1
|
Liu YJ, Zhang TY, Wang QQ, Draisma SGA, Hu ZM. Comparative structure and evolution of the organellar genomes of Padina usoehtunii (Dictyotales) with the brown algal crown radiation clade. BMC Genomics 2024; 25:747. [PMID: 39080531 PMCID: PMC11290263 DOI: 10.1186/s12864-024-10616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Organellar genomes have become increasingly essential for studying genetic diversity, phylogenetics, and evolutionary histories of seaweeds. The order Dictyotales (Dictyotophycidae), a highly diverse lineage within the Phaeophyceae, is long-term characterized by a scarcity of organellar genome datasets compared to orders of the brown algal crown radiation (Fucophycidae). RESULTS We sequenced the organellar genomes of Padina usoehtunii, a representative of the order Dictyotales, to investigate the structural and evolutionary differences by comparing to five other major brown algal orders. Our results confirmed previously reported findings that the rate of structural rearrangements in chloroplast genomes is higher than that in mitochondria, whereas mitochondrial sequences exhibited a higher substitution rate compared to chloroplasts. Such evolutionary patterns contrast with land plants and green algae. The expansion and contraction of the inverted repeat (IR) region in the chloroplast correlated with the changes in the number of boundary genes. Specifically, the size of the IR region influenced the position of the boundary gene rpl21, with complete rpl21 genes found within the IR region in Dictyotales, Sphacelariales and Ectocarpales, while the rpl21 genes in Desmarestiales, Fucales, and Laminariales span both the IR and short single copy (SSC) regions. The absence of the rbcR gene in the Dictyotales may indicate an endosymbiotic transfer from the chloroplast to the nuclear genome. Inversion of the SSC region occurred at least twice in brown algae. Once in a lineage only represented by the Ectocarpales in the present study and once in a lineage only represented by the Fucales. Photosystem genes in the chloroplasts experienced the strongest signature of purifying selection, while ribosomal protein genes in both chloroplasts and mitochondria underwent a potential weak purifying selection. CONCLUSIONS Variations in chloroplast genome structure among different brown algal orders are evolutionarily linked to their phylogenetic positions in the Phaeophyceae tree. Chloroplast genomes harbor more structural rearrangements than the mitochondria, despite mitochondrial genes exhibiting faster mutation rates. The position and the change in the number of boundary genes likely shaped the IR regions in the chloroplast, and the produced structural variability is important mechanistically to create gene diversity in brown algal chloroplast.
Collapse
Affiliation(s)
- Yi-Jia Liu
- Ocean School, Yantai University, Yantai, 264005, China
| | | | - Qi-Qi Wang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Stefano G A Draisma
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Zi-Min Hu
- Ocean School, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Song WH, Li JJ. The effects of intraspecific variation on forecasts of species range shifts under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159513. [PMID: 36257416 DOI: 10.1016/j.scitotenv.2022.159513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As global climate change is altering the distribution range of macroalgae across the globe, it is critical to assess its impact on species range shifts to inform the biodiversity conservation of macroalgae. Latitude/environmental gradients could cause intraspecific variability, which may result in distinct responses to climate change. It remains unclear whether geographical variation occurs in the response of species' populations to climate change. We tested this assumption using the brown alga Sargassum thunbergii, a habitat-forming macroalgae encompassing multiple divergent lineages along the Northwest Pacific. Previous studies revealed a distinct lineage of S. thunbergii in rear-edge populations. Given the phylogeographic structure and temperature gradients, we divided these populations into the southern and northern groups. We assessed the physiological responses of the two groups to temperature changes and estimated their niche differences using n-dimensional hypervolumes. A higher photosynthetic rate and antioxidative abilities were detected in the southern group of S. thunbergii than in the northern group. In addition, significant niche differentiation was detected between the two groups, suggesting the possibility for local adaptation. Given these results, we inferred that the southern group (rear-edge populations) may be more resilient to climate change. To examine climate-driven range shifts of S. thunbergii, we constructed species- and lineage-level species distribution models (SDMs). Predictions of both levels showed considerable distribution contracts along the Chinese coasts in the future. For the southern group, the lineage-level model predicted less habitat loss than the species-level model. Our results highlight the importance of considering intraspecific variation in climate change vulnerability assessments for coastal species.
