1
|
Li Y, Thomas GWC, Richards S, Waterhouse RM, Zhou X, Pfrender ME. Rapid evolution of mitochondrion-related genes in haplodiploid arthropods. BMC Biol 2024; 22:229. [PMID: 39390511 PMCID: PMC11465517 DOI: 10.1186/s12915-024-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Mitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes. RESULTS We show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants. CONCLUSIONS Our results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans.
Collapse
Affiliation(s)
- Yiyuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Current Address: Informatics Group, Harvard University, Cambridge, MA, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, Notre Dame, IN, USA
| |
Collapse
|
2
|
Kang N, Hu H. Adaptive evidence of mitochondrial genes in Pteromalidae and Eulophidae (Hymenoptera: Chalcidoidea). PLoS One 2023; 18:e0294687. [PMID: 37988339 PMCID: PMC10662703 DOI: 10.1371/journal.pone.0294687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Pteromalidae and Eulophidae are predominant and abundant taxa within Chalcidoidea (Hymenoptera: Apocrita). These taxa are found in diverse ecosystems, ranging from basin deserts (200 m) to alpine grasslands (4500 m). Mitochondria, cellular powerhouses responsible for energy production via oxidative phosphorylation, are sensitive to various environmental factors such as extreme cold, hypoxia, and intense ultraviolet radiation characteristic of alpine regions. Whether the molecular evolution of mitochondrial genes in these parasitoids corresponds to changes in the energy requirements and alpine environmental adaptations remains unknown. In this study, we performed a comparative analysis of mitochondrial protein-coding genes from 11 alpine species of Pteromalidae and Eulophidae, along with 18 lowland relatives, including 16 newly sequenced species. We further examined the codon usage preferences (RSCU, ENC-GC3s, neutrality, and PR2 bias plot) in these mitochondrial protein-coding sequences and conducted positive selection analysis based on their Bayesian phylogenetic relationships, and identified positive selection sites in the ATP6, ATP8, COX1, COX3, and CYTB genes, emphasizing the crucial role of mitochondrial gene adaptive evolution in the adaptation of Pteromalidae and Eulophidae to alpine environments. The phylogenetically independent contrast (PIC) analysis results verified the ω ratio of 13 PCGs from Pteromalidae and Eulophidae increased with elevation, and results from generalized linear model confirm that ATP6, ATP8, COX3, and ND1 are closely correlated with temperature-related environmental factors. This research not only enriched the molecular data of endemic alpine species but also underscores the significance of mitochondrial genes in facilitating the adaptation of these minor parasitoids to plateau habitats.
Collapse
Affiliation(s)
- Ning Kang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, P.R.China
| | - Hongying Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, P.R.China
| |
Collapse
|
3
|
Jiang WS, Li J, Xiang HM, Sun C, Chang JB, Yang JX. Comparative analysis and phylogenetic and evolutionary implications of mitogenomes of Chinese Sinocyclocheilus cavefish (Cypriniformes: Cyprinidae). Zool Res 2023; 44:779-781. [PMID: 37464935 PMCID: PMC10415761 DOI: 10.24272/j.issn.2095-8137.2022.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Affiliation(s)
- Wan-Sheng Jiang
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, and Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, Hunan 427000, China
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jie Li
- Hubei Fisheries Science Research Institute, Wuhan, Hubei 430071, China
| | - Hong-Mei Xiang
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, and Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, Hunan 427000, China
| | - Chao Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jian-Bo Chang
- State Key Laboratory of Water Resources Engineering and Management, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, Hubei 430072, China. E-mail:
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
4
|
Qiu L, Dong J, Li X, Parey SH, Tan K, Orr M, Majeed A, Zhang X, Luo S, Zhou X, Zhu C, Ji T, Niu Q, Liu S, Zhou X. Defining honeybee subspecies in an evolutionary context warrants strategized conservation. Zool Res 2023; 44:483-493. [PMID: 36994538 PMCID: PMC10236295 DOI: 10.24272/j.issn.2095-8137.2022.414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Despite the urgent need for conservation consideration, strategic action plans for the preservation of the Asian honeybee, Apis cerana Fabricius, 1793, remain lacking. Both the convergent and divergent adaptations of this widespread insect have led to confusing phenotypical traits and inconsistent infraspecific taxonomy. Unclear subspecies boundaries pose a significant challenge to honeybee conservation efforts, as it is difficult to effectively prioritize conservation targets without a clear understanding of subspecies identities. Here, we investigated genome variations in 362 worker bees representing almost all populations of mainland A. cerana to understand how evolution has shaped its population structure. Whole-genome single nucleotide polymorphisms (SNPs) based on nuclear sequences revealed eight putative subspecies, with all seven peripheral subspecies exhibiting mutually exclusive monophyly and distinct genetic divergence from the widespread central subspecies. Our results demonstrated that most classic morphological traits, including body size, were related to the climatic variables of the local habitats and did not reflect the true evolutionary history of the organism. Thus, such morphological traits were not suitable for subspecific delineation. Conversely, wing vein characters showed relative independence to the environment and supported the subspecies boundaries inferred from nuclear genomes. Mitochondrial phylogeny further indicated that the present subspecies structure was a result of multiple waves of population divergence from a common ancestor. Based on our findings, we propose that criteria for subspecies delineation should be based on evolutionary independence, trait distinction, and geographic isolation. We formally defined and described eight subspecies of mainland A. cerana. Elucidation of the evolutionary history and subspecies boundaries enables a customized conservation strategy for both widespread and endemic honeybee conservation units, guiding colony introduction and breeding.
