1
|
Woodruff GC, Moser KA. A ubiquinone precursor analogue does not clearly increase the growth rate of Caenorhabditis inopinata. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001235. [PMID: 39712935 PMCID: PMC11659882 DOI: 10.17912/micropub.biology.001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
The evolution of developmental rates may drive morphological change. Caenorhabditis inopinata develops nearly twice as slowly as Caenorhabditis elegans . clk-1 encodes a hydroxylase required for synthesizing ubiquinone, and mutant clk-1 slow growth phenotypes can be rescued by supplying animals with a ubiquinone precursor analogue, 2,4-dihydroxybenzoate. RNA-seq data showing low clk-1 expression raised the possibility that C. inopinata grows slowly because of reduced ubiquinone biosynthesis. C. inopinata did not reveal a clear reduction in the age of maturation when reared on 2,4-dihydroxybenzoate. Further scrutiny of RNA-seq results revealed multiple ubiquinone metabolism genes have low expression in C. inopinata . Divergent clk-1 expression alone may not be a major driver of the evolution of slow development in this species.
Collapse
Affiliation(s)
- Gavin C. Woodruff
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States
| | - Kimberly A. Moser
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States
| |
Collapse
|
2
|
Woodruff GC, Moser KA, Wang J. The Bacteria of a Fig Microcommunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624729. [PMID: 39605469 PMCID: PMC11601595 DOI: 10.1101/2024.11.22.624729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding the biotic drivers of diversity is a major goal of microbial ecology. One approach towards tackling this issue is to interrogate relatively simple communities that are easy to observe and perturb. Figs (syconia) of the genus Ficus represent such a system. Here, we describe the microbial communities of Ficus septica figs, which are associated with the nematode Caenorhabditis inopinata (the sister species of the C. elegans genetic model system). In 2019, 38 Ficus septica figs (across 12 plants in Taiwan) were dissected, and metadata such as foundress wasp number and nematode occupancy were collected for each fig. Suspensions derived from interior fig material and fig surface washes were prepared for 16S microbial metabarcoding. Over 3,000 OTUs were detected, and microbial communities were dominated by members of Proteobacteria , Bacteroidota , and Actinobacteriota . Although microbial communities of fig exteriors and interiors can be distinguished, levels of microbial alpha diversity were comparable across these areas of the fig. Nematodes likewise had no detectable impact on microbial alpha diversity, although nematodes were associated with a modest change in microbial community composition. A handful of OTUs (associated with the genera Kosokonia , Ochobactrum , and Stenotrophomonas ) revealed potential differential abundance among figs varying in nematode occupancy. Additionally, foundress wasp number was negatively correlated with microbial alpha diversity. These findings set the stage for future studies that directly test the role of nematode and wasp occupancy on microbial communities, as well as investigations that probe nematode-microbe interactions through laboratory experiments. Taken together, these results constitute a fundamental step in characterizing the natural microbial communities of figs and Caenorhabditis nematodes. Importance Unraveling why different species live in different places is a longstanding open question in ecology, and it is clear that interspecific interactions among species are a major contributor to species distributions. Ficus figs are a useful system for ecological studies because they are relatively simple microcosms where characterizing animal community composition of multiple samples is straightforward. Additionally, Caenorhabditis inopinata , a close relative of the C. elegans genetic model system, thrives in Ficus septica figs. Here, we tie 16S microbial metabarcoding to nematode and wasp occupancy data to understand the causes of bacterial community composition in F. septica figs. We found that microbial composition, but not total diversity, varies among fig surface and interiors. Likewise, we found that nematode occupancy impacts microbial composition but not alpha diversity. Moreover, we show that as the number of foundress wasps increases, the microbial alpha diversity decreases. Finally, we identified OTUs that are potentially associated with nematode occupancy. Taken together, these results represent a key step in describing a microcommunity wherein ecological genetic hypotheses can be tested, as well as one that can potentially reveal the roles of uncharacterized genes in established model systems.
