1
|
Peter N, Schantz AV, Dörge DD, Steinhoff A, Cunze S, Skaljic A, Klimpel S. Evidence of predation pressure on sensitive species by raccoons based on parasitological studies. Int J Parasitol Parasites Wildl 2024; 24:100935. [PMID: 38638363 PMCID: PMC11024658 DOI: 10.1016/j.ijppaw.2024.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
To demonstrate predation and potential impacts of raccoons on various species, a total of 108 raccoons from aquatic-associated nature reserves and natural areas in three federal states of Germany, Hesse (n = 36), Saxony-Anhalt (n = 36) and Brandenburg (n = 36), were investigated from a dietary ecological perspective in the present study. Fecal analyses and stomach content examinations were conducted for this purpose. Additionally, as a supplementary method for analyzing the dietary spectrum of raccoons, the parasite fauna was considered, as metazoan parasites, in particular, can serve as indicators for the species and origin of food organisms. While stomach content analyses allow for a detailed recording of trophic relationships solely at the time of sampling, parasitological examinations enable inferences about more distant interaction processes. With their different developmental stages and heteroxenous life cycles involving specific, sometimes obligate, intermediate hosts, they utilize the food web to reach their definitive host. The results of this study clearly demonstrate that spawning areas of amphibians and reptiles were predominantly utilized as food resources by raccoons in the study areas. Thus, common toad (Bufo bufo), common newt (Lissotriton vulgaris), grass frog (Rana temporaria), and grass snake (Natrix natrix) were identified as food organisms for raccoons. The detection of the parasite species Euryhelmis squamula, Isthmiophora melis, and Physocephalus sexalatus with partially high infestation rates also suggests that both amphibians and reptiles belong to the established dietary components of raccoons from an ecological perspective, as amphibians and reptiles are obligate intermediate hosts in the respective parasitic life cycles of the detected parasites. The study clearly demonstrates that raccoons have a significant impact on occurrence-sensitive animal species in certain areas and, as an invasive species, can exert a negative influence on native species and ecosystems.
Collapse
Affiliation(s)
- Norbert Peter
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Anna V. Schantz
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Dorian D. Dörge
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Anne Steinhoff
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sarah Cunze
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Ajdin Skaljic
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt/Main, D-60325, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325, Frankfurt/Main, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| |
Collapse
|
2
|
Dumidae A, Subkrasae C, Ardpairin J, Pansri S, Polseela R, Thanwisai A, Vitta A. Population genetic structure of Indoplanorbis exustus (Gastropoda: Planorbidae) in Thailand and its infection with trematode cercariae. PLoS One 2024; 19:e0297761. [PMID: 38277375 PMCID: PMC10817173 DOI: 10.1371/journal.pone.0297761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Indoplanorbis exustus is a freshwater gastropod belonging to the family Planorbidae. This snail is widely distributed across the tropics and plays an important role as the intermediate host for trematodes. However, relatively little is understood regarding the genetic relationship between I. exustus and trematodes. The goals of this study were to investigate the current transmission status of trematode cercariae in I. exustus in Thailand and to examine the genetic diversity, genetic structure, and demographic history of I. exustus. We collected 575 I. exustus from 21 provinces across six regions of Thailand and investigated cercarial infections by using the shedding method. I. exustus from two provinces were infected with cercarial trematodes, and two types of cercarial stages were molecularly identified as furcocercous cercaria and xiphidiocercariae. Phylogenetic tree analysis based on 28S rDNA and ITS2 sequences demonstrated that furcocercous cercaria and xiphidiocercariae were closely clustered with a clade of Euclinostomum sp. and Xiphidiocercariae sp., respectively. Phylogenetic and network analyses of I. exustus haplotypes based on the COI, 16S rDNA, and ITS1 genes demonstrated four main clades. Only snails in clade A were distributed in all regions of Thailand and harbored trematode cercariae. The level of genetic diversity of I. exustus was relatively high, but most populations were not genetically different, thus suggesting the appearance of gene flow within the I. exustus populations. Overall, the haplotype network was star-shaped, thus suggesting the recent demographic expansion of populations. This result was also supported by the unimodal mode of the mismatch distribution graph and the large negative values of the neutrality tests. Therefore, the I. exustus snail was likely another freshwater snail of the invasive species in Thailand. This information will aid in monitoring the spread of the parasitic trematodes carried by I. exustus from different populations.