Collapse
Affiliation(s)
- Lifei Qiu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiangxing Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xingan Li
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, Jilin 132108, China
| | - Sajad H Parey
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (Jammu and Kashmir) 185234, India
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan 650000, China
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aquib Majeed
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (Jammu and Kashmir) 185234, India
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Ji
- Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, Jilin 132108, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China. E-mail:
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China. E-mail:
| |
Collapse
|
5
|
The complete mitochondrial genome and novel gene arrangement in Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae). Funct Integr Genomics 2023; 23:41. [PMID: 36650401 DOI: 10.1007/s10142-022-00959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
The complete mitochondrial genome (mitogenome) of the sawfly, Nesodiprion zhejiangensis Zhou & Xiao, was sequenced, assembled, and deposited in GenBank (Accession Number: OM501121). The 15,660 bp N. zhejiangensis mitogenome encodes for 2 ribosomal RNAs (rrnL and rrnS), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and an AT-rich region of 450 bp in length. The nucleotide composition is biased toward adenine and thymine (A + T = 81.8%). Each PCG is initiated by an ATN codon, except for cox2, which starts with a TTG. Of 13 PCGs, 9 have a TAA termination codon, while the remainder terminate with a TAG or a single T. All tRNAs have the classic cloverleaf structure, except for the dihydrouridine (DHU) arm of tRNAval, which forms a simple loop. There are 49 helices belonging to 6 domains in rrnL and 30 helices belonging to 4 domains in rrnS. In comparison to the ancestral architecture, N. zhejiangensis has the most rearranged mitogenome in Symphyta, in which rearrangement events of local inversion and transposition are identified in three gene clusters. Specifically, the main hotspot of gene rearrangement occurred between rrnS and trnY, and rearranged from rrnS-(AT-rich region)-I-Q-M-nd2-W-C-Y to rrnS-Q-W-C-nd2-I-M-(AT-rich region)-Y, involving a local inversion event of a large gene cluster and transposition events of some tRNAs. Transposition of trnA and trnR (rearranged from A-R to R-A) was observed at the nd3-nd5 gene junction while shuffling of trnP and trnT (rearranged from T-P to P-T) occurred at the nd4l-nd6 gene junction. While illegitimate inter-mtDNA recombination might explain the opposite orientations of transcription between rrnS and trnY, transposition events of tRNA in some gene blocks can be accounted for by the tandem duplication/random loss (TDRL) model. Our phylogenetic analysis suggests that N. zhejiangensis is closely related to congeneric species N. biremis and N. japonicus, which together form a sister lineage with the European pine sawfly, Neodiprion sertifer.
Collapse
|
6
|
Brenzinger K, Maihoff F, Peters MK, Schimmer L, Bischler T, Classen A. Temperature and livestock grazing trigger transcriptome responses in bumblebees along an elevational gradient. iScience 2022; 25:105175. [PMID: 36204268 PMCID: PMC9530833 DOI: 10.1016/j.isci.2022.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Climate and land-use changes cause increasing stress to pollinators but the molecular pathways underlying stress responses are poorly understood. Here, we analyzed the transcriptomic response of Bombus lucorum workers to temperature and livestock grazing. Bumblebees sampled along an elevational gradient, and from differently managed grassland sites (livestock grazing vs unmanaged) in the German Alps did not differ in the expression of genes known for thermal stress responses. Instead, metabolic energy production pathways were upregulated in bumblebees sampled in mid- or high elevations or during cool temperatures. Extensive grazing pressure led to an upregulation of genetic pathways involved in immunoregulation and DNA-repair. We conclude that widespread bumblebees are tolerant toward temperature fluctuations in temperate mountain environments. Moderate temperature increases may even release bumblebees from metabolic stress. However, transcriptome responses to even moderate management regimes highlight the completely underestimated complexity of human influence on natural pollinators. Upregulation of energy metabolism pathways in Bombus lucorum with increasing elevation Genes known for thermal stress responses did not change with increased elevation Bombus lucorum are tolerant toward relatively broad temperature fluctuations Grazing lead to an upregulation in genetic information processes in B. lucorum
Collapse
Affiliation(s)
- Kristof Brenzinger
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Corresponding author
| | - Fabienne Maihoff
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Marcell K. Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Leonie Schimmer
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alice Classen
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Chen H, Fan X, Zhang W, Ye Y, Cai Z, Zhang K, Zhang K, Fu Z, Chen D, Guo R. Deciphering the CircRNA-Regulated Response of Western Honey Bee ( Apis mellifera) Workers to Microsporidian Invasion. BIOLOGY 2022; 11:1285. [PMID: 36138764 PMCID: PMC9495892 DOI: 10.3390/biology11091285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 05/13/2023]
Abstract
Vairimorpha ceranae is a widespread fungal parasite of adult honey bees that leads to a serious disease called nosemosis. Circular RNAs (circRNAs) are newly discovered non-coding RNAs (ncRNAs) that regulate biological processes such as immune defense and development. Here, 8199 and 8711 circRNAs were predicted from the midguts of Apis mellifera ligustica workers at 7 d (Am7T) and 10 d (Am10T) after inoculation (dpi) with V. ceranae spores. In combination with transcriptome data from corresponding uninoculated midguts (Am7CK and Am10CK), 4464 circRNAs were found to be shared by these four groups. Additionally, 16 circRNAs were highly conserved among A. m. ligustica, Apis cerana cerana, and Homo sapiens. In the Am7CK vs. Am7T (Am10CK vs. Am10T) comparison group, 168 (306) differentially expressed circRNAs (DEcircRNAs) were identified. RT-qPCR results showed that the expression trend of eight DEcircRNAs was consistent with that in the transcriptome datasets. The source genes of DEcircRNAs in Am7CK vs. Am7T (Am10CK vs. Am10T) were engaged in 27 (35) GO functional terms, including 1 (1) immunity-associated terms. Moreover, the aforementioned source genes were involved in three cellular immune-related pathways. Moreover, 86 (178) DEcircRNAs in workers' midguts at 7 (10) dpi could interact with 75 (103) miRNAs, further targeting 215 (305) mRNAs. These targets were associated with cellular renewal, cellular structure, carbohydrate and energy metabolism, and cellular and humoral immunity. Findings in the present study unraveled the mechanism underlying circRNA-mediated immune responses of western honey bee workers to V. ceranae invasion, but also provided new insights into host-microsporidian interaction during nosemosis.
