1
|
Valdés-Florido A, Tan L, Maguilla E, Simón-Porcar VI, Zhou YH, Arroyo J, Escudero M. Drivers of diversification in Linum (Linaceae) by means of chromosome evolution: correlations with biogeography, breeding system and habit. ANNALS OF BOTANY 2023; 132:949-962. [PMID: 37738171 PMCID: PMC10808019 DOI: 10.1093/aob/mcad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Chromosome evolution leads to hybrid dysfunction and recombination patterns and has thus been proposed as a major driver of diversification in all branches of the tree of life, including flowering plants. In this study we used the genus Linum (flax species) to evaluate the effects of chromosomal evolution on diversification rates and on traits that are important for sexual reproduction. Linum is a useful study group because it has considerable reproductive polymorphism (heterostyly) and chromosomal variation (n = 6-36) and a complex pattern of biogeographical distribution. METHODS We tested several traditional hypotheses of chromosomal evolution. We analysed changes in chromosome number across the phylogenetic tree (ChromEvol model) in combination with diversification rates (ChromoSSE model), biogeographical distribution, heterostyly and habit (ChromePlus model). KEY RESULTS Chromosome number evolved across the Linum phylogeny from an estimated ancestral chromosome number of n = 9. While there were few apparent incidences of cladogenesis through chromosome evolution, we inferred up to five chromosomal speciation events. Chromosome evolution was not related to heterostyly but did show significant relationships with habit and geographical range. Polyploidy was negatively correlated with perennial habit, as expected from the relative commonness of perennial woodiness and absence of perennial clonality in the genus. The colonization of new areas was linked to genome rearrangements (polyploidy and dysploidy), which could be associated with speciation events during the colonization process. CONCLUSIONS Chromosome evolution is a key trait in some clades of the Linum phylogeny. Chromosome evolution directly impacts speciation and indirectly influences biogeographical processes and important plant traits.
Collapse
Affiliation(s)
- Ana Valdés-Florido
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Lu Tan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, Sichuan, 615000, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Enrique Maguilla
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra de Utrera km 1 sn, 41013, Seville, Spain
| | - Violeta I Simón-Porcar
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Marcial Escudero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| |
Collapse
|
2
|
Pushkova EN, Borkhert EV, Novakovskiy RO, Dvorianinova EM, Rozhmina TA, Zhuchenko AA, Zhernova DA, Turba AA, Yablokov AG, Sigova EA, Krasnov GS, Bolsheva NL, Melnikova NV, Dmitriev AA. Selection of Flax Genotypes for Pan-Genomic Studies by Sequencing Tagmentation-Based Transcriptome Libraries. PLANTS (BASEL, SWITZERLAND) 2023; 12:3725. [PMID: 37960081 PMCID: PMC10650069 DOI: 10.3390/plants12213725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Flax (Linum usitatissimum L.) products are used in the food, pharmaceutical, textile, polymer, medical, and other industries. The creation of a pan-genome will be an important advance in flax research and breeding. The selection of flax genotypes that sufficiently cover the species diversity is a crucial step for the pan-genomic study. For this purpose, we have adapted a method based on Illumina sequencing of transcriptome libraries prepared using the Tn5 transposase (tagmentase). This approach reduces the cost of sample preparation compared to commercial kits and allows the generation of a large number of cDNA libraries in a short time. RNA-seq data were obtained for 192 flax plants (3-6 individual plants from 44 flax accessions of different morphology and geographical origin). Evaluation of the genetic relationship between flax plants based on the sequencing data revealed incorrect species identification for five accessions. Therefore, these accessions were excluded from the sample set for the pan-genomic study. For the remaining samples, typical genotypes were selected to provide the most comprehensive genetic diversity of flax for pan-genome construction. Thus, high-throughput sequencing of tagmentation-based transcriptome libraries showed high efficiency in assessing the genetic relationship of flax samples and allowed us to select genotypes for the flax pan-genomic analysis.
