1
|
Dedukh D, Altmanová M, Petrosyan R, Arakelyan M, Galoyan E, Kratochvíl L. Premeiotic endoreplication is the mechanism of obligate parthenogenesis in rock lizards of the genus Darevskia. Biol Lett 2024; 20:20240182. [PMID: 39288813 PMCID: PMC11407861 DOI: 10.1098/rsbl.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Among vertebrates, obligate parthenogenesis occurs exclusively in squamate reptiles. Premeiotic endoreplication in a small subset of developing oocytes has been documented as the mechanism of production of unreduced eggs in minutely explored obligate parthenogenetic lineages, namely in teiids and geckos. The situation in the lacertid genus Darevskia has been discussed for decades. Certain observations suggested that the ploidy level is restored during egg formation through a fusion of egg and polar body nuclei in Darevskia unisexualis and D. armeniaca. In this study, we re-evaluated the fusion hypothesis by studying diplotene chromosomes in adult females of sexual species D. raddei nairensis and obligate parthenogens D. armeniaca, D. dahli and D. unisexualis. We revealed 19 bivalents in the sexual species and 38 bivalents in the diploid obligate parthenogens, which uncovers premeiotic endoreplication as the mechanism of the production of non-reduced eggs in parthenogenetic females. The earlier contradicting reports can likely be attributed to the difficulty in identifying mispairing of chromosomes in pachytene, and the fact that in parthenogenetic reptiles relying on premeiotic endoreplication only a small subset of developing oocytes undergo genome doubling and overcome the pachytene checkpoint. This study highlights co-option of premeiotic endoreplication for escape from sexual reproduction in all independent hybrid origins of obligate parthenogenesis in vertebrates studied to date.
Collapse
Affiliation(s)
- Dmitry Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov277 21, Czech Republic
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov277 21, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Viničná 7128 44, Czech Republic
| | - Ruzanna Petrosyan
- Research Institute of Biology, Yerevan State University, Yerevan0025, Armenia
| | - Marine Arakelyan
- Research Institute of Biology, Yerevan State University, Yerevan0025, Armenia
| | - Eduard Galoyan
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Viničná 7128 44, Czech Republic
| |
Collapse
|
2
|
Erdolu M, Şahin MK, Somel M, Yanchukov A. Single hybrid population but multiple parental individuals at the origin of parthenogenetic rock lizards Darevskia sapphirina and D. bendimahiensis Schmidtler, & Eiselt Darevsky (1994) endemic to the area of Lake Van in East Turkey. Mol Phylogenet Evol 2023; 189:107925. [PMID: 37709182 DOI: 10.1016/j.ympev.2023.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Among vertebrates, obligate parthenogenesis is only found in Squamata, where it always has a hybrid origin and a few lizard genera contain most of the known hybridogenous parthenogenetic taxa. Parthenogenesis thus seems to be pre-conditioned at the genus level, but it is not clear how often the encounter between two parental sexually reproducing species can result in the parthenogenetic offspring, nor whether the success of such hybridization event requires certain conditions or the specific time frame. To address this question, we studied the rock lizards of genus Darevskia, where a pair of parental species, D. valentini and D. raddei, as well as their parthenogenetic daughter species D. bendimahiensis and D. sapphirina, are found in close proximity NE of the Lake Van in East Anatolia. Using ddRAD-seq genotyping on 19 parental and 18 hybrid individuals, we found that (i) all parthenogenetic individuals from both D. bendimahiensis and D. sapphirina have a monophyletic origin tracing back to a single initial hybrid population, but their current genetic variation is geographically structured; (ii) unlike the most probable paternal ancestor, the genetically closest extant population of the maternal ancestor is not the geographically nearest one; and (iii) in the parthenogens, about 1% of loci carry multiple haplotypes, frequently differentiated by multiple substitutions. This pattern, in addition to biases in the relative frequency of haplotypes of maternal and paternal origin, does not appear compatible with a scenario of the entire parthenogenic clonal population having descended from a single pair of parental individuals. Instead, the data suggest that multiple parental individual ancestries still persist in the parthenogenetic gene pool. This supports the notion that although hybridization leading to parthenogenesis is generally rare at the level of species, it may be more common at the individual/population level once the right conditions are met.