Collapse
Affiliation(s)
- Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Xiaoxue Fan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Wende Zhang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Yaping Ye
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Zongbing Cai
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Kaiyao Zhang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Kuihao Zhang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Zhongmin Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| |
Collapse
|
8
|
Freitas AV, Herb JT, Pan M, Chen Y, Gucek M, Jin T, Xu H. Generation of a mitochondrial protein compendium in Dictyostelium discoideum. iScience 2022; 25:104332. [PMID: 35602934 PMCID: PMC9118663 DOI: 10.1016/j.isci.2022.104332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
The social ameba Dictyostelium discoideum has emerged as a powerful model to study mitochondrial genetics and bioenergetics. However, a comprehensive inventory of mitochondrial proteins that is critical to understanding mitochondrial processes has yet to be curated. Here, we utilized high-throughput multiplexed protein quantitation and homology analyses to generate a high-confidence mitochondrial protein compendium consisting of 936 proteins. Our proteomic approach, which utilizes mass spectrometry in combination with mathematical modeling, was validated through mitochondrial targeting sequence prediction and live-cell imaging. Our final compendium consists of 936 proteins. Nearly, a third of D. discoideum mitochondrial proteins do not have homologs in humans, budding yeasts, or an ancestral alphaproteobacteria. Additionally, we leverage our compendium to highlight the complexity of metabolic reprogramming during starvation-induced development. Our compendium lays a foundation to investigate mitochondrial processes that are unique in ameba and to understand the functions of conserved mitochondrial proteins in D. discoideum.
Collapse
Affiliation(s)
- Anna V. Freitas
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Jake T. Herb
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Miao Pan
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Yong Chen
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Marjan Gucek
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Tian Jin
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Hong Xu
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Piccinini G, Iannello M, Puccio G, Plazzi F, Havird JC, Ghiselli F. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves. Mol Biol Evol 2021; 38:2597-2614. [PMID: 33616640 PMCID: PMC8136519 DOI: 10.1093/molbev/msab054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.
Collapse
Affiliation(s)
- Giovanni Piccinini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Fouks B, Brand P, Nguyen HN, Herman J, Camara F, Ence D, Hagen DE, Hoff KJ, Nachweide S, Romoth L, Walden KKO, Guigo R, Stanke M, Narzisi G, Yandell M, Robertson HM, Koeniger N, Chantawannakul P, Schatz MC, Worley KC, Robinson GE, Elsik CG, Rueppell O. The genomic basis of evolutionary differentiation among honey bees. Genome Res 2021; 31:1203-1215. [PMID: 33947700 PMCID: PMC8256857 DOI: 10.1101/gr.272310.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
In contrast to the western honey bee, Apis mellifera, other honey bee species have been largely neglected despite their importance and diversity. The genetic basis of the evolutionary diversification of honey bees remains largely unknown. Here, we provide a genome-wide comparison of three honey bee species, each representing one of the three subgenera of honey bees, namely the dwarf (Apis florea), giant (A. dorsata), and cavity-nesting (A. mellifera) honey bees with bumblebees as an outgroup. Our analyses resolve the phylogeny of honey bees with the dwarf honey bees diverging first. We find that evolution of increased eusocial complexity in Apis proceeds via increases in the complexity of gene regulation, which is in agreement with previous studies. However, this process seems to be related to pathways other than transcriptional control. Positive selection patterns across Apis reveal a trade-off between maintaining genome stability and generating genetic diversity, with a rapidly evolving piRNA pathway leading to genomes depleted of transposable elements, and a rapidly evolving DNA repair pathway associated with high recombination rates in all Apis species. Diversification within Apis is accompanied by positive selection in several genes whose putative functions present candidate mechanisms for lineage-specific adaptations, such as migration, immunity, and nesting behavior.