Collapse
Affiliation(s)
- Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Arthur G. Yablokov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| |
Collapse
|
3
|
Mannino G, Kunz R, Maffei ME. Discrimination of Green Coffee ( Coffea arabica and Coffea canephora) of Different Geographical Origin Based on Antioxidant Activity, High-Throughput Metabolomics, and DNA RFLP Fingerprinting. Antioxidants (Basel) 2023; 12:antiox12051135. [PMID: 37238001 DOI: 10.3390/antiox12051135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The genus Coffea is known for the two species C. arabica (CA) and C. canephora (CC), which are used to prepare the beverage coffee. Proper identification of green beans of coffee varieties is based on phenotypic and phytochemical/molecular characteristics. In this work, a combination of chemical (UV/Vis, HPLC-DAD-MS/MS, GC-MS, and GC-FID) and molecular (PCR-RFLP) fingerprinting was used to discriminate commercial green coffee accessions from different geographical origin. The highest content of polyphenols and flavonoids was always found in CC accessions, whereas CA showed lower values. ABTS and FRAP assays showed a significant correlation between phenolic content and antioxidant activity in most CC accessions. We identified 32 different compounds, including 28 flavonoids and four N-containing compounds. The highest contents of caffeine and melatonin were detected in CC accessions, whereas the highest levels of quercetin and kaempferol derivatives were found in CA accessions. Fatty acids of CC accessions were characterized by low levels of linoleic and cis octadecenoic acid and high amounts of elaidic acid and myristic acid. Discrimination of species according to their geographical origin was achieved using high-throughput data analysis, combining all measured parameters. Lastly, PCR-RFLP analysis was instrumental for the identification of recognition markers for the majority of accessions. Using the restriction enzyme AluI on the trnL-trnF region, we clearly discriminated C. canephora from C. arabica, whereas the cleavage performed by the restriction enzymes MseI and XholI on the 5S-rRNA-NTS region produced specific discrimination patterns useful for the correct identification of the different coffee accessions. This work extends our previous studies and provides new information on the complete flavonoid profile, combining high-throughput data with DNA fingerprinting to assess the geographical discrimination of green coffee.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| | - Ronja Kunz
- Department of Chemistry, University of Cologne, Zülpicher Straße 47, D-50939 Köln, Germany
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| |
Collapse
|
4
|
Povkhova LV, Pushkova EN, Rozhmina TA, Zhuchenko AA, Frykin RI, Novakovskiy RO, Dvorianinova EM, Gryzunov AA, Borkhert EV, Sigova EA, Vladimirov GN, Snezhkina AV, Kudryavtseva AV, Krasnov GS, Dmitriev AA, Melnikova NV. Development and Complex Application of Methods for the Identification of Mutations in the FAD3A and FAD3B Genes Resulting in the Reduced Content of Linolenic Acid in Flax Oil. PLANTS (BASEL, SWITZERLAND) 2022; 12:95. [PMID: 36616223 PMCID: PMC9824437 DOI: 10.3390/plants12010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Flax is grown worldwide for seed and fiber production. Linseed varieties differ in their oil composition and are used in pharmaceutical, food, feed, and industrial production. The field of application primarily depends on the content of linolenic (LIN) and linoleic (LIO) fatty acids. Inactivating mutations in the FAD3A and FAD3B genes lead to a decrease in the LIN content and an increase in the LIO content. For the identification of the three most common low-LIN mutations in flax varieties (G-to-A in exon 1 of FAD3A substituting tryptophan with a stop codon, C-to-T in exon 5 of FAD3A leading to arginine to a stop codon substitution, and C-to-T in exon 2 of FAD3B resulting in histidine to tyrosine substitution), three approaches were proposed: (1) targeted deep sequencing, (2) high resolution melting (HRM) analysis, (3) cleaved amplified polymorphic sequences (CAPS) markers. They were tested on more than a thousand flax samples of various types and showed promising results. The proposed approaches can be used in marker-assisted selection to choose parent pairs for crosses, separate heterogeneous varieties into biotypes, and select genotypes with desired homozygous alleles of the FAD3A and FAD3B genes at the early stages of breeding for the effective development of varieties with a particular LIN and LIO content, as well as in basic studies of the molecular mechanisms of fatty acid synthesis in flax seeds to select genotypes adequate to the tasks.