Collapse
Affiliation(s)
- Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Supawan Pansri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Raxsina Polseela
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Biedrzycka A, Konopiński MK, Popiołek M, Zawiślak M, Bartoszewicz M, Kloch A. Non-MHC immunity genes do not affect parasite load in European invasive populations of common raccoon. Sci Rep 2023; 13:15696. [PMID: 37735177 PMCID: PMC10514260 DOI: 10.1038/s41598-023-41721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Understanding the evolutionary mechanisms behind invasion success enables predicting which alien species and populations are the most predisposed to become invasive. Parasites may mediate the success of biological invasions through their effect on host fitness. The evolution of increased competitive ability (EICA) hypothesis assumes that escape from parasites during the invasion process allows introduced species to decrease investment in immunity and allocate resources to dispersal and reproduction. Consequently, the selective pressure of parasites on host species in the invasive range should be relaxed. We used the case of the raccoon Procyon lotor invasion in Europe to investigate the effect of gastrointestinal pathogen pressure on non-MHC immune genetic diversity of newly established invasive populations. Despite distinct differences in parasite prevalence between analysed populations, we detected only marginal associations between two analysed SNPs and infection intensity. We argue that the differences in parasite prevalence are better explained by detected earlier associations with specific MHC-DRB alleles. While the escape from native parasites seems to allow decreased investment in overall immunity, which relaxes selective pressure imposed on immune genes, a wide range of MHC variants maintained in the invasive range may protect from newly encountered parasites.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Maciej K Konopiński
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland
| | - Marcin Popiołek
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wrocław, Poland
| | - Marlena Zawiślak
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wrocław, Poland
| | | | - Agnieszka Kloch
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-089, Warszawa, Poland
| |
Collapse
|
4
|
Reinhardt NP, Wassermann M, Härle J, Romig T, Kurzrock L, Arnold J, Großmann E, Mackenstedt U, Straubinger RK. Helminths in Invasive Raccoons ( Procyon lotor) from Southwest Germany. Pathogens 2023; 12:919. [PMID: 37513766 PMCID: PMC10384161 DOI: 10.3390/pathogens12070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
As hosts of numerous zoonotic pathogens, the role of raccoons needs to be considered in the One Health context. Raccoons progressively expand their range as invasive alien species in Europe. This study aimed to investigate the intestinal helminth fauna of raccoons in Baden-Wuerttemberg, Germany, as no such screening had ever been conducted there. In total, we obtained 102 animals from hunters in 2019 and 2020. Intestinal helminths were retrieved using the SSCT (segmented sedimentation and counting technique) and identified morphologically and by PCR-based Sanger sequencing. Fecal samples were assessed using the ELISA PetChekTM IP assay (IDEXX, Germany) and flotation technique. The artificial digestion method was employed for analyzing muscle tissue. We detected species of four nematode genera (Baylisascaris procyonis, Toxocara canis, Capillaria spp., and Trichuris spp.), three cestode genera (Atriotaenia cf. incisa/procyonis, Taenia martis, and Mesocestoides spp.), and three trematode genera (Isthmiophora hortensis/melis, Plagiorchis muris, and Brachylaima spp.). Echinococcus spp. and Trichinella spp. were not found. The invasive behavior and synanthropic habits of raccoons may increase the infection risk with these helminths in wildlife, domestic and zoo animals, and humans by serving as a connecting link. Therefore, it is crucial to initiate additional studies assessing these risks.
Collapse
Affiliation(s)
- Nico P Reinhardt
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Marion Wassermann
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jessica Härle
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Thomas Romig
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Lina Kurzrock
- IDEXX Laboratories, Vet Med Labor GmbH, 70806 Kornwestheim, Germany
| | - Janosch Arnold
- Wildlife Research Unit, Agricultural Centre Baden-Wuerttemberg (LAZBW), 88326 Aulendorf, Germany
| | - Ernst Großmann
- Aulendorf State Veterinary Diagnostic Centre (STUA), 88326 Aulendorf, Germany
| | - Ute Mackenstedt
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Reinhard K Straubinger
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
5
|
Susceptibility of invasive Asian clams to Chaetogaster limnaei: effect of parasite density and host size on infection dynamics. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
LaFond J, Martin KR, Dahn H, Richmond JQ, Murphy RW, Rollinson N, Savage AE. Invasive Bullfrogs Maintain MHC Polymorphism Including Alleles Associated with Chytrid Fungal Infection. Integr Comp Biol 2022; 62:262-274. [PMID: 35588059 DOI: 10.1093/icb/icac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Maintenance of genetic diversity at adaptive loci may facilitate invasions by non-native species by allowing populations to adapt to novel environments, despite the loss of diversity at neutral loci that typically occurs during founder events. To evaluate this prediction, we compared genetic diversity at major histocompatibility complex (MHC) and cytochrome b (cytb) loci from 20 populations of the American bullfrog (Rana catesbeiana) across theinvasive and native ranges in North America and quantified the presence of the pathogen Batrachochytrium dendrobatidis (Bd). Compared to native populations, invasive populations had significantly higher Bd prevalence and intensity, significantly higher pairwise MHC and cytb FST, and significantly lower cytb diversity, but maintained similar levels of MHC diversity. The two most common MHC alleles (LiCA_B and Rapi_33) were associated with a significant decreased risk of Bd infection, and we detected positive selection acting on four peptide binding residues. Phylogenetic analysis suggested invasive populations likely arose from a single founding population in the American Midwest with a possible subsequent invasion in the northwest. Overall, our study suggests that the maintenance of diversity at adaptive loci may contribute to invasion success and highlights the importance of quantifying diversity at functional loci to assess the evolutionary potential of invasive populations.