Collapse
Affiliation(s)
- Bertrand Fouks
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, Davis, California 95161, USA
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Hung N Nguyen
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
| | - Francisco Camara
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Daniel Ence
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Darren E Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | - Stefanie Nachweide
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
| | - Lars Romoth
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Mario Stanke
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nikolaus Koeniger
- Department of Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, 97074 Würzburg, Germany
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC) and Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Michael C Schatz
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gene E Robinson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christine G Elsik
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
11
|
Ghiselli F, Iannello M, Piccinini G, Milani L. Bivalve molluscs as model systems for studying mitochondrial biology. Integr Comp Biol 2021; 61:1699-1714. [PMID: 33944910 DOI: 10.1093/icb/icab057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The class Bivalvia is a highly successful and ancient taxon including ∼25,000 living species. During their long evolutionary history bivalves adapted to a wide range of physicochemical conditions, habitats, biological interactions, and feeding habits. Bivalves can have strikingly different size, and despite their apparently simple body plan, they evolved very different shell shapes, and complex anatomic structures. One of the most striking features of this class of animals is their peculiar mitochondrial biology: some bivalves have facultatively anaerobic mitochondria that allow them to survive prolonged periods of anoxia/hypoxia. Moreover, more than 100 species have now been reported showing the only known evolutionarily stable exception to the strictly maternal inheritance of mitochondria in animals, named doubly uniparental inheritance. Mitochondrial activity is fundamental to eukaryotic life, and thanks to their diversity and uncommon features, bivalves represent a great model system to expand our knowledge about mitochondrial biology, so far limited to a few species. We highlight recent works studying mitochondrial biology in bivalves at either genomic or physiological level. A link between these two approaches is still missing, and we believe that an integrated approach and collaborative relationships are the only possible ways to be successful in such endeavour.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
12
|
Li Y, Zhang B, Moran NA. The Aphid X Chromosome Is a Dangerous Place for Functionally Important Genes: Diverse Evolution of Hemipteran Genomes Based on Chromosome-Level Assemblies. Mol Biol Evol 2021; 37:2357-2368. [PMID: 32289166 PMCID: PMC7403619 DOI: 10.1093/molbev/msaa095] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Different evolutionary forces shape gene content and sequence evolution on autosomes versus sex chromosomes. Location on a sex chromosome can favor male-beneficial or female-beneficial mutations depending on the sex determination system and selective pressure on different sexual morphs. An X0 sex determination can lead to autosomal enrichment of male-biased genes, as observed in some hemipteran insect species. Aphids share X0 sex determination; however, models predict the opposite pattern, due to their unusual life cycles, which alternate between all-female asexual generations and a single sexual generation. Predictions include enrichment of female-biased genes on autosomes and of male-biased genes on the X, in contrast to expectations for obligately sexual species. Robust tests of these models require chromosome-level genome assemblies for aphids and related hemipterans with X0 sex determination and obligate sexual reproduction. In this study, we built the first chromosome-level assembly of a psyllid, an aphid relative with X0 sex determination and obligate sexuality, and compared it with recently resolved chromosome-level assemblies of aphid genomes. Aphid and psyllid X chromosomes differ strikingly. In aphids, female-biased genes are strongly enriched on autosomes and male-biased genes are enriched on the X. In psyllids, male-biased genes are enriched on autosomes. Furthermore, functionally important gene categories of aphids are enriched on autosomes. Aphid X-linked genes and male-biased genes are under relaxed purifying selection, but gene content and order on the X is highly conserved, possibly reflecting constraints imposed by unique chromosomal mechanisms associated with the unusual aphid life cycle.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Bo Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX.,Laboratory of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| |
Collapse
|
13
|
The evolutionary history of manatees told by their mitogenomes. Sci Rep 2021; 11:3564. [PMID: 33574363 PMCID: PMC7878490 DOI: 10.1038/s41598-021-82390-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
The manatee family encompasses three extant congeneric species: Trichechus senegalensis (African manatee), T. inunguis (Amazonian manatee), and T. manatus (West Indian manatee). The fossil record for manatees is scant, and few phylogenetic studies have focused on their evolutionary history. We use full mitogenomes of all extant manatee species to infer the divergence dates and biogeographical histories of these species and the effect of natural selection on their mitogenomes. The complete mitochondrial genomes of T. inunguis (16,851 bp), T. senegalensis (16,882 bp), and T. manatus (16,882 bp), comprise 13 protein-coding genes, 2 ribosomal RNA genes (rRNA - 12S and 16S), and 22 transfer RNA genes (tRNA), and (D-loop/CR). Our analyses show that the first split within Trichechus occurred during the Late Miocene (posterior mean 6.56 Ma and 95% HPD 3.81–10.66 Ma), followed by a diversification event in the Plio-Pleistocene (posterior mean 1.34 Ma, 95% HPD 0.1–4.23) in the clade composed by T. inunguis and T. manatus; T. senegalensis is the sister group of this clade with higher support values (pp > 0.90). The branch-site test identified positive selection on T. inunguis in the 181st position of the ND4 amino acid gene (LRT = 6.06, p = 0.0069, BEB posterior probability = 0.96). The ND4 gene encodes one subunit of the NADH dehydrogenase complex, part of the oxidative phosphorylation machinery. In conclusion, our results provide novel insight into the evolutionary history of the Trichechidae during the Late Miocene, which was influenced by geological events, such as Amazon Basin formation.
