1
|
Gangwar M, Ahmad SF, Ali AB, Kumar A, Kumar A, Gaur GK, Dutt T. Identifying low-density, ancestry-informative SNP markers through whole genome resequencing in Indian, Chinese, and wild yak. BMC Genomics 2024; 25:1043. [PMID: 39501152 PMCID: PMC11539683 DOI: 10.1186/s12864-024-10924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The current investigation was undertaken to elucidate the population-stratifying and ancestry-informative markers in Indian, Chinese, and wild yak populations using whole genome resequencing (WGS) analysis while employing various selection strategies (Delta, Pairwise Wright's Fixation Index-FST, and Informativeness of Assignment) and marker densities (5-25 thousand). The study used WGS data on 105 individuals from three separate yak cohorts i.e., Indian yak (n = 29), Chinese yak (n = 61), and wild yak (n = 15). Variant calling in the GATK program with strict quality control resulted in 1,002,970 high-quality and independent (LD-pruned) SNP markers across the yak autosomes. Analysis was undertaken in toolbox for ranking and evaluation of SNPs (TRES) program wherein three different criteria i.e., Delta, Pairwise Wright's Fixation Index-FST, and Informativeness of Assignment were employed to identify population-stratifying and ancestry-informative markers across various datasets. The top-ranked 5,000 (5K), 10,000 (10K), 15,000 (15K), 20,000 (20K), and 25,000 (25K) SNPs were identified from each dataset while their composition and performance was assessed using different criteria. The average genomic breed clustering of Indian, Chinese, and wild yak cohorts with full density dataset (105 individuals with 1,002,970 markers) was 81.74%, 80.02%, and 83.62%, respectively. Informativeness of Assignment criterion with 10K density emerged as the best combination for three yak cohorts with 86.94%, 96.46%, and 98.20% clustering for Indian, Chinese, and wild yak, respectively. There was an average increase of 7.56%, 22.72%, and 30.35% in genomic breed clustering scores of Indian, Chinese, and wild yak cohorts over the estimates of the original dataset. The selected markers showed overlap multiple protein-coding genes within a 10 kb window including ADGRB3, ANK1, CACNG7, CALN1, CHCHD2, CREBBP, GLI3, KHDRBS2, and OSBPL10. This is the first report ever on elucidating low-density SNP marker sets with population-stratifying and ancestry-informative properties in three yak groups using WGS data. The results gain significance for application of genomic selection using cost-effective low-density SNP panels in global yak species.
Collapse
Affiliation(s)
- Munish Gangwar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | | | - Abdul Basit Ali
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Gyanendra Kumar Gaur
- Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| |
Collapse
|
2
|
Kumar A, Dige M, Niranjan SK, Ahlawat S, Arora R, Kour A, Vijh RK. Whole genome resequencing revealed genomic variants and functional pathways related to adaptation in Indian yak populations. Anim Biotechnol 2024; 35:2282723. [PMID: 38006247 DOI: 10.1080/10495398.2023.2282723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
The present study aims to identify genomic variants through a whole genome sequencing (WGS) approach and uncover biological pathways associated with adaptation and fitness in Indian yak populations. A total of 30 samples (10 from each population) were included from Arunachali, Himachali and Ladakhi yak populations. WGS analysis revealed a total of 32171644, 27260825, and 32632460 SNPs and 4865254, 4429941, and 4847513 Indels in the Arunachali, Himachali, and Ladakhi yaks, respectively. Genes such as RYR2, SYNE2, BOLA, HF1, and the novel transcript ENSBGRG00000011079 were found to have the maximum number of high impact variants in all three yak populations, and might play a major role in local adaptation. Functional enrichment analysis of genes harboring high impact SNPs revealed overrepresented pathways related to response to stress, immune system regulation, and high-altitude adaptation. This study provides comprehensive information about genomic variants and their annotation in Indian yak populations, thus would serve as a data resource for researchers working on the yaks. Furthermore, it could be well exploited for better yak conservation strategies by estimating population genetics parameters viz., effective population size, inbreeding, and observed and expected heterozygosity.
