1
|
Bar-Lev Viterbo A, Wexler JR, Mayost Lev-Ari O, Chipman AD. Early embryonic development of the German cockroach Blattella germanica. EvoDevo 2024; 15:14. [PMID: 39462430 PMCID: PMC11520056 DOI: 10.1186/s13227-024-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Early embryogenesis is characterized by dramatic cell proliferation and movement. In most insects, early embryogenesis includes a phase called the uniform blastoderm, during which cells evenly cover the entirety of the egg. However, the embryo of the German cockroach, Blattella germanica, like those of many insects within the super order Polyneoptera, does not have a uniform blastoderm; instead, its first cells condense rapidly at the site of a future germband. We investigated early development in this species in order to understand how early gene expression is or is not conserved in these insect embryos with distinct early cell behaviors. RESULTS We present a detailed time series of nuclear division and distribution from fertilization through germband formation and report patterns of expression for the early patterning genes hunchback, caudal, and twist in order to understand early polarization and mesoderm formation. We show a detailed time course of the spatial expression of two genes involved in the segmentation cascade, hedgehog and even-skipped, and demonstrate two distinct dynamics of the segmentation process. CONCLUSIONS Despite dramatic differences in cell distribution between the blastoderms of many Polyneopteran insects and those of more well-studied developmental models, expression patterns of early patterning genes are mostly similar. Genes associated with axis determination in other insects are activated relatively late and are probably not maternally deposited. The two phases of segmentation-simultaneous and sequential-might indicate a broadly conserved mode of morphological differentiation. The developmental time course we present here should be of value for further investigation into the causes of this distinct blastoderm type.
Collapse
Affiliation(s)
- Ariel Bar-Lev Viterbo
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Judith R Wexler
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Orel Mayost Lev-Ari
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
| |
Collapse
|
2
|
Medina-Jiménez BI, Budd GE, Pechmann M, Posnien N, Janssen R. Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development. EvoDevo 2024; 15:11. [PMID: 39327634 PMCID: PMC11428483 DOI: 10.1186/s13227-024-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Spiders evolved different types of eyes, a pair of primary eyes that are usually forward pointing, and three pairs of secondary eyes that are typically situated more posterior and lateral on the spider's head. The best understanding of arthropod eye development comes from the vinegar fly Drosophila melanogaster, the main arthropod model organism, that also evolved different types of eyes, the larval eyes and the ocelli and compound eyes of the imago. The gene regulatory networks that underlie eye development in this species are well investigated revealing a conserved core network, but also show several differences between the different types of eyes. Recent candidate gene approaches identified a number of conserved genes in arthropod eye development, but also revealed crucial differences including the apparent lack of some key factors in some groups of arthropods, including spiders. RESULTS Here, we re-analysed our published scRNA sequencing data and found potential key regulators of spider eye development that were previously overlooked. Unlike earlier research on this topic, our new data suggest that Hedgehog (Hh)-signalling is involved in eye development in the spider Parasteatoda tepidariorum. By investigating embryonic gene expression in representatives of all main groups of spiders, we demonstrate that this involvement is conserved in spiders. Additionally, we identified genes that are expressed in the developing eyes of spiders, but that have not been studied in this context before. CONCLUSION Our data show that single-cell sequencing represents a powerful method to gain deeper insight into gene regulatory networks that underlie the development of lineage-specific organs such as the derived set of eyes in spiders. Overall, we gained deeper insight into spider eye development, as well as the evolution of arthropod visual system formation.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Matthias Pechmann
- Institute for Zoology, Department of Developmental Biology, University of Cologne, Biocenter, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Justus-Von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
3
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
4
|