Collapse
Affiliation(s)
- Wang-Hui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Jing-Jing Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
3
|
Huang L, Feng G, Li D, Shang W, Zhang L, Yan R, Jiang Y, Li S. Genetic variation of endangered Jankowski’s Bunting (Emberiza jankowskii): High connectivity and a moderate history of demographic decline. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.996617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IntroductionContinued discovery of “mismatch” patterns between population size and genetic diversity, involving wild species such as insects, amphibians, birds, mammals, and others, has raised issues about how population history, especially recent dynamics under human disturbance, affects currently standing genetic variation. Previous studies have revealed high genetic diversity in endangered Jankowski’s Bunting. However, it is unclear how the demographic history and recent habitat changes shape the genetic variation of Jankowski’s Bunting.MethodsTo explore the formation and maintenance of high genetic diversity in endangered Jankowski’s Bunting, we used a mitochondrial control region (partial mtDNA CR) and 15 nuclear microsatellite markers to explore the recent demographic history of Jankowski’s Bunting, and we compared the historical and contemporary gene flows between populations to reveal the impact of habitat change on population connectivity. Specifically, we aimed to test the following hypotheses: (1) Jankowski’s Bunting has a large historical Ne and a moderate demographic history; and (2) recent habitat change might have no significant impact on the species’ population connectivity.ResultsThe results suggested that large historical effective population size, as well as severe but slow population decline, may partially explain the high observable genetic diversity. Comparison of historical (over the past 4Ne generations) and contemporary (1–3 generations) gene flow indicated that the connectivity between five local populations was only marginally affected by landscape changes.DiscussionOur results suggest that high population connectivity and a moderate history of demographic decline are powerful explanations for the rich genetic variation in Jankowski’s Bunting. Although there is no evidence that the genetic health of Jankowski’s Bunting is threatened, the time-lag effects on the genetic response to recent environmental changes is a reminder to be cautious about the current genetic characteristics of this species. Where possible, factors influencing genetic variation should be integrated into a systematic framework for conducting robust population health assessments. Given the small contemporary population size, inbreeding, and ecological specialization, we recommend that habitat protection be maintained to maximize the genetic diversity and population connectivity of Jankowski’s Bunting.
Collapse
|
4
|
Across the Gobi Desert: impact of landscape features on the biogeography and phylogeographically-structured release calls of the Mongolian Toad, Strauchbufo raddei in East Asia. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Li M, Huang W, Wu Q, Feng Y, Chen Y, Yu K, Chen B, Yang E, Meng L, Huang X, Wang X. High genetic differentiation and moderate genetic diversity of the degenerative branching coral Pocillopora verrucosa in the tropical South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153076. [PMID: 35038534 DOI: 10.1016/j.scitotenv.2022.153076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Global warming is causing rapid degradation of coral reefs, among which branching corals are degrading the fastest. An assessment of coral genetic diversity and adaptive potential provides a basis for coral reef protection. In this study, we selected the branching coral Pocillopora verrucosa, a widely distributed species in the tropical South China Sea (SCS), to carry out population genetic studies. To analyze the genetic diversity and structure of 319 P. verrucosa samples from 10 populations in 4 SCS regions, twelve pairs of microsatellite primers and two nuclear markers, ITS and β-tub, were selected. Microsatellite marker results showed moderate genetic diversity for P. verrucosa in the SCS, but relatively low diversity in Dazhou Island and Yongxing Island. The haplotype network showed that P. verrucosa in the SCS was derived from two ancestors, which may be linked to geographical isolation in the Pleistocene glacial period. AMOVA (ΦST = 0.3375) and FST pairwise analysis results based on β-tub showed that the populations were highly differentiated, with most FST values (21/45) > 0.25. Yongxing and Qilianyu Islands populations were significantly different from those in the Xisha area. Mantel test results showed that genetic differentiation among P. verrucosa populations was significantly and positively correlated with both mean sea surface temperature (SST) and SST variance, and was not correlated with distance, chlorophyll-a, or turbidity. The reproductive mode of brooding planulae was an important factor contributing to high genetic differentiation among populations. The moderate genetic diversity of SCS P. verrucosa indicates that this population has a certain genetic potential in the context of global changes, but the high genetic differentiation between populations increases the risk of local degradation or extinction. This study provides a theoretical basis for the protection and restoration of SCS coral reefs.