Collapse
Affiliation(s)
- Jacob LaFond
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
- Department of Biology, University of Tampa, Tampa, FL 33606, USA
| | - Katherine R Martin
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | - Hollis Dahn
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Jonathan Q Richmond
- U.S. Geological Survey, 4165 Spruance Rd. Suite 200, San Diego, CA 92101, USA
| | - Robert W Murphy
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Njal Rollinson
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
7
|
Hildebrand J, Perec-Matysiak A, Popiołek M, Merta D, Myśliwy I, Buńkowska-Gawlik K. A molecular survey of spotted fever group rickettsiae in introduced raccoons (Procyon lotor). Parasit Vectors 2022; 15:162. [PMID: 35526060 PMCID: PMC9077888 DOI: 10.1186/s13071-022-05280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/08/2022] [Indexed: 01/02/2023] Open
Abstract
Background The raccoon Procyon lotor (Linnaeus, 1758) (Carnivora; Procyonidae) is one of the most important and most intensively studied invasive mammal species in Europe. Within the last 30 years the raccoon has spread at an increasing rate, resulting in the establishment of local populations in various regions of Europe. In these newly colonised areas, gaps in knowledge of the raccoon’s biology concern not only most aspects of its ecology in a broad sense, but also its pathogens and parasites. Most micropathogens recorded hitherto in the raccoons that have colonised Europe have documented epizootic and zoonotic potential. Thus, it is considered especially important to investigate the role played by the raccoon in the spread of pathogens through both animal-animal and animal-human pathways. Methods Tissue samples of raccoons from Poland and Germany were examined in this study. In total, 384 tissue samples from 220 raccoons (170 spleen samples, 82 liver biopsies, 132 ear biopsies) were examined using molecular methods. The presence of Rickettsia spp. DNA was screened through amplification of a fragment of the gltA gene. Samples that were PCR positive for gltA were tested for other rickettsial genes, ompB and a 17-kDa antigen. For taxonomic purposes, the obtained sequences were compared with corresponding sequences deposited in GenBank using the Basic Local Alignment Search Tool, and phylogenetic analyses were conducted using Bayesian inference implemented in MrBayes software. Results Rickettsia DNA was confirmed only in skin biopsies; no isolates from the spleen or liver were positive for Rickettsia DNA. With the exception of one sample from Germany, which was positive for Rickettsia helvetica DNA, all the samples positive for Rickettsia DNA derived from the Polish population of raccoons. DNA of Rickettsia spp. was detected in 25 samples, i.e. 11.4% of the tested raccoons, and R. helvetica was confirmed in 52% of the positive samples. Additionally, single cases of Rickettsia monacensis, Rickettsia raoultii, and Candidatus Rickettsia kotlanii-like were found, and in 32% of all the positive samples similarity was shown to different Rickettsia endosymbionts. Out of the samples that tested positive for gltA, amplicons of ompB and 17 kDa were successfully sequenced from 14 and three samples, respectively. Conclusions To the best of our knowledge, this study provides, for the first time, evidence of the occurrence of Rickettsia pathogens and endosymbionts in the European population of raccoons. Further, broader research on different species of wild vertebrates, and ticks, as potential vectors and hosts for tick-borne pathogens, in natural as well as in peri-urban environments, is therefore required. Graphical abstract ![]()
Collapse
Affiliation(s)
| | | | - Marcin Popiołek
- Department of Parasitology, University of Wrocław, Wrocław, Poland
| | - Dorota Merta
- Department of Ecology and Environmental Protection, Institute of Biology, Pedagogical University of Kraków, Kraków, Poland
| | - Izabella Myśliwy
- Department of Parasitology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
8
|