Collapse
|
3
|
Woodruff GC, Willis JH, Johnson E, Phillips PC. Widespread changes in gene expression accompany body size evolution in nematodes. G3 (BETHESDA, MD.) 2024; 14:jkae110. [PMID: 38775657 PMCID: PMC11304970 DOI: 10.1093/g3journal/jkae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/27/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Body size is a fundamental trait that drives multiple evolutionary and ecological patterns. Caenorhabditis inopinata is a fig-associated nematode that is exceptionally large relative to other members of the genus, including Caenorhabditis elegans. We previously showed that C. inopinata is large primarily due to postembryonic cell size expansion that occurs during the larval-to-adult transition. Here, we describe gene expression patterns in C. elegans and C. inopinata throughout this developmental period to understand the transcriptional basis of body size change. We performed RNA-seq in both species across the L3, L4, and adult stages. Most genes are differentially expressed across all developmental stages, consistent with C. inopinata's divergent ecology and morphology. We also used a model comparison approach to identify orthologues with divergent dynamics across this developmental period between the 2 species. This included genes connected to neurons, behavior, stress response, developmental timing, and small RNA/chromatin regulation. Multiple hypodermal collagens were also observed to harbor divergent developmental dynamics across this period, and genes important for molting and body morphology were also detected. Genes associated with transforming growth factor β signaling revealed idiosyncratic and unexpected transcriptional patterns given their role in body size regulation in C. elegans. This widespread transcriptional divergence between these species is unexpected and maybe a signature of the ecological and morphological divergence of C. inopinata. Alternatively, transcriptional turnover may be the rule in the Caenorhabditis genus, indicative of widespread developmental system drift among species. This work lays the foundation for future functional genetic studies interrogating the bases of body size evolution in this group.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
4
|
Wang L, Li P, Zheng F, Zhu Z, Bai F, Gao R. Collagen peptides from sturgeon swim bladder prolong the lifespan and healthspan in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5244-5251. [PMID: 38308527 DOI: 10.1002/jsfa.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Sturgeon is a popular aquaculture species in many countries. Its swim bladder is rich in collagen but has not yet been exploited scientifically. RESULTS Collagen peptides (CPs) prepared from sturgeon swim bladder by trypsinolysis had an average molecular weight of 528.5 Da and consisted of 407 peptides, 16.1% of the content of which was GFPGADGSAGPK. The CPs at 25 mg mL-1 extended the lifespan of Caenorhabditis elegans by 22.6%, which was significantly higher than the extension achieved by other hydrolysis methods and source materials. They also improved fitness-related traits (body size, motor capacity, oxidative stress, cell apoptosis, and epidermal barrier function), indicating prolonged healthspan. Transcriptome analysis showed that the effect was mediated by the mitogen-activated protein kinase pathway, which enhanced stress resistance, the insulin/IGF-1 pathway, which inhibited protein aggregation, and the NHR-80/FAT-6 pathway, which regulated lipid metabolism. CONCLUSION Collagen peptides from sturgeon swim bladder by trypsinolysis prolonged the lifespan and healthspan in C. elegans, and might be promising anti-aging agents. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Peiyu Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fuping Zheng
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Zhiling Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Zhenjiang Eslatide Biotechnology Co., Ltd., Zhenjiang, China
| | - Fan Bai
- Quzhou Xunlong Aquatic Products Sci-tech Development Co., Ltd., Quzhou, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Wang Q, Wang L, Huang Z, Xiao Y, Liu M, Liu H, Yu Y, Liang M, Luo N, Li K, Mishra A, Huang Z. Abalone peptide increases stress resilience and cost-free longevity via SKN-1-governed transcriptional metabolic reprogramming in C. elegans. Aging Cell 2024; 23:e14046. [PMID: 37990605 PMCID: PMC10861207 DOI: 10.1111/acel.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-β aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Liangyi Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ziliang Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yue Xiao
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Mao Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Huihui Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi Yu
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ming Liang
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ning Luo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Kunping Li
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ajay Mishra
- European Bioinformatics InstituteCambridgeUK
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
6
|
Kern CC, Srivastava S, Ezcurra M, Hsiung KC, Hui N, Townsend S, Maczik D, Zhang B, Tse V, Konstantellos V, Bähler J, Gems D. C. elegans ageing is accelerated by a self-destructive reproductive programme. Nat Commun 2023; 14:4381. [PMID: 37474586 PMCID: PMC10359416 DOI: 10.1038/s41467-023-40088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