Collapse
Affiliation(s)
- Ming Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Forestry College, Guangxi University, Nanning 530004, China
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xin Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Gunagxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai 536000, China
| |
Collapse
|
6
|
Zheng SS, Jiang XL, Huang QJ, Deng M. Historical Dynamics of Semi-Humid Evergreen Forests in the Southeast Himalaya Biodiversity Hotspot: A Case Study of the Quercus franchetii Complex (Fagaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:774232. [PMID: 35035389 PMCID: PMC8753985 DOI: 10.3389/fpls.2021.774232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The Oligocene and Miocene are key periods in the formation of the modern topography and flora of East Asian and Indo-China. However, it is unclear how geological and climatic factors contributed to the high endemism and species richness of this region. The Quercus franchetii complex is widespread in the southeast Himalaya fringe and northern Indo-China with a long evolutionary history. It provides a unique proxy for studying the diversity pattern of evergreen woody lineages in this region since the Oligocene. In this study, we combined chloroplast (cpDNA) sequences, nuclear microsatellite loci (nSSRs), and species distribution modeling (SDM) to investigate the impacts of geological events on genetic diversity of the Q. franchetii complex. The results showed that the initial cpDNA haplotype divergence was estimated to occur during the middle Oligocene (30.7 Ma), which might have been raised by the tectonic activity at this episode to the Miocene. The nSSR results revealed two major groups of populations, the central Yunnan-Guizhou plateau (YGP) group and the peripheral distribution group when K = 2, in responding to the rapid YGP uplift during the late Miocene, which restricted gene flow between the populations in core and marginal areas. SDM analysis indicated that the distribution ranges of the Q. franchetii complex expanded northwards after the last glacial maximum, but the core distribution range in YGP was stable. Our results showed that the divergence of Q. franchetii complex is rooted in the mid-Oligocene. The early geological events during the Oligocene, and the late Miocene may play key roles to restrict seed-mediated gene flow among regions, but the pollen-mediated gene flow was less impacted. The uplifts of the YGP and the climate since LGM subsequently boosted the divergence of the populations in core and marginal areas.
Collapse
Affiliation(s)
- Si-Si Zheng
- Shanghai Chenshan Botanical Garden, Shanghai, China
- School of Ecological Technique and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Xiao-Long Jiang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Qing-Jun Huang
- School of Ecological Technique and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Song X, Assis J, Zhang J, Gao X, Gao H, Duan D, Serrão EA, Hu Z. Climate-induced range shifts shaped the present and threaten the future genetic variability of a marine brown alga in the Northwest Pacific. Evol Appl 2021; 14:1867-1879. [PMID: 34295369 PMCID: PMC8288013 DOI: 10.1111/eva.13247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022] Open
Abstract
Glaciation-induced environmental changes during the last glacial maximum (LGM) have strongly influenced species' distributions and genetic diversity patterns in the northern high latitudes. However, these effects have seldom been assessed on sessile species in the Northwest Pacific. Herein, we chose the brown alga Sargassum thunbergii to test this hypothesis, by comparing present population genetic variability with inferred geographical range shifts from the LGM to the present, estimated with species distribution modelling (SDM). Projections for contrasting scenarios of future climate change were also developed to anticipate genetic diversity losses at regional scales. Results showed that S. thunbergii harbours strikingly rich genetic diversity and multiple divergent lineages in the centre-northern range of its distribution, in contrast with a poorer genetically distinct lineage in the southern range. SDM hindcasted refugial persistence in the southern range during the LGM as well as post-LGM expansion of 18 degrees of latitude northward. Approximate Bayesian computation (ABC) analysis further suggested that the multiple divergent lineages in the centre-northern range limit stem from post-LGM colonization from the southern survived lineage. This suggests divergence due to demographic bottlenecks during range expansion and massive genetic diversity loss during post-LGM contraction in the south. The projected future range of S. thunbergii highlights the threat to unique gene pools that might be lost under global changes.