Collapse
Affiliation(s)
- Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana A. Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Roman I. Frykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Aleksey A. Gryzunov
- All-Russian Scientific Research Institute of Refrigeration Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 127422 Moscow, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | | | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Zhang X, Wang Q, Wu J, Qi M, Zhang C, Huang Y, Wang G, Wang H, Tian J, Yu Y, Chen D, Li Y, Wang D, Zhang Y, Xue Y, Kong Z. A legume kinesin controls vacuole morphogenesis for rhizobia endosymbiosis. NATURE PLANTS 2022; 8:1275-1288. [PMID: 36316454 DOI: 10.1038/s41477-022-01261-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Symbioses between legumes and rhizobia require establishment of the plant-derived symbiosome membrane, which surrounds the rhizobia and accommodates the symbionts by providing an interface for nutrient and signal exchange. The host cytoskeleton and endomembrane trafficking systems play central roles in the formation of a functional symbiotic interface for rhizobia endosymbiosis; however, the underlying mechanisms remain largely unknown. Here we demonstrate that the nodulation-specific kinesin-like calmodulin-binding protein (nKCBP), a plant-specific microtubule-based kinesin motor, controls central vacuole morphogenesis in symbiotic cells in Medicago truncatula. Phylogenetic analysis further indicated that nKCBP duplication occurs solely in legumes of the clade that form symbiosomes. Knockout of nKCBP results in central vacuole deficiency, defective symbiosomes and abolished nitrogen fixation. nKCBP decorates linear particles along microtubules, and crosslinks microtubules with the actin cytoskeleton, to control central vacuole formation by modulating vacuolar vesicle fusion in symbiotic cells. Together, our findings reveal that rhizobia co-opted nKCBP to achieve symbiotic interface formation by regulating cytoskeletal assembly and central vacuole morphogenesis during nodule development.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Meifang Qi
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yijing Zhang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China.
| |
Collapse
|
6
|
Dvorianinova EM, Bolsheva NL, Pushkova EN, Rozhmina TA, Zhuchenko AA, Novakovskiy RO, Povkhova LV, Sigova EA, Zhernova DA, Borkhert EV, Kaluzhny DN, Melnikova NV, Dmitriev AA. Isolating Linum usitatissimum L. Nuclear DNA Enabled Assembling High-Quality Genome. Int J Mol Sci 2022; 23:13244. [PMID: 36362031 PMCID: PMC9656206 DOI: 10.3390/ijms232113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
High-quality genome sequences help to elucidate the genetic basis of numerous biological processes and track species evolution. For flax (Linum usitatissimum L.)-a multifunctional crop, high-quality assemblies from Oxford Nanopore Technologies (ONT) data were unavailable, largely due to the difficulty of isolating pure high-molecular-weight DNA. This article proposes a scheme for gaining a contiguous L. usitatissimum assembly using Nanopore data. We developed a protocol for flax nuclei isolation with subsequent DNA extraction, which allows obtaining about 5 μg of pure high-molecular-weight DNA from 0.5 g of leaves. Such an amount of material can be collected even from a single plant and yields more than 30 Gb of ONT data in two MinION runs. We performed a comparative analysis of different genome assemblers and polishers on the gained data and obtained the final 447.1-Mb assembly of L. usitatissimum line 3896 genome using the Canu-Racon (two iterations)-Medaka combination. The genome comprised 1695 contigs and had an N50 of 6.2 Mb and a completeness of 93.8% of BUSCOs from eudicots_odb10. Our study highlights the impact of the chosen genome construction strategy on the resulting assembly parameters and its eligibility for future genomic studies.
Collapse
Affiliation(s)
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow 115598, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
7
|
Phylogenetic Analysis and Flower Color Evolution of the Subfamily Linoideae (Linaceae). PLANTS 2022; 11:plants11121579. [PMID: 35736730 PMCID: PMC9231132 DOI: 10.3390/plants11121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The taxonomy of the subfamily Linoideae at the intergeneric and section levels has been questioned throughout the years, and the evolution of floral characters remains poorly understood. In particular, the evolution of flower color is still uncertain, despite its ecological importance and being one of the most variable and striking traits in Angiospermae. We evaluated the phylogenetic relationships of the genera and sections and used the phylogeny to reconstruct the ancestral state of flower color. The results suggest reevaluating the taxonomic status of segregated genera and re-incorporating them into Linum. Four of the five sections currently accepted were recovered as monophyletic (Cathartolinum, Dasylinum, Linum, and Syllinum). We propose accepting the section Stellerolinon and reevaluating Linopsis, whose representatives were recovered in three separate clades. The ancestral flower color for Linoideae was yellow-white. The flower colors purple and yellow-white were recovered at the deepest nodes of the two main clades. Pink, blue, and red colors were the most recent to evolve. These results appear to be related to diversification events, biogeographical history, and ecological aspects of the subfamily. Our reconstruction constitutes the first plausible scenario that explores the evolution of flower color, leading to new testable hypotheses for future research on the flax group.