In post-reproductive C. elegans, destructive somatic biomass repurposing supports production of yolk which, it was recently shown, is vented and can serve as a foodstuff for larval progeny. This is reminiscent of the suicidal reproductive effort (reproductive death) typical of semelparous organisms such as Pacific salmon. To explore the possibility that C. elegans exhibits reproductive death, we have compared sibling species pairs of the genera Caenorhabditis and Pristionchus with hermaphrodites and females. We report that yolk venting and constitutive, early pathology involving major anatomical changes occur only in hermaphrodites, which are also shorter lived. Moreover, only in hermaphrodites does germline removal suppress senescent pathology and markedly increase lifespan. This is consistent with the hypothesis that C. elegans exhibit reproductive death that is suppressed by germline ablation. If correct, this would imply a major difference in the ageing process between C. elegans and most higher organisms, and potentially explain the exceptional plasticity in C. elegans ageing.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Shivangi Srivastava
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Marina Ezcurra
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Nancy Hui
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - StJohn Townsend
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Dominik Maczik
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Victoria Tse
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Viktoras Konstantellos
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Hammerschmith EW, Woodruff GC, Moser KA, Johnson E, Phillips PC. Opposing directions of stage-specific body shape change in a close relative of C. elegans. BMC ZOOL 2022; 7:38. [PMID: 37170380 PMCID: PMC10127021 DOI: 10.1186/s40850-022-00131-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Body size is a fundamental organismal trait. However, as body size and ecological contexts change across developmental time, evolutionary divergence may cause unexpected patterns of body size diversity among developmental stages. This may be particularly evident in polyphenic developmental stages specialized for dispersal. The dauer larva is such a stage in nematodes, and Caenorhabditis species disperse by traveling on invertebrate carriers. Here, we describe the morphology of a stress-resistant, dauer-like larval stage of the nematode Caenorhabditis inopinata, whose adults can grow to be nearly twice as long as its close relative, the model organism C. elegans.
Results
We find that a dauer-like, stress-resistant larval stage in two isolates of C. inopinata is on average 13% shorter and 30% wider than the dauer larvae of C. elegans, despite its much longer adult stage. Additionally, many C. inopinata dauer-like larvae were ensheathed, a possible novelty in this lineage reminiscent of the infective juveniles of parasitic nematodes. Variation in dauer-like larva formation frequency among twenty-four wild isolates of C. inopinata was also observed, although frequencies were low across all isolates (< 2%), with many isolates unable to produce dauer-like larvae under conventional laboratory conditions.
Conclusion
Most Caenorhabditis species thrive on rotting plants and disperse on snails, slugs, or isopods (among others) whereas C. inopinata is ecologically divergent and thrives in fresh Ficus septica figs and disperses on their pollinating wasps. While there is some unknown factor of the fig environment that promotes elongated body size in C. inopinata adults, the small size or unique life history of its fig wasp carrier may be driving the divergent morphology of its stress-resistant larval stages. Further characterization of the behavior, development, and morphology of this stage will refine connections to homologous developmental stages in other species and determine whether ecological divergence across multiple developmental stages can promote unexpected and opposing changes in body size dimensions within a single species.
Collapse
|
8
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
9
|
Yue Y, Wang J, Shen P, Kim KH, Park Y. Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food Chem Toxicol 2021; 152:112238. [PMID: 33901606 DOI: 10.1016/j.fct.2021.112238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 01/02/2023]
Abstract
Methylglyoxal is a highly reactive dicarbonyl compound. It can be obtained either endogenously through biological enzymatic/non-enzymatic pathways or exogenously via the uptake of certain foods and beverages, such as Manuka honey. Studies about its biological properties are quite controversial, though the majority reported a positive association between methylglyoxal and certain pathologies. In this report, we tested if methylglyoxal can alter the development of animals using Caenorhabditis elegans as the in vivo model. Treatment of methylglyoxal at 0.1 and 1 mmol/L for 2 days significantly inhibited the development of Caenorhabditis elegans, particularly targeting the transition from L3 stage. Pharyngeal pumping rate, the food intake marker was also significantly reduced by methylglyoxal at both 0.1 and 1 mmol/L. Additionally, treatment of 0.1 mmol/L methylglyoxal increased, while 1 mmol/L methylglyoxal decreased the nematodes' average moving speed. The effect of methylglyoxal on development was in part due to the modulation of lin-41, which encodes a homolog of human TRIM71. The mutation of lin-41 could alleviate or abolish the effects of methylglyoxal on growth rate, body size, pumping rate and locomotive activity. In summary, these results suggested that methylglyoxal influenced the development of Caenorhabditis elegans, which is in part via the lin-41-dependent pathway.