Gainett G, Klementz BC, Blaszczyk PO, Bruce HS, Patel NH, Sharma PP. Dual Functions of labial Resolve the Hox Logic of Chelicerate Head Segments. Mol Biol Evol 2023; 40:7043718. [PMID: 36798978 PMCID: PMC10015621 DOI: 10.1093/molbev/msad037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Despite an abundance of gene expression surveys, comparatively little is known about Hox gene function in Chelicerata. Previous investigations of paralogs of labial (lab) and Deformed (Dfd) in a spider have shown that these play a role in tissue maintenance of the pedipalp segment (lab-1) and in patterning the first walking leg identity (Dfd-1), respectively. However, extrapolations of these data across chelicerates are hindered by the existence of duplicated Hox genes in arachnopulmonates (e.g., spiders and scorpions), which have resulted from an ancient whole genome duplication (WGD) event. Here, we investigated the function of the single-copy ortholog of lab in the harvestman Phalangium opilio, an exemplar of a lineage that was not subject to this WGD. Embryonic RNA interference against lab resulted in two classes of phenotypes: homeotic transformations of pedipalps to chelicerae, as well as reduction and fusion of the pedipalp and leg 1 segments. To test for combinatorial function, we performed a double knockdown of lab and Dfd, which resulted in a homeotic transformation of both pedipalps and the first walking legs into cheliceral identity, whereas the second walking leg is transformed into a pedipalpal identity. Taken together, these results elucidate a model for the Hox logic of head segments in Chelicerata. To substantiate the validity of this model, we performed expression surveys for lab and Dfd paralogs in scorpions and horseshoe crabs. We show that repetition of morphologically similar appendages is correlated with uniform expression levels of the Hox genes lab and Dfd, irrespective of the number of gene copies.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| | - Pola O Blaszczyk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| | | | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA.,Organismal Biology & Anatomy, University of Chicago, Chicago, IL
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
5
|
Pacheco ID, Walling LL, Atkinson PW. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Front Bioeng Biotechnol 2022; 10:900785. [PMID: 35747496 PMCID: PMC9209771 DOI: 10.3389/fbioe.2022.900785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous hemipterans their mouthparts (stylets) are elegant structures that enable voracious feeding from plant xylem or phloem. This adaptation has resulted in some hemipteran species becoming globally significant pests of agriculture resulting in significant annual crop losses. Due to the reliance on chemical insecticides for the control of insect pests in agricultural settings, many hemipteran pests have evolved resistance to insecticides resulting in an urgent need to develop new, species-specific and environmentally friendly methods of pest control. The rapid advances in CRISPR/Cas9 technologies in model insects such as Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and Aedes aegypti has spurred a new round of innovative genetic control strategies in the Diptera and Lepidoptera and an increased interest in assessing genetic control technologies for the Hemiptera. Genetic control approaches in the Hemiptera have, to date, been largely overlooked due to the problems of introducing genetic material into the germline of these insects. The high frequency of CRISPR-mediated mutagenesis in model insect species suggest that, if the delivery problem for Hemiptera could be solved, then gene editing in the Hemiptera might be quickly achieved. Significant advances in CRISPR/Cas9 editing have been realized in nine species of Hemiptera over the past 4 years. Here we review progress in the Hemiptera and discuss the challenges and opportunities for extending contemporary genetic control strategies into species in this agriculturally important insect orderr.
Collapse
Affiliation(s)
- Inaiara D. Pacheco
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Peter W. Atkinson,
| |
Collapse
|
6
|
Taylor SE, Dearden PK. The Nasonia pair-rule gene regulatory network retains its function over 300 million years of evolution. Development 2022; 149:dev199632. [PMID: 35142336 PMCID: PMC8959145 DOI: 10.1242/dev.199632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022]
Abstract
Insect segmentation is a well-studied and tractable system with which to investigate the genetic regulation of development. Though insects segment their germband using a variety of methods, modelling work implies that a single gene regulatory network can underpin the two main types of insect segmentation. This means limited genetic changes are required to explain significant differences in segmentation mode between different insects. This idea needs to be tested in a wider variety of species, and the nature of the gene regulatory network (GRN) underlying this model has not been tested. Some insects, e.g. Nasonia vitripennis and Apis mellifera segment progressively, a pattern not examined in previous studies of this segmentation model, producing stripes at different times progressively through the embryo, but not from a segment addition zone. Here, we aim to understand the GRNs patterning Nasonia using a simulation-based approach. We found that an existing model of Drosophila segmentation ( Clark, 2017) can be used to recapitulate the progressive segmentation of Nasonia, if provided with altered inputs in the form of expression of the timer genes Nv-caudal and Nv-odd paired. We predict limited topological changes to the pair-rule network and show, by RNAi knockdown, that Nv-odd paired is required for morphological segmentation. Together this implies that very limited changes to the Drosophila network are required to simulate Nasonia segmentation, despite significant differences in segmentation modes, implying that Nasonia use a very similar version of an ancestral GRN used by Drosophila, which must therefore have been conserved for at least 300 million years.