Collapse
|
8
|
Bolsheva NL, Melnikova NV, Dvorianinova EM, Mironova LN, Yurkevich OY, Amosova AV, Krasnov GS, Dmitriev AA, Muravenko OV. Clarification of the Position of Linum stelleroides Planch. within the Phylogeny of the Genus Linum L. PLANTS (BASEL, SWITZERLAND) 2022; 11:652. [PMID: 35270121 PMCID: PMC8912650 DOI: 10.3390/plants11050652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The phylogeny of members of the family Linaceae DC. ex Perleb has not been adequately studied. In particular, data on the phylogenetic relationship between Linum stelleroides Planch. and other representatives of the blue-flowered flax are very controversial. In the present work, to clarify this issue, we obtained DNA sequences of three nuclear loci (IGS and ITS1 + 5.8S rDNA + ITS2 of the 35S rRNA gene and the 5S rRNA gene) and eight chloroplast loci (rbcL, the trnL-trnF intergenic spacer, matK, the 3' trnK intron, ndhF, trnG, the psbA-trnH intergenic spacer, and rpl16) of 10 Linum L. species (L. stelleroides, L. hirsutum, L. perenne, L. leonii, L. lewisii, L. narbonense, L. decumbens, L. grandiflorum, L. bienne (syn. L. angustifolium), and L. usitatissimum) using high-throughput sequencing data. The phylogenetic analysis showed that L. stelleroides forms a basal branch in the blue-flowered flax clade. Previously found inconsistencies in the position of L. stelleroides and some other species in the Linaceae phylogenetic tree resulted from the erroneous species identification of some of the studied plant samples.
Collapse
Affiliation(s)
- Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.V.M.); (E.M.D.); (O.Y.Y.); (A.V.A.); (G.S.K.); (O.V.M.)
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.V.M.); (E.M.D.); (O.Y.Y.); (A.V.A.); (G.S.K.); (O.V.M.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.V.M.); (E.M.D.); (O.Y.Y.); (A.V.A.); (G.S.K.); (O.V.M.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Liudmila N. Mironova
- Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, 690024 Vladivostok, Russia;
| | - Olga Y. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.V.M.); (E.M.D.); (O.Y.Y.); (A.V.A.); (G.S.K.); (O.V.M.)
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.V.M.); (E.M.D.); (O.Y.Y.); (A.V.A.); (G.S.K.); (O.V.M.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.V.M.); (E.M.D.); (O.Y.Y.); (A.V.A.); (G.S.K.); (O.V.M.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.V.M.); (E.M.D.); (O.Y.Y.); (A.V.A.); (G.S.K.); (O.V.M.)
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.V.M.); (E.M.D.); (O.Y.Y.); (A.V.A.); (G.S.K.); (O.V.M.)