Collapse
Affiliation(s)
- Amod Kumar
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Mahesh Dige
- Animal Genetic Resources Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Saket Kumar Niranjan
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Sonika Ahlawat
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Reena Arora
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Aneet Kour
- ICAR-National Research Centre on Yak, Dirang, India
| | - Ramesh Kumar Vijh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| |
Collapse
|
3
|
Li K, Zhang G, Sun M, Xia M, Shi R, Jin Y, Zhang X. Comparative Analysis of the Potential Adaptability of Tibetan Dzo and Yellow Cattle Based on Blood Indices, Metabolites, and Fecal Microbiota. Animals (Basel) 2024; 14:2728. [PMID: 39335317 PMCID: PMC11429423 DOI: 10.3390/ani14182728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to investigate the differences in environmental adaptability between dzo and Tibetan yellow cattle by using corresponding assay kits to analyze blood indices, utilizing mass spectrometry for blood metabolite profiling, and performing 16S rDNA sequencing of fecal microbiota. Forty female cattle were randomly divided into a dzomo (female dzo) group (MG, n = 20) and a Tibetan-yellow-cattle group (HG, n = 20). After 150 days of uniform feeding, six cattle from each group were randomly picked for jugular blood sampling and collection of fecal microorganisms. The results showed that the serum albumin, creatinine, total protein, superoxide dismutase, IgG, and IgM concentrations in the MG group were higher (p < 0.05), whereas the serum triglyceride concentration was lower, compared to the HG group (p < 0.05). The higher level of phospholipids containing long-chain polyunsaturated fatty acids (PUFAs) (PC (18:5e/2:0), PC (20:5e/2:0), LPC 18:2, LPC 20:5) observed in the serum of the dzo suggests that they have an advantage in adapting to the challenging conditions of the plateau environment. The fecal microbiota analysis showed that Akkermansia was significantly enriched in the MG group; this might be the key bacterial genus leading to the strong adaptability of dzo. Our findings indicated the dzo's superior adaptation to the Tibetan Plateau's harsh environment.
Collapse
Affiliation(s)
- Kenan Li
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Guorui Zhang
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- College of Prataculture, Qingdao Agricultural University, Qingdao 266200, China
| | - Mengjiao Sun
- College of Prataculture, Qingdao Agricultural University, Qingdao 266200, China
| | - Maolin Xia
- Tibet Autonomous Region Animal Husbandry Station, Lhasa 850000, China
| | - Ruizhi Shi
- Institute of Practaculture Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Yanmei Jin
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Zhang
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Institute of Practaculture Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| |
Collapse
|
4
|
Zheng Q, Wu X, Ma X, Zhou X, Wang T, Ma C, Zhang M, Chu M, Guo X, Liang C, Bao P, Yan P. Genetic structure analysis of yak breeds and their response to adaptive evolution. Genomics 2024; 116:110933. [PMID: 39218165 DOI: 10.1016/j.ygeno.2024.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Yaks are crucial genetic resources in the Tibetan Plateau and surrounding regions. Throughout the long process of domestication, natural and artificial selection pressures have enabled yaks to demonstrate adaptive characteristics to the environment in terms of physiological structure and genetic molecules, but no systematic cell analysis has been carried out on this phenomenon of yaks. Here, the population structure and genetic diversity of yak were studied by WGRS, and the genes related to yak adaptability were excavated. Combined with scRNA-seq method, the transcription map of yak lung tissue and skin tissue was constructed, which provided a new comprehensive insight into yak adaptability. The analysis of yak population structure showed that there was obvious genetic differentiation between TZ _ yak and other seven yak populations, while there was significant genetic exchange between PL _ yak and SB _ yak at high altitude. WGRS and scRNA-seq analysis revealed that the gene HIF1A related to high altitude adaptation was expressed in various cell types, while EPAS1 was predominantly expressed in epithelial and endothelial cells of yak lung tissue. Endothelial cells play a critical role in hypoxia-adapted VEGF signaling, which correlates closely with the high expression of KDR and VEGFA genes in endothelial cells and monocytes. Furthermore, in the selection signal of High _ yak vs Low _ yak, 19.8 % of the genes overlapped with the genes screened by skin scRNA-seq, including genes related to coat color such as RORA, BNC2, and KIT. Notably, BNC2 is a gene associated with melanin deposition and shows high expression levels in HS cells. Additionally