accuracy of 97.25% for the distribution of the 357 mtDNA sequences in the four macrohaplogroups and their corresponding haplogroups when compared with other mtDNA classification tools that require reference sequences and do not offer an analysis based on an evolutionary approach. These data are available online at http://biomedbiotec.encb.ipn.mx/VAMPhyRE/.
Collapse
Affiliation(s)
- Hueman Jaimes Díaz
- Laboratorio de Bioinformática y Biotecnología Genómica. Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, 11340 Mexico City, Mexico.
| | - Elvira Ivonne Martínez Covarrubias
- Laboratorio de Bioinformática y Biotecnología Genómica. Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, 11340 Mexico City, Mexico.
| | - Jazmin E Murcia Garzón
- Laboratorio de Bioinformática y Biotecnología Genómica. Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, 11340 Mexico City, Mexico.
| | - Mauricio Flores Valdez
- Laboratorio de Bioinformática y Biotecnología Genómica. Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, 11340 Mexico City, Mexico.
| | - Zilia Y Muñoz Ramírez
- Laboratorio de Bioinformática y Biotecnología Genómica. Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, 11340 Mexico City, Mexico.
| | - Crystel A Ramírez Calzada
- Laboratorio de Bioinformática y Biotecnología Genómica. Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, 11340 Mexico City, Mexico.
| | - Rekha Bohra
- Laboratorio de Bioinformática y Biotecnología Genómica. Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, 11340 Mexico City, Mexico.
| | - Alfonso Méndez Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica. Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, 11340 Mexico City, Mexico.
| |
Collapse
|
5
|
Cabrera VM. Counterbalancing the time-dependent effect on the human mitochondrial DNA molecular clock. BMC Evol Biol 2020; 20:78. [PMID: 32600249 PMCID: PMC7325269 DOI: 10.1186/s12862-020-01640-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The molecular clock is an important genetic tool for estimating evolutionary timescales. However, the detection of a time-dependent effect on substitution rate estimates complicates its application. It has been suggested that demographic processes could be the main cause of this confounding effect. In the present study, I propose a new algorithm for estimating the coalescent age of phylogenetically related sequences, taking into account the observed time-dependent effect on the molecular rate detected by others. RESULTS By applying this method to real human mitochondrial DNA trees with shallow and deep topologies, I obtained significantly older molecular ages for the main events of human evolution than were previously estimated. These ages are in close agreement with the most recent archaeological and paleontological records favoring the emergence of early anatomically modern humans in Africa 315 ± 34 thousand years ago (kya) and the presence of recent modern humans outside of Africa as early as 174 ± 48 thousand years ago. Furthermore, during the implementation process, I demonstrated that in a population with fluctuating sizes, the probability of fixation of a new neutral mutant depends on the effective population size, which is in better accordance with the fact that under the neutral theory of molecular evolution, the fate of a molecular mutation is mainly determined by random drift. CONCLUSIONS I suggest that the demographic history of populations has a more decisive effect than purifying selection and/or mutational saturation on the time-dependent effect observed for the substitution rate, and I propose a new method that corrects for this effect.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
6
|
Zimmermann B, Sturk-Andreaggi K, Huber N, Xavier C, Saunier J, Tahir M, Chouery E, Jalkh N, Megarbane A, Bodner M, Coble M, Irwin J, Parsons T, Parson W. Mitochondrial DNA control region variation in Lebanon, Jordan, and Bahrain. Forensic Sci Int Genet 2019; 42:99-102. [DOI: 10.1016/j.fsigen.2019.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
|
7
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|