Collapse
|
14
|
Zhou Y, Huang D, Xin Z, Xiao J. Evolution of Oxidative Phosphorylation (OXPHOS) Genes Reflecting the Evolutionary and Life Histories of Fig Wasps (Hymenoptera, Chalcidoidea). Genes (Basel) 2020; 11:genes11111353. [PMID: 33203150 PMCID: PMC7697784 DOI: 10.3390/genes11111353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
Fig wasps are a peculiar group of insects which, for millions of years, have inhabited the enclosed syconia of fig trees. Considering the relatively closed and dark environment of fig syconia, we hypothesize that the fig wasps’ oxidative phosphorylation (OXPHOS) pathway, which is the main oxygen consumption and adenosine triphosphate (ATP) production system, may have adaptively evolved. In this study, we manually annotated the OXPHOS genes of 11 species of fig wasps, and compared the evolutionary patterns of OXPHOS genes for six pollinators and five non-pollinators. Thirteen mitochondrial protein-coding genes and 30 nuclear-coding single-copy orthologous genes were used to analyze the amino acid substitution rate and natural selection. The results showed high amino acid substitution rates of both mitochondrial and nuclear OXPHOS genes in fig wasps, implying the co-evolution of mitochondrial and nuclear genes. Our results further revealed that the OXPHOS-related genes evolved significantly faster in pollinators than in non-pollinators, and five genes had significant positive selection signals in the pollinator lineage, indicating that OXPHOS genes play an important role in the adaptation of pollinators. This study can help us understand the relationship between gene evolution and environmental adaptation.
Collapse
|
15
|
Chang YW, Wang YC, Zhang XX, Iqbal J, Lu MX, Gong HX, Du YZ. Comparative transcriptome analysis of three invasive leafminer flies provides insights into interspecific competition. Int J Biol Macromol 2020; 165:1664-1674. [PMID: 33038396 DOI: 10.1016/j.ijbiomac.2020.09.260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/12/2020] [Accepted: 09/30/2020] [Indexed: 01/26/2023]
Abstract
Liriomyza spp. (Diptera: Agromyzidae) represent a group of economically-significant highly polyphagous pests of plants grown in field and greenhouse conditions. Liriomyza spp. share similar biological and morphological characteristics, and complex interspecific interactions have been documented among these species in various geographical regions. Where the displacement of one of these species by the other has been studied, no unique mechanisms have been identified as causing it. The impact of competitive factors (such as, insecticide tolerance, thermotolerance, and adaptability to cropping systems) may be unique to specific geographic regions of Liriomyza spp., but more research is needed to confirm these hypotheses. In this study, RNA-seq was used to determine the transcriptomes of three closely-related leafminers, e.g. L. sativae, L. trifolii, and L. huidobrensis. Over 20 Gb of clean reads were generated and assembled into unique transcriptomes, and 38,747 unigenes were annotated in different databases. In pairwise comparisons, L. trifolii and L. sativae had more up-regulated genes than L. huidobrensis. With respect to common differentially-expressed genes (Co-DEGs), the three leafminers exhibited distinct groups of highly-expressed gene clusters. When genes related to competitive factors were compared, expression patterns in L. trifolii and L. sativae were more closely related to each other than to L. huidobrensis. The data suggest that DEGs involved in competitive factors may play a key role in competition and displacement of leafminers. The divergent genes identified in this study will be valuable in revealing possible mechanisms of invasion, displacement and interspecific competition in Liriomyza spp.
Collapse
Affiliation(s)
- Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Han-Xiao Gong
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.
| |
Collapse
|
16
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
17
|
Dennis AB, Ballesteros GI, Robin S, Schrader L, Bast J, Berghöfer J, Beukeboom LW, Belghazi M, Bretaudeau A, Buellesbach J, Cash E, Colinet D, Dumas Z, Errbii M, Falabella P, Gatti JL, Geuverink E, Gibson JD, Hertaeg C, Hartmann S, Jacquin-Joly E, Lammers M, Lavandero BI, Lindenbaum I, Massardier-Galata L, Meslin C, Montagné N, Pak N, Poirié M, Salvia R, Smith CR, Tagu D, Tares S, Vogel H, Schwander T, Simon JC, Figueroa CC, Vorburger C, Legeai F, Gadau J. Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics 2020; 21:376. [PMID: 32471448 PMCID: PMC7257214 DOI: 10.1186/s12864-020-6764-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.
Collapse
Affiliation(s)
- Alice B Dennis
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland.
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Gabriel I Ballesteros
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Stéphanie Robin
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Jens Bast
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
- Institute of Zoology, Universität zu Köln, 50674, Köln, Germany
| | - Jan Berghöfer
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Maya Belghazi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, PINT, PFNT, Marseille, France
| | - Anthony Bretaudeau
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Zoé Dumas
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Corinne Hertaeg
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Department of Environmental Systems Sciences, D-USYS, ETH Zürich, Zürich, Switzerland
| | - Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Mark Lammers
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Blas I Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ina Lindenbaum
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nina Pak
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Chris R Smith
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
| | - Sophie Tares
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | | | - Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany.