Collapse
Affiliation(s)
- Xiao‐Han Song
- Key Laboratory of Experimental Marine BiologyCenter for Ocean Mega‐ScienceInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jorge Assis
- CCMARUniversity of Algarve, Campus de GambelasFaroPortugal
| | - Jie Zhang
- Key Laboratory of Experimental Marine BiologyCenter for Ocean Mega‐ScienceInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xu Gao
- Faculty of Biological Science and Research Institute for Basic ScienceWonkwang UniversityIksanKorea
| | - Han‐Gil Gao
- Faculty of Biological Science and Research Institute for Basic ScienceWonkwang UniversityIksanKorea
| | - De‐Lin Duan
- Key Laboratory of Experimental Marine BiologyCenter for Ocean Mega‐ScienceInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | | | - Zi‐Min Hu
- Key Laboratory of Experimental Marine BiologyCenter for Ocean Mega‐ScienceInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Ocean SchoolYantai UniversityYantaiChina
| |
Collapse
|
8
|
Li JJ, Liu ZY, Zhong ZH, Zhuang LC, Bi YX, Qin S. Limited Genetic Connectivity Among Sargassum horneri (Phaeophyceae) Populations in the Chinese Marginal Seas Despite Their high Dispersal Capacity. JOURNAL OF PHYCOLOGY 2020; 56:994-1005. [PMID: 32173868 DOI: 10.1111/jpy.12990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Sargassum horneri is a habitat-forming species in the Northwest Pacific and an important contributor to seaweed rafts. In this study, 131 benthic samples and 156 floating samples were collected in the Yellow Sea and East China Sea (ECS) to test the effects of seaweed rafts on population structure and connectivity. Our results revealed high levels of genetic diversity in both benthic and floating samples based on concatenated mitochondrial markers (rpl5-rps3, rnl-atp9, and cob-cox2). Phylogenetic analyses consistently supported the existence of two lineages (lineages I and II), with divergence dating to c. 0.692 Mya (95% HPD: 0.255-1.841 Mya), indicating that long-term isolation may have occurred during the mid-Pleistocene (0.126-0.781 Mya). Extended Bayesian skyline plots demonstrated a constant population size over time in lineage I and slight demographic expansion in lineage II. Both lineages were found in each marginal sea (including both benthic and floating samples), but PCoA, FST , and AMOVA analyses consistently revealed deep genetic variation between regions. Highly structured phylogeographic pattern supports limited genetic connectivity between regions. IMA analyses demonstrated that asymmetric gene flow between benthic populations in the North Yellow Sea (NYS) and ECS was extremely low (ECS→NYS, 2Nm = 0.6), implying that high dispersal capacity cannot be assumed to lead to widespread population connectivity, even without dispersal barriers. In addition, there were only a few shared haplotypes between benthic and floating samples, suggesting the existence of hidden donors for the floating masses in the Chinese marginal seas.
Collapse
Affiliation(s)
- Jing-Jing Li
- College of Oceanography, Institute of Marine Biology, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Zhi-Hai Zhong
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Long-Chuan Zhuang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Yuan-Xin Bi
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
9
|
Ng PK, Chiou YS, Liu LC, Sun Z, Shimabukuro H, Lin SM. Phylogeography and genetic connectivity of the marine macro-alga Sargassum ilicifolium (Phaeophyceae, Ochrophyta) in the northwestern Pacific 1. JOURNAL OF PHYCOLOGY 2019; 55:7-24. [PMID: 30372533 DOI: 10.1111/jpy.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
The evolutionary influences of historical and contemporary factors on the population connectivity and phylogeographic structure of a brown seaweed, Sargassum ilicifolium, were elucidated using the nuclear ITS2 and mitochondrial COI markers for the collections newly sampled within its distribution range in the northwestern Pacific (NWP). Significant genetic structure at variable levels was identified between populations (pairwise FST ) and among populations grouped by geographical proximity (ΦCT among regions). The adjacent groups of populations with moderate structure revealed from AMOVA appeared to have high genetic connectivity. However, a lack of genealogical concordance with the geographic distribution was uncovered for S. ilicifolium from the NWP. Such genetic homogeneity is interpreted as a result of the interaction between postglacial recolonization and dynamic oceanic current regimes in the region. Two separated glacial refugia, the South China Sea and the Okinawa Trough, in the marginal seas of east China were recognized based on the presence of endemic haplotypes and high haplotype diversity in the populations at southern China and northeast of Taiwan. Populations persisting in these refugia may have served as the source for recolonization in the NWP with the rise of sea level during the warmer interglacial periods. The role of oceanic currents in maintaining genetic connectivity of S. ilicifolium in the region was further corroborated by the coherence between the direction of oceanic currents and that of gene flow, especially along the eastern coast of Taiwan. This study underlines the interaction between historical postglacial recolonization and contemporary coastal hydrodynamics in contributing to population connectivity and distribution for this tropical seaweed in the NWP.
Collapse
Affiliation(s)
- Poh-Kheng Ng
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan, R.O.C
| | - Yu-Shan Chiou
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan, R.O.C
| | - Li-Chia Liu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan, R.O.C
| | - Zhongmin Sun
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266701, China
| | - Hiromori Shimabukuro
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Showe-Mei Lin
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan, R.O.C
| |
Collapse
|