Collapse
Affiliation(s)
| | - Peter K. Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, Aotearoa-New Zealand
| |
Collapse
|
7
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Chipman AD. The evolution of the gene regulatory networks patterning the Drosophila Blastoderm. Curr Top Dev Biol 2021; 139:297-324. [PMID: 32450964 DOI: 10.1016/bs.ctdb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila blastoderm gene regulatory network is one of the best studied networks in biology. It is composed of a series of tiered sub-networks that act sequentially to generate a primary segmental pattern. Many of these sub-networks have been studied in other arthropods, allowing us to reconstruct how each of them evolved over the transition from the arthropod ancestor to the situation seen in Drosophila today. I trace the evolution of each of these networks, showing how some of them have been modified significantly in Drosophila relative to the ancestral state while others are largely conserved across evolutionary timescales. I compare the putative ancestral arthropod segmentation network with that found in Drosophila and discuss how and why it has been modified throughout evolution, and to what extent this modification is unusual.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
9
|
Miller S, Shippy TD, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D’Elia T, Saha S. Annotation of segmentation pathway genes in the Asian citrus psyllid, Diaphorina citri. GIGABYTE 2021; 2021:gigabyte26. [PMID: 36824338 PMCID: PMC9632033 DOI: 10.46471/gigabyte.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/02/2021] [Indexed: 11/09/2022] Open
Abstract
Insects have a segmented body plan that is established during embryogenesis when the anterior-posterior (A-P) axis is divided into repeated units by a cascade of gene expression. The cascade is initiated by protein gradients created by translation of maternally provided mRNAs, localized at the anterior and posterior poles of the embryo. Combinations of these proteins activate specific gap genes to divide the embryo into distinct regions along the anterior-posterior axis. Gap genes then activate pair-rule genes, which are usually expressed in parts of every other segment. The pair-rule genes, in turn, activate expression of segment polarity genes in a portion of each segment. The segmentation genes are generally conserved among insects, although there is considerable variation in how they are deployed. We annotated 25 segmentation gene homologs in the Asian citrus psyllid, Diaphorina citri. Most of the genes expected to be present in D. citri based on their phylogenetic distribution in other insects were identified and annotated. Two exceptions were eagle and invected, which are present in at least some hemipterans, but were not found in D. citri. Many of the segmentation pathway genes are likely to be essential for D. citri development, and thus they may be useful targets for gene-based pest control methods.
Collapse
Affiliation(s)
- Sherry Miller
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Allen County Community College, Burlingame, KS 66413, USA
| | - Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Setton EVW, Sharma PP. A conserved role for arrow in posterior axis patterning across Arthropoda. Dev Biol 2021; 475:91-105. [PMID: 33607111 DOI: 10.1016/j.ydbio.2021.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Segmentation is a key characteristic of Arthropoda that is linked to the evolutionary success of this lineage. It has previously been shown in both vertebrates and short germ insects that posterior segmentation requires canonical Wnt (cWnt) signaling, which maintains the expression of Caudal and the posterior growth zone; disruption of cWnt signaling incurs posterior truncations in these lineages due to the loss of the tail bud. However, comparable datasets for Wnt signaling are limited outside of holometabolous insects, due to incomparable phenotypic spectra and inefficacy of gene misexpression methods in certain model species. We applied RNA interference (RNAi) against the Wnt co-receptor arrow (arr), a key member of the cWnt signaling pathway in holometabolous insects and vertebrates, to examine posterior axis elongation of the cobweb spider Parasteatoda tepidariorum (short germ embryogenesis; one Wnt8 homolog), the cricket Gryllus bimaculatus (intermediate germ; one Wnt8 homolog), and the milkweed bug Oncopeltus fasciatus (short germ; two Wnt8 homologs). Knockdown of arr in insects resulted in posterior truncations affecting the gnathos through the abdomen in O. fasciatus, whereas posterior truncations only affected the T3 segment through the abdomen in G. bimaculatus. Spider embryos with disrupted arr expression exhibited defects along the entire axis, including segmentation defects throughout the germband. RNA-Seq-based differential gene expression analysis of severe Ptep-arr loss-of-function phenotypes at two developmental stages was used to confirm that knockdown of Ptep-arr results in systemic disruption of the Wnt pathway. Intriguingly, we found that knockdown of arr did not abrogate Wnt8 expression in any of the three species, with cad expression additionally retained in severe loss-of-function phenotypes in the cricket and the spider. Together with data from a holometabolous insect, our results suggest that cWnt signaling is not required for maintenance of Wnt8 expression across Arthropoda. These outcomes underscore the diagnostic power of differential gene expression analyses in characterizing catastrophic phenotypes in emerging model species.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| |
Collapse
|
11
|
Novikova AV, Auman T, Cohen M, Oleynik O, Stahi-Hitin R, Gil E, Weisbrod A, Chipman AD. The multiple roles of caudal in early development of the milkweed bug Oncopeltus fasciatus. Dev Biol 2020; 467:66-76. [PMID: 32891622 DOI: 10.1016/j.ydbio.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/27/2022]
Abstract