| |
Collapse
|
18
|
Hill GE. Mitonuclear Compensatory Coevolution. Trends Genet 2020; 36:403-414. [PMID: 32396834 DOI: 10.1016/j.tig.2020.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023]
Abstract
In bilaterian animals, the mitochondrial genome is small, haploid, does not typically recombine, and is subject to accumulation of deleterious alleles via Muller's ratchet. These basic features of the genomic architecture present a paradox: mutational erosion of these genomes should lead to decline in mitochondrial function over time, yet no such decline is observed. Compensatory coevolution, whereby the nuclear genome evolves to compensate for the deleterious alleles in the mitochondrial genome, presents a potential solution to the paradox of Muller's ratchet without loss of function. Here, I review different proposed forms of mitonuclear compensatory coevolution. Empirical evidence from diverse eukaryotic taxa supports the mitonuclear compensatory coevolution hypothesis, but the ubiquity and importance of such compensatory coevolution remains a topic of debate.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Science, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA.
| |
Collapse
|
19
|
Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition. Int J Biol Macromol 2020; 144:460-472. [DOI: 10.1016/j.ijbiomac.2019.12.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/06/2019] [Accepted: 12/15/2019] [Indexed: 01/26/2023]
|
20
|
Li Y, Park H, Smith TE, Moran NA. Gene Family Evolution in the Pea Aphid Based on Chromosome-Level Genome Assembly. Mol Biol Evol 2020; 36:2143-2156. [PMID: 31173104 PMCID: PMC6759078 DOI: 10.1093/molbev/msz138] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome structural variations, including duplications, deletions, insertions, and inversions, are central in the evolution of eukaryotic genomes. However, structural variations present challenges for high-quality genome assembly, hampering efforts to understand the evolution of gene families and genome architecture. An example is the genome of the pea aphid (Acyrthosiphon pisum) for which the current assembly is composed of thousands of short scaffolds, many of which are known to be misassembled. Here, we present an improved version of the A. pisum genome based on the use of two long-range proximity ligation methods. The new assembly contains four long scaffolds (40-170 Mb), corresponding to the three autosomes and the X chromosome of A. pisum, and encompassing 86% of the new assembly. Assembly accuracy is supported by several quality assessments. Using this assembly, we identify the chromosomal locations and relative ages of duplication events, and the locations of horizontally acquired genes. The improved assembly illuminates the mode of gene family evolution by providing proximity information between paralogs. By estimating nucleotide polymorphism and coverage depth from resequencing data, we determined that many short scaffolds not assembling to chromosomes represent hemizygous regions, which are especially frequent on the highly repetitive X chromosome. Aligning the X-linked aphicarus region, responsible for male wing dimorphism, to the new assembly revealed a 50-kb deletion that cosegregates with the winged male phenotype in some clones. These results show that long-range scaffolding methods can substantially improve assemblies of repetitive genomes and facilitate study of gene family evolution and structural variation.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Hyunjin Park
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Thomas E Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| |
Collapse
|
21
|
Yuan M, Zhang L, Zhang Q, Zhang L, Li M, Wang X, Feng R, Tang P. Mitogenome evolution in ladybirds: Potential association with dietary adaptation. Ecol Evol 2020; 10:1042-1053. [PMID: 32015863 PMCID: PMC6988538 DOI: 10.1002/ece3.5971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Dietary shifts can alter the relative availability of different nutrients and are therefore associated with metabolic adaptation in animals. The Coccinellidae (ladybirds) exhibits three major types of feeding habits and provides a useful model to study the effects of dietary changes on the evolution of mitogenomes, which encode proteins directly involved in energy metabolism. Here, mitogenomes of three coccinellid species were newly sequenced. These data were combined with other ten previously sequenced coccinellid mitogenomes to explore the relationship between mitogenome evolution and diets. Our results indicate that mitogenomic data can be effectively used to resolve phylogenetic relationships of Coccinellidae. Strong codon usage bias in coccinellid mitogenomes was predominantly determined by nucleotide composition. The 13 mitochondrial protein-coding genes (PCGs) globally evolved under negative constraints, with some PCGs showing a stronger purifying selection. Six PCGs (nad3, nad4L, and nad5 from Complex I; cox1 and cox3 from Complex IV; and atp6 from Complex V) displayed signs of positive selection. Of these, adaptive changes in cox3 were potentially associated with metabolic differences resulting from dietary shifts in Coccinellidae. Our results provide insights into the adaptive evolution of coccinellid mitogenomes in response to both dietary shifts and other life history traits.
Collapse
Affiliation(s)
- Ming‐Long Yuan
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Li‐Jun Zhang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Qi‐Lin Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| | - Li Zhang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Min Li
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Xiao‐Tong Wang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Run‐Qiu Feng
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pei‐An Tang
- Collaborative Innovation Center for Modern Grain Circulation and SafetyCollege of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| |
Collapse
|
22
|
Yan Z, Ye G, Werren JH. Evolutionary Rate Correlation between Mitochondrial-Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects. Mol Biol Evol 2019; 36:1022-1036. [PMID: 30785203 DOI: 10.1093/molbev/msz036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrion is a pivotal organelle for energy production, and includes components encoded by both the mitochondrial and nuclear genomes. Functional and evolutionary interactions are expected between the nuclear- and mitochondrial-encoded components. The topic is of broad interest in biology, with implications to genetics, evolution, and medicine. Here, we compare the evolutionary rates of mitochondrial proteins and ribosomal RNAs to rates of mitochondria-associated nuclear-encoded proteins, across the major orders of holometabolous insects. There are significant evolutionary rate correlations (ERCs) between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins, which are likely driven by different rates of mitochondrial sequence evolution and correlated changes in the interacting nuclear-encoded proteins. The pattern holds after correction for phylogenetic relationships and considering protein conservation levels. Correlations are stronger for both nuclear-encoded OXPHOS proteins that are in contact with mitochondrial OXPHOS proteins and for nuclear-encoded mitochondrial ribosomal amino acids directly contacting the mitochondrial rRNAs. We find that ERC between mitochondrial- and nuclear-encoded proteins is a strong predictor of nuclear-encoded proteins known to interact with mitochondria, and ERC shows promise for identifying new candidate proteins with mitochondrial function. Twenty-three additional candidate nuclear-encoded proteins warrant further study for mitochondrial function based on this approach, including proteins in the minichromosome maintenance helicase complex.