Buńkowska-Gawlik K, Hildebrand J, Popiołek M, Merta D, Perec-Matysiak A. Copro-Molecular Identification of Tapeworms in Introduced Invasive Carnivores in Poland. Pathogens 2022; 11:pathogens11020110. [PMID: 35215054 PMCID: PMC8876669 DOI: 10.3390/pathogens11020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The raccoon (Procyon lotor) and the raccoon dog (Nyctereutes procyonoides) were introduced to Europe and, in the past decades, their populations have increased and adapted to synanthropic environments across Europe. In view of their possible further spread in Europe, the invasive species should be examined as potential reservoirs for helminths, including tapeworms. This study aims to investigate the prevalence and diversity of tapeworms in introduced wild carnivores in Poland by identifying cestode species based on copro-DNA analysis. A total of 214 individual fecal samples from non-native invasive carnivores, i.e., raccoons and raccoon dogs, and additionally 47 samples from native carnivores, i.e., European badgers (Meles meles), were analyzed for the presence of cestodes. PCR analysis of fecal samples targeting a fragment of mitochondrial (mt) 12S rRNA gene revealed the presence of cestode DNA in 19 of 103 (18.4%) raccoons, in 13 of 111 (11.7%) raccoon dogs and in 23 of 47 (48.9%) badgers. Sequence analysis demonstrated the presence of Mesocestoides litteratus in raccoons and raccoon dogs, while Mesocestoides lineatus was identified only in two samples derived from raccoon dogs. Moreover, in this study, Atriotaenia incisa was for the first time molecularly characterized by using fragments of mt 12S rRNA gene, and the DNA of this cestode species was detected in the fecal samples of all the examined host species.
Collapse
Affiliation(s)
- Katarzyna Buńkowska-Gawlik
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (J.H.); (M.P.); (A.P.-M.)
- Correspondence:
| | - Joanna Hildebrand
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (J.H.); (M.P.); (A.P.-M.)
| | - Marcin Popiołek
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (J.H.); (M.P.); (A.P.-M.)
| | - Dorota Merta
- Department of Ecology and Environmental Protection, Institute of Biology, Pedagogical University of Kraków, 30-084 Kraków, Poland;
| | - Agnieszka Perec-Matysiak
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (J.H.); (M.P.); (A.P.-M.)
| |
Collapse
|
9
|
Kloch A, Biedrzycka A, Szewczyk M, Nowak S, Niedźwiedzka N, Kłodawska M, Hájková A, Hulva P, Jędrzejewska B, Mysłajek R. High genetic diversity of immunity genes in an expanding population of a highly mobile carnivore, the grey wolf
Canis
lupus
, in Central Europe. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Agnieszka Kloch
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | | | - Maciej Szewczyk
- Department of Vertebrate Ecology and Zoology Faculty of Biology University of Gdańsk Gdańsk Poland
| | - Sabina Nowak
- Association for Nature “Wolf” Twardorzeczka Poland
| | | | - Monika Kłodawska
- Department of Zoology Faculty of Science Charles University Prague Czech Republic
| | - Andrea Hájková
- State Nature Conservancy of the Slovak Republic Spišská Nová Ves Slovakia
| | - Pavel Hulva
- Department of Zoology Faculty of Science Charles University Prague Czech Republic
- Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | - Robert Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| |
Collapse
|
10
|
Trojan hosts: the menace of invasive vertebrates as vectors of pathogens in the Southern Cone of South America. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Digestive tract nematode infections in non-native invasive American mink with the first molecular identification of Molineus patens. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 14:48-52. [PMID: 33437614 PMCID: PMC7787951 DOI: 10.1016/j.ijppaw.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022]
Abstract
Parasites may negatively affect hosts condition, especially when infection intensity is high. Species introduced to a new habitat are often less exposed to a parasite pressure but may accumulate parasites in time. American mink (Neovison vison) introduced to Europe, Asia, and South America is an example of such invasive species. We analysed nematode prevalence and digestive tract infection intensity in 796 feral American mink from Poland. The analyses were performed separately for stomach, duodenum, small intestine and large intestine. Parasite species identification was performed using molecular methods based on highly conserved nuclear 18S rRNA gene and supplemented with morphological analysis. In total, we collected 26,852 nematodes and 98.6% of them were isolated from mink stomachs. We found positive association between infection intensity in stomach and other parts of digestive tract. Nematode prevalence was estimated at 63.8% and average infection intensity per one American mink at 52.9 (range from 1 to 1118). If the stomach results were theoretically and intentionally omitted the prevalence was 5 times lower (12.7%) and infection intensity 14 times lower (3.7; range 1-50). We identified two nematode species in digestive tracts of American mink: Aonchotheca putorii and Molineus patens. The 18S rRNA gene sequence of Molineus patens has been reported for the first time. The results showed that Aonchotheca putorii is a dominating nematode in the invasive American mink and that it inhabits stomach intensively and preferably.
Collapse
|