The homeobox transcription factor Caudal has conserved roles in all Bilateria in defining the posterior pole and in controlling posterior elongation. These roles are seemingly similar and are difficult to disentangle. We have carried out a detailed analysis of the expression, function and interactions of the caudal ortholog of the milkweed bug, Oncopeltus fasciatus, a hemimetabolous insect with a conservative early development process, in order to understand its different functions throughout development. In Oncopeltus, caudal is not maternally deposited, but has a sequence of roles in the posterior of the embryos throughout early development. It defines and maintains a posterior-anterior gradient in the blastoderm and modulates the activity of segmentation genes in simultaneous segmentation during the blastoderm stage. It later defines the invagination site and the posterior segment addition zone (SAZ) in the germband. It maintains the posterior SAZ cells in an undifferentiated proliferative state, while promoting dynamic expression of segmentation genes in the anterior SAZ. We show that rather than being a simple posterior determinant, Caudal is involved in several distinct regulatory networks, each with a distinct developmental role.
Collapse
Affiliation(s)
- Asya V Novikova
- The Department of Ecology, Evolution & Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Tzach Auman
- The Department of Ecology, Evolution & Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Mira Cohen
- The Department of Ecology, Evolution & Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Olesya Oleynik
- The Department of Ecology, Evolution & Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Reut Stahi-Hitin
- The Department of Ecology, Evolution & Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Ella Gil
- The Department of Ecology, Evolution & Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Anat Weisbrod
- The Department of Ecology, Evolution & Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
12
|
Jeon H, Gim S, Na H, Choe CP. A pair-rule function of odd-skipped in germband stages of Tribolium development. Dev Biol 2020; 465:58-65. [PMID: 32687895 DOI: 10.1016/j.ydbio.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
While pair-rule patterning has been observed in most insects examined, the orthologs of Drosophila pair-rule genes have shown divergent roles in insect segmentation. In the beetle Tribolium castaneum, while odd-skipped (Tc-odd) was expressed as a series of pair-rule stripes, RNAi-mediated knockdown of Tc-odd (Tc-oddRNAi) resulted in severely truncated, almost asegmental phenotypes rather than the classical pair-rule phenotypes observed in germbands and larval cuticles. However, considering that most segments arise later in germband stages of Tribolium development, the roles of Tc-odd in segmentation of growing germbands could not be analyzed properly in the truncated Tc-oddRNAi germbands. Here, we investigated the segmentation function of Tc-odd in germband stages of Tribolium development by analyzing Tc-oddRNAi embryos that resumed germband extension. In the larval cuticles of Tc-oddRNAi embryos, normal mandibular and maxillary and loss of the labial segments were consistent in the head, whereas a broad range of segmentation defects including loss or fusion of thoracic and/or abdominal segments was observed in the trunk. Interestingly, a group of Tc-oddRNAi germbands showed pair-rule-like defects in the segmental stripes of the segment-polarity genes, engrailed, hedgehog, or wingless, in the abdominal regions. While the pair-rule genes even-skipped, runt, odd, and paired were misregulated in the growing Tc-oddRNAi germbands, paired expression required for odd-numbered segment formation was largely abolished, which might cause the pair-rule-like defects. Taken together, these findings suggest that Tc-odd can function as a pair-rule gene in the germband stages of Tribolium development.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sujeong Gim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyejee Na
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
13
|
High-Efficiency CRISPR/Cas9 Mutagenesis of the white Gene in the Milkweed Bug Oncopeltus fasciatus. Genetics 2020; 215:1027-1037. [PMID: 32493719 PMCID: PMC7404234 DOI: 10.1534/genetics.120.303269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
In this manuscript, we report that clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is highly efficient in the hemipteran Oncopeltus fasciatus. The white gene is well characterized in Drosophila where mutation causes loss of eye pigmentation; white is a reliable marker for transgenesis and other genetic manipulations. Accordingly, white has been targeted in a number of nonmodel insects to establish tools for genetic studies. Here, we generated mutations in the Of-white (Of-w) locus using CRISPR/Cas9. We found that Of-w is required for pigmentation throughout the body of Oncopeltus, not just the ommatidia. High rates of somatic mosaicism were observed in the injected generation, reflecting biallelic mutations, and a high rate of germline mutation was evidenced by the large proportion of heterozygous G1s. However, Of-w mutations are homozygous lethal; G2 homozygotes lacked pigment dispersion throughout the body and did not hatch, precluding the establishment of a stable mutant line. Embryonic and parental RNA interference (RNAi) were subsequently performed to rule out off-target mutations producing the observed phenotype and to evaluate the efficacy of RNAi in ablating gene function compared to a loss-of-function mutation. RNAi knockdowns phenocopied Of-w homozygotes, with an unusual accumulation of orange granules observed in unhatched embryos. This is, to our knowledge, the first CRISPR/Cas9-targeted mutation generated in Oncopeltus. While we were unable to establish white as a useful visible marker for Oncopeltus, these findings are instructive for the selection of visible markers in nonmodel species and reveal an unusual role for an ortholog of a classic Drosophila gene.