Collapse
Affiliation(s)
- Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Department of Biology, University of Rochester, Rochester, NY
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
23
|
Williams AM, Friso G, van Wijk KJ, Sloan DB. Extreme variation in rates of evolution in the plastid Clp protease complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:243-259. [PMID: 30570818 DOI: 10.1111/tpj.14208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 05/08/2023]
Abstract
Eukaryotic cells represent an intricate collaboration between multiple genomes, even down to the level of multi-subunit complexes in mitochondria and plastids. One such complex in plants is the caseinolytic protease (Clp), which plays an essential role in plastid protein turnover. The proteolytic core of Clp comprises subunits from one plastid-encoded gene (clpP1) and multiple nuclear genes. TheclpP1 gene is highly conserved across most green plants, but it is by far the fastest evolving plastid-encoded gene in some angiosperms. To better understand these extreme and mysterious patterns of divergence, we investigated the history ofclpP1 molecular evolution across green plants by extracting sequences from 988 published plastid genomes. We find thatclpP1 has undergone remarkably frequent bouts of accelerated sequence evolution and architectural changes (e.g. a loss of introns andRNA-editing sites) within seed plants. AlthoughclpP1 is often assumed to be a pseudogene in such cases, multiple lines of evidence suggest that this is rarely true. We applied comparative native gel electrophoresis of chloroplast protein complexes followed by protein mass spectrometry in two species within the angiosperm genusSilene, which has highly elevated and heterogeneous rates ofclpP1 evolution. We confirmed thatclpP1 is expressed as a stable protein and forms oligomeric complexes with the nuclear-encoded Clp subunits, even in one of the most divergentSilene species. Additionally, there is a tight correlation between amino acid substitution rates inclpP1 and the nuclear-encoded Clp subunits across a broad sampling of angiosperms, suggesting continuing selection on interactions within this complex.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Daniel B Sloan
- Department of Biology, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
24
|
Telschow A, Gadau J, Werren JH, Kobayashi Y. Genetic Incompatibilities Between Mitochondria and Nuclear Genes: Effect on Gene Flow and Speciation. Front Genet 2019; 10:62. [PMID: 30853974 PMCID: PMC6396729 DOI: 10.3389/fgene.2019.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
The process of speciation is, according to the biological species concept, the reduction in gene flow between genetically diverging populations. Most of the previous theoretical studies analyzed the effect of nuclear genetic incompatibilities on gene flow. There is, however, an increasing number of empirical examples suggesting that cytoplasmically inherited genetic elements play an important role in speciation. Here, we present a theoretical analysis of mitochondrial driven speciation, in which genetic incompatibilities occur between mitochondrial haplotypes and nuclear alleles. Four population genetic models with mainland-island structure were analyzed that differ with respect to the type of incompatibility and the underlying genetics. Gene flow reduction was measured on selectively neutral alleles of an unlinked locus and quantified by the effective migration rate. Analytical formulae for the different scenarios were derived using the fitness graph method. For the models with haploid genetics, we found that mito-nuclear incompatibilities (MtNI) are as strong as nuclear-nuclear incompatibilities (NNI) in reducing gene flow at the unlinked locus, but only if males and females migrate in equal number. For models with diploid genetics, we found that MtNI reduce gene flow stronger than NNI when incompatibilities are recessive, but weaker when they are dominant. For both haploid and diploid MtNI, we found that gene flow reduction is stronger if females are the migrating sex, but weaker than NNI when males are the migrating sex. These results encourage further examination on the role of mitochondria on genetic divergence and speciation and point toward specific factors (e.g., migrating sex) that could be the focus of an empirical test.