Collapse
Affiliation(s)
- Meriç Erdolu
- Middle East Technical University, Faculty of Science, Department of Biology, Ankara, Turkey
| | | | - Mehmet Somel
- Middle East Technical University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Alexey Yanchukov
- Zonguldak Bülent Ecevit University, Faculty of Science, Department of Biology, Zonguldak, Turkey.
| |
Collapse
|
3
|
Living apart together: Morphological, spatial, and genetic differentiation of three sympatric rock lizard species (Lacertidae: Darevskia) of the Caucasus. ZOOL ANZ 2023. [DOI: 10.1016/j.jcz.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Barateli N, Tarkhnishvili D, Iankoshvili G, Kokiashvili L. Reproductive effort of unisexual and bisexual rock lizards (genus Darevskia). ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
A new cryptic species of the Darevskia parvula group from NE Anatolia (Squamata, Lacertidae). ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
7
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
8
|
Barateli N, Tarkhnishvili D, Iankoshvili G, Kokiashvili L, Dvali N, Janiashvili Z. Fine-scale analysis of habitat occupancy by Kura lizard (Darevskia portschinskii) and its daughter parthenogenetic form (Darevskia dahli). HERPETOZOA 2021. [DOI: 10.3897/herpetozoa.34.e63072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two species of rock lizards, the parthenogenetic D. dahli and the sexually reproducing D. portschinskii, coexist in a rocky outcrop in an area of ca. 1 ha, in the vicinity of Tbilisi, Georgia; the location has been well-known since the middle 1960s. The population density of the parthenogenetic lizard is five times higher than that of the sexual breeder. We studied the distribution of active lizards in space and time over three consecutive years, during the spring and autumn activity periods, to explore spatial and temporal differences between the species on a fine spatial scale. We studied the influence of temperature, humidity, and quantitative characteristics of the surface and the distance from permanent water source on the spatial distribution of D. dahli and D. portschinskii. Darevskia portschinskii was less dependent on the distance from the water source and more evenly distributed in space and time than D. dahli. Despite potential competitive interactions, the species did not avoid each other on the microhabitat scale, suggesting that the observed ecological differences are not caused by a niche shift. More individuals of the sexual breeder than individuals of the parthenogen were found in suboptimal habitats. This feature may increase the evolutionary success of D. portschinskii in a long-term perspective.
Collapse
|
9
|
Spangenberg V, Arakelyan M, Galoyan E, Martirosyan I, Bogomazova A, Martynova E, de Bello Cioffi M, Liehr T, Al-Rikabi A, Osipov F, Petrosyan V, Kolomiets O. Meiotic synapsis of homeologous chromosomes and mismatch repair protein detection in the parthenogenetic rock lizard Darevskia unisexualis. Mol Reprod Dev 2021; 88:119-127. [PMID: 33438277 DOI: 10.1002/mrd.23450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
Parthenogenetic species of Caucasian rock lizards of the genus Darevksia are important evidence for reticulate evolution and speciation by hybridization in vertebrates. Female-only lineages formed through interspecific hybridization have been discovered in many groups. Nevertheless, critical mechanisms of oogenesis and specifics of meiosis that provide long-term stability of parthenogenetic species are still unknown. Here we report cytogenetic characteristics of somatic karyotypes and meiotic prophase I nuclei in the diploid parthenogenetic species Darevskia unisexualis from the new population "Keti" in Armenia which contains an odd number of chromosomes 2n = 37, instead of the usual 2n = 38. We revealed 36 acrocentric chromosomes and a single metacentric autosomal chromosome, resulting from Robertsonian translocation. Comparative genomic hybridization revealed that chromosome fusion occurred between two chromosomes inherited from the maternal species, similar to another parthenogenetic species D. rostombekowi. To trace the chromosome behaviour in meiosis, we performed an immunocytochemical study of primary oocytes' spread nuclei and studied chromosome synapsis during meiotic prophase I in D. unisexualis based on analysis of synaptonemal complexes (SCs). We found meiotic SC-trivalent composed of one metacentric and two acrocentric chromosomes. We confirmed that the SC was assembled between homeologous chromosomes inherited from two parental species. Immunostaining of the pachytene and diplotene nuclei revealed a mismatch repair protein MLH1 loaded to all autosomal SC bivalents. Possible mechanisms of meiotic recombination between homeologous chromosomes are discussed.
Collapse
Affiliation(s)
| | - Marine Arakelyan
- Department of Zoology, Yerevan State University, Yerevan, Armenia
| | - Eduard Galoyan
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | | | - Alexandra Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena Martynova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, UniversidadeFederal de São Carlos, São Carlos, SP, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Fedor Osipov
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Varos Petrosyan
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | | |
Collapse
|