Collapse
|
14
|
Janssen R. The embryonic expression pattern of a second, hitherto unrecognized, paralog of the pair-rule gene sloppy-paired in the beetle Tribolium castaneum. Dev Genes Evol 2020; 230:247-256. [PMID: 32430691 PMCID: PMC7260273 DOI: 10.1007/s00427-020-00660-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
In the fly Drosophila melanogaster, a hierarchic segmentation gene cascade patterns the anterior-posterior body axis of the developing embryo. Within this cascade, the pair-rule genes (PRGs) transform the more uniform patterning of the higher-level genes into a metameric pattern that first represents double-segmental units, and then, in a second step, represents a true segmental pattern. Within the PRG network, primary PRGs regulate secondary PRGs that are directly involved in the regulation of the next lower level, the segment-polarity genes (SPGs). While the complement of primary PRGs is different in Drosophila and the beetle Tribolium, another arthropod model organism, both paired (prd) and sloppy-paired (slp), acts as secondary PRGs. In earlier studies, the interaction of PRGs and the role of the single slp ortholog in Tribolium have been investigated in some detail revealing conserved and diverged aspects of PRG function. In this study, I present the identification and the analysis of embryonic expression patterns of a second slp gene (called slp2) in Tribolium. While the previously identified gene, slp, is expressed in a typical PRG pattern, expression of slp2 is more similar to that of the downstream-acting SPGs, and shows expression similarities to slp2 in Drosophila. The previously reported differences between the function of slp in Drosophila and Tribolium may partially account for the function of the newly identified second slp paralog in Tribolium, and it may therefore be advised to conduct further studies on PRG function in the beetle.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
15
|
Hernandez J, Pick L, Reding K. Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence. EvoDevo 2020; 11:9. [PMID: 32337018 PMCID: PMC7178596 DOI: 10.1186/s13227-020-00154-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Much has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, Drosophila melanogaster, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, Oncopeltus fasciatus (order: Hemiptera)—close outgroup to holometabolous insects—is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult. Results Here we present the harlequin bug, Murgantia histrionica, as a new hemipteran model species. Murgantia—a member of the stink bug family Pentatomidae which shares a common ancestor with Oncopeltus ~ 200 mya—is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use Murgantia to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to Oncopeltus. Specifically, PRGs even-skipped, odd-skipped, paired and sloppy-paired are initially expressed in PR-stripes in Drosophila and a number of holometabolous insects but in segmental-stripes in Oncopeltus. We found that these genes are likewise expressed in segmental-stripes in Murgantia, while runt displays partial PR-character in both species. Also like Oncopeltus, E75A is expressed in a clear PR-pattern in blastoderm- and germband-stage Murgantia embryos, although it plays no role in segmentation in Drosophila. Thus, genes diagnostic of the split between holometabolous insects and Oncopeltus are expressed in an Oncopeltus-like fashion during Murgantia development. Conclusions The similarity in gene expression between Murgantia and Oncopeltus suggests that Oncopeltus is not a sole outlier species in failing to utilize orthologs of Drosophila PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of E75A in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.