| |
Collapse
|
9
|
Dmitriev AA, Pushkova EN, Novakovskiy RO, Beniaminov AD, Rozhmina TA, Zhuchenko AA, Bolsheva NL, Muravenko OV, Povkhova LV, Dvorianinova EM, Kezimana P, Snezhkina AV, Kudryavtseva AV, Krasnov GS, Melnikova NV. Genome Sequencing of Fiber Flax Cultivar Atlant Using Oxford Nanopore and Illumina Platforms. Front Genet 2021; 11:590282. [PMID: 33519894 PMCID: PMC7841463 DOI: 10.3389/fgene.2020.590282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Artemy D Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana A Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Federal Research Center for Bast Fiber Crops, Torzhok, Russia
| | - Alexander A Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok, Russia.,All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow, Russia
| | - Nadezhda L Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liubov V Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Ekaterina M Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Parfait Kezimana
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Akhmetshina AO, Strygina KV, Khlestkina EK, Porokhovinova EA, Brutch NB. High-throughput sequencing techniques to flax genetics and breeding. ECOLOGICAL GENETICS 2020. [PMID: 0 DOI: 10.17816/ecogen16126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Flax (Linum usitatissimum L.) is an important oil and fiber crop. Using modern methods for flax breeding allows accelerating the introduction of some desired genes into the genotypes of future varieties. Today, an important condition for their creation is the development of research, that is based on next-generation sequencing (NGS). This review summarizes the results obtained using NGS in flax research. To date, a linkage map with a high marker density has been obtained for L. usitatissimum, which is already being used for a more efficient search for quantitative traits loci. Comparative studies of transcriptomes and miRNomes of flax under stress and in control conditions elucidated molecular-genetic mechanisms of abiotic and biotic stress responses. The very accurate model for genomic selection of flax resistant to pasmo was constructed. Based on NGS-sequencing also some details of the genus Linum evolution were clarified. The knowledge systematized in the review can be useful for researchers working in flax breeding and whereas fundamental interest for understanding the phylogenetic relationships within the genus Linum, the ontogenesis, and the mechanisms of the response of flax plants to various stress factors.
Collapse
|
11
|
Rodionov AV, Amosova AV, Belyakov EA, Zhurbenko PM, Mikhailova YV, Punina EO, Shneyer VS, Loskutov IG, Muravenko OV. Genetic Consequences of Interspecific Hybridization, Its Role in Speciation and Phenotypic Diversity of Plants. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419030141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Orlov YL, Baranova AV, Kolchanov NA, Moroz LL. Evolutionary biology and biodiversity research at BGRS-2018. BMC Evol Biol 2019; 19:43. [PMID: 30813910 PMCID: PMC6391745 DOI: 10.1186/s12862-019-1368-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yuriy L Orlov
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia. .,Novosibirsk State University, 630090, Novosibirsk, Russia. .,The A.O.Kovalevsky Institute of Marine Biological Research of RAS, Moscow, Russia.
| | - Ancha V Baranova
- Research Centre for Medical Genetics, Moscow, 115478, Russia.,School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| | | |
Collapse
|
13
|
Bolsheva NL, Melnikova NV, Kirov IV, Dmitriev AA, Krasnov GS, Amosova АV, Samatadze TE, Yurkevich OY, Zoshchuk SA, Kudryavtseva AV, Muravenko OV. Characterization of repeated DNA sequences in genomes of blue-flowered flax. BMC Evol Biol 2019; 19:49. [PMID: 30813893 PMCID: PMC6391757 DOI: 10.1186/s12862-019-1375-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Members of different sections of the genus Linum are characterized by wide variability in size, morphology and number of chromosomes in karyotypes. Since such variability is determined mainly by the amount and composition of repeated sequences, we conducted a comparative study of the repeatomes of species from four sections forming a clade of blue-flowered flax. Based on the results of high-throughput genome sequencing performed in this study as well as available WGS data, bioinformatic analyses of repeated sequences from 12 flax samples were carried out using a graph-based clustering method. RESULTS It was found that the genomes of closely related species, which have a similar karyotype structure, are also similar in the repeatome composition. In contrast, the repeatomes of karyologically distinct species differed significantly, and no similar tandem-organized repeats have been identified in their genomes. At the same time, many common mobile element families have been identified in genomes of all species, among them, Athila Ty3/gypsy LTR retrotransposon was the most abundant. The 30-chromosome members of the sect. Linum (including the cultivated species L. usitatissimum) differed significantly from other studied species by a great number of satellite DNA families as well as their relative content in genomes. CONCLUSIONS The evolution of studied flax species was accompanied by waves of amplification of satellite DNAs and LTR retrotransposons. The observed inverse correlation between the total contents of dispersed repeats and satellite DNAs allowed to suggest a relationship between both classes of repeating sequences. Significant interspecific differences in satellite DNA sets indicated a high rate of evolution of this genomic fraction. The phylogenetic relationships between the investigated flax species, obtained by comparison of the repeatomes, agreed with the results of previous molecular phylogenetic studies.
Collapse
Affiliation(s)
- Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kirov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Аlexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
|