Collapse
Affiliation(s)
- Arndt Telschow
- Institute for Environmental Systems Research, Osnabrück University, Osnabrück, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, Westfalian Wilhelms-University, Münster, Germany
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Yutaka Kobayashi
- School of Economics and Management, Kochi University of Technology, Kami, Japan
| |
Collapse
|
25
|
Li XD, Jiang GF, Yan LY, Li R, Mu Y, Deng WA. Positive Selection Drove the Adaptation of Mitochondrial Genes to the Demands of Flight and High-Altitude Environments in Grasshoppers. Front Genet 2018; 9:605. [PMID: 30568672 PMCID: PMC6290170 DOI: 10.3389/fgene.2018.00605] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
The molecular evolution of mitochondrial genes responds to changes in energy requirements and to high altitude adaptation in animals, but this has not been fully explored in invertebrates. The evolution of atmospheric oxygen content from high to low necessarily affects the energy requirements of insect movement. We examined 13 mitochondrial protein-coding genes (PCGs) of grasshoppers to test whether the adaptive evolution of genes involved in energy metabolism occurs in changes in atmospheric oxygen content and high altitude adaptation. Our molecular evolutionary analysis of the 13 PCGs in 15 species of flying grasshoppers and 13 related flightless grasshoppers indicated that, similar to previous studies, flightless grasshoppers have experienced relaxed selection. We found evidence of significant positive selection in the genes ATP8, COX3, ND2, ND4, ND4L, ND5, and ND6 in flying lineages. This results suggested that episodic positive selection allowed the mitochondrial genes of flying grasshoppers to adapt to increased energy demands during the continuous reduction of atmospheric oxygen content. Our analysis of five grasshopper endemic to the Tibetan Plateau and 13 non-Tibetan grasshoppers indicated that, due to positive selection, more non-synonymous nucleotide substitutions accumulated in Tibetan grasshoppers than in non-Tibetan grasshoppers. We also found evidence for significant positive selection in the genes ATP6, ND2, ND3, ND4, and ND5 in Tibetan lineages. Our results thus strongly suggest that, in grasshoppers, positive selection drives mitochondrial genes to better adapt both to the energy requirements of flight and to the high altitude of the Tibetan Plateau.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| | - Guo-Fang Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, China
| | - Li-Yun Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuan Mu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei-An Deng
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| |
Collapse
|
26
|
Niu G, Korkmaz EM, Doğan Ö, Zhang Y, Aydemir MN, Budak M, Du S, Başıbüyük HH, Wei M. The first mitogenomes of the superfamily Pamphilioidea (Hymenoptera: Symphyta): Mitogenome architecture and phylogenetic inference. Int J Biol Macromol 2018; 124:185-199. [PMID: 30448489 DOI: 10.1016/j.ijbiomac.2018.11.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The Pamphilioidea represents a small superfamily of the phytophagous suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genomes (mitogenomes) of three pamphilioid species: Chinolyda flagellicornis (Pamphiliidae), Megalodontes spiraeae and M. cephalotes (Megalodontesidae) were newly sequenced using next generation sequencing and comparatively analysed with the previously reported symphytan mitogenomes. A positive AT skew (0.013) and a negative GC skew (-0.194) were found in pamphilioid mitogenome, and a deviation from strand asymmetry was also observed in the PCGs encoded on both strands. Several gene rearrangement events were observed in four tRNA gene clusters (WCY, IQM, ARNS1EF and TP clusters), which have not been reported from symphytan mitogenomes to date. As the most parsimonious explanation, compared with the inferred insect ancestral mitogenome architecture, the occurrence of gene rearrangements in pamphilioid mitogenomes requires totally five evolutionary steps, including four transpositions and one inversion. The predicted secondary structures of tRNAs, rrnS and rrnL genes are mostly consistent with reported hymenopteran species. Phylogenetic analyses recovered the monophyly of superfamily Pamphilioidea and indicated the relationship Tenthredinoidea + (Pamphilioidea + (Cephoidea + (Orussoidea + Apocrita))) with strong nodal supports.
Collapse
Affiliation(s)
- Gengyun Niu
- College of Life Sciences, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, PR China
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Özgül Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yaoyao Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, PR China
| | - Merve Nur Aydemir
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahir Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Shiyu Du
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, PR China
| | | | - Meicai Wei
- College of Life Sciences, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, PR China
| |
Collapse
|
27
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Shi S, Zuo H, Gao L, Yi X, Zhong G. Silencing of Rieske Iron-Sulfur Protein Impacts Upon the Development and Reproduction of Spodoptera exigua by Regulating ATP Synthesis. Front Physiol 2018; 9:575. [PMID: 29881355 PMCID: PMC5977497 DOI: 10.3389/fphys.2018.00575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/01/2018] [Indexed: 01/24/2023] Open
Abstract
Rieske iron-sulfur protein (RISP) is a key protein subunit of mitochondrial complex III which plays an important role in the respiratory electron transport chain. The complete cDNA of RISP was cloned from Spodoptera exigua by real time quantitative PCR and rapid-amplification of cDNA ends (RACE) technology and named as SeRISP (GenBank Accession Number: JN992290). Multiple alignments and the creation of a phylogenetic tree revealed that RISPs are highly conserved among different insects, and the highly conserved region of RISPs is mainly located at the C-terminal which serves as the functional domain. Expression pattern analysis demonstrated that SeRISP is expressed in all developmental stages of S. exigua; the expression levels increased during larval growth, remained stable during development from fourth instar to pupa and reached a peak in the adult. In addition, SeRISP was significantly suppressed at both the mRNA and protein levels by feeding the instar stage with dsRNA; levels of suppression increased with increasing dsRNA concentration and continuous treatment time. The silencing of SeRISP in larvae led to the significant inhibition of ATP synthesis and larval growth, which could result in energy reserve deficiency in pupae and the suppression of fecundity and hatchability in adults. Our findings confirmed that it is possible to silence target genes in S. exigua by simple dsRNA feeding, and provided evidence of the essential role of RISP in the process of ATP synthesis, growth and reproduction.
Collapse
Affiliation(s)
- Song Shi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hongliang Zuo
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Lu Gao
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|