Collapse
Affiliation(s)
- Jessica Hernandez
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Katie Reding
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| |
Collapse
|
16
|
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci 2019; 286:20191881. [PMID: 31575373 DOI: 10.1098/rspb.2019.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Silberman Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
17
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
18
|
Reding K, Chen M, Lu Y, Cheatle Jarvela AM, Pick L. Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Development 2019; 146:dev181453. [PMID: 31444220 PMCID: PMC6765130 DOI: 10.1242/dev.181453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
The discovery of pair-rule genes (PRGs) in Drosophila revealed the existence of an underlying two-segment-wide prepattern directing embryogenesis. The milkweed bug Oncopeltus fasciatus, a hemimetabolous insect, is a more representative arthropod: most of its segments form sequentially after gastrulation. Here, we report the expression and function of orthologs of the complete set of nine Drosophila PRGs in Oncopeltus Seven Of-PRG-orthologs are expressed in stripes in the primordia of every segment, rather than every other segment; Of-runt is PR-like and several orthologs are also expressed in the segment addition zone. RNAi-mediated knockdown of Of-odd-skipped, paired and sloppy-paired impacted all segments, with no indication of PR-like register. We confirm that Of-E75A is expressed in PR-like stripes, although it is not expressed in this way in Drosophila, demonstrating the existence of an underlying PR-like prepattern in Oncopeltus These findings reveal that a switch occurred in regulatory circuits, leading to segment formation: while several holometabolous insects are 'Drosophila-like', using PRG orthologs for PR patterning, most Of-PRGs are expressed segmentally in Oncopeltus, a more basally branching insect. Thus, an evolutionarily stable phenotype - segment formation - is directed by alternate regulatory pathways in diverse species.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Mengyao Chen
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Yong Lu
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Alys M Cheatle Jarvela
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Rudolf H, Zellner C, El-Sherif E. Speeding up anterior-posterior patterning of insects by differential initialization of the gap gene cascade. Dev Biol 2019; 460:20-31. [PMID: 31075221 DOI: 10.1016/j.ydbio.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/28/2023]
Abstract
Recently, it was shown that anterior-posterior patterning genes in the red flour beetle Tribolium castaneum are expressed sequentially in waves. However, in the fruit fly Drosophila melanogaster, an insect with a derived mode of embryogenesis compared to Tribolium, anterior-posterior patterning genes quickly and simultaneously arise as mature gene expression domains that, afterwards, undergo slight posterior-to-anterior shifts. This raises the question of how a fast and simultaneous mode of patterning, like that of Drosophila, could have evolved from a rather slow sequential mode of patterning, like that of Tribolium. In this paper, we propose a mechanism for this evolutionary transition based on a switch from a uniform to a gradient-mediated initialization of the gap gene cascade by maternal Hb. The model is supported by computational analyses and experiments.
Collapse
Affiliation(s)
- Heike Rudolf
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Christine Zellner
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Ezzat El-Sherif
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany.
| |
Collapse
|
20
|
Almudi I, Martín-Blanco CA, García-Fernandez IM, López-Catalina A, Davie K, Aerts S, Casares F. Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution. EvoDevo 2019; 10:6. [PMID: 30984364 PMCID: PMC6446309 DOI: 10.1186/s13227-019-0120-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
The great capability of insects to adapt to new environments promoted their extraordinary diversification, resulting in the group of Metazoa with the largest number of species distributed worldwide. To understand this enormous diversity, it is essential to investigate lineages that would allow the reconstruction of the early events in the evolution of insects. However, research on insect ecology, physiology, development and evolution has mostly focused on few well-established model species. The key phylogenetic position of mayflies within Paleoptera as the sister group of the rest of winged insects and life history traits of mayflies make them an essential order to understand insect evolution. Here, we describe the establishment of a continuous culture system of the mayfly Cloeon dipterum and a series of experimental protocols and omics resources that allow the study of its development and its great regenerative capability. Thus, the establishment of Cloeon as an experimental platform paves the way to understand genomic and morphogenetic events that occurred at the origin of winged insects.
Collapse
Affiliation(s)
- Isabel Almudi
- 1GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013 Seville, Spain
| | | | | | | | - Kristofer Davie
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Louvain, Belgium.,3Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Louvain, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Louvain, Belgium.,3Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Louvain, Belgium
| | - Fernando Casares
- 1GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013 Seville, Spain
| |
Collapse
|