Collapse
Affiliation(s)
- Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jiaying Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Peiyi Shen
- Department of Agriculture, Culinology® and Hospitality Management, Southwest Minnesota State University, Marshall, MN, 56258, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
10
|
Sayed SMA, Siems K, Schmitz-Linneweber C, Luyten W, Saul N. Enhanced Healthspan in Caenorhabditis elegans Treated With Extracts From the Traditional Chinese Medicine Plants Cuscuta chinensis Lam. and Eucommia ulmoides Oliv. Front Pharmacol 2021; 12:604435. [PMID: 33633573 PMCID: PMC7901915 DOI: 10.3389/fphar.2021.604435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
To uncover potential anti-aging capacities of Traditional Chinese Medicine (TCM), the nematode Caenorhabditis elegans was used to investigate the effects of Eucommia ulmoides and Cuscuta chinensis extracts, selected by screening seven TCM extracts, on different healthspan parameters. Nematodes exposed to E. ulmoides and C. chinensis extracts, starting at the young adult stage, exhibited prolonged lifespan and increased survival after heat stress as well as upon exposure to the pathogenic bacterium Photorhabdus luminescens, whereby the survival benefits were monitored after stress initiation at different adult stages. However, only C. chinensis had the ability to enhance physical fitness: the swimming behavior and the pharyngeal pumping rate of C. elegans were improved at day 7 and especially at day 12 of adulthood. Finally, monitoring the red fluorescence of aged worms revealed that only C. chinensis extracts caused suppression of intestinal autofluorescence, a known marker of aging. The results underline the different modes of action of the tested plants extracts. E. ulmoides improved specifically the physiological fitness by increasing the survival probability of C. elegans after stress, while C. chinensis seems to be an overall healthspan enhancer, reflected in the suppressed autofluorescence, with beneficial effects on physical as well as physiological fitness. The C. chinensis effects may be hormetic: this is supported by increased gene expression of hsp-16.1 and by trend, also of hsp-12.6.
Collapse
Affiliation(s)
- Shimaa M. A. Sayed
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
- Botany and Microbiology Department, Faculty of Science, New Valley University, El-Kharga, Egypt
| | | | - Christian Schmitz-Linneweber
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | | | - Nadine Saul
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
11
|
Woodruff GC, Teterina AA. Degradation of the Repetitive Genomic Landscape in a Close Relative of Caenorhabditis elegans. Mol Biol Evol 2020; 37:2549-2567. [PMID: 32359146 PMCID: PMC7475029 DOI: 10.1093/molbev/msaa107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The abundance, diversity, and genomic distribution of repetitive elements is highly variable among species. These patterns are thought to be driven in part by reproductive mode and the interaction of selection and recombination, and recombination rates typically vary by chromosomal position. In the nematode Caenorhabditis elegans, repetitive elements are enriched at chromosome arms and depleted on centers, and this mirrors the chromosomal distributions of other genomic features such as recombination rate. How conserved is this genomic landscape of repeats, and what evolutionary forces maintain it? To address this, we compared the genomic organization of repetitive elements across five Caenorhabditis species with chromosome-level assemblies. As previously reported, repeat content is enriched on chromosome arms in most Caenorhabditis species, and no obvious patterns of repeat content associated with reproductive mode were observed. However, the fig-associated C. inopinata has experienced repetitive element expansion and reveals no association of global repeat density with chromosome position. Patterns of repeat superfamily specific distributions reveal this global pattern is driven largely by a few repeat superfamilies that in C. inopinata have expanded in number and have weak associations with chromosome position. Additionally, 15% of predicted protein-coding genes in C. inopinata align to transposon-related proteins. When these are excluded, C. inopinata has no enrichment of genes in chromosome centers, in contrast to its close relatives who all have such clusters. Forward evolutionary simulations reveal that chromosomal heterogeneity in recombination rate alone can generate structured repetitive genomic landscapes when insertions are weakly deleterious, whereas chromosomal heterogeneity in the fitness effects of transposon insertion can promote such landscapes across a variety of evolutionary scenarios. Thus, patterns of gene density along chromosomes likely contribute to global repetitive landscapes in this group, although other historical or genomic factors are needed to explain the idiosyncrasy of genomic organization of various transposable element taxa within C. inopinata. Taken together, these results highlight the power of comparative genomics and evolutionary simulations in testing hypotheses regarding the causes of genome organization.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
| | - Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| |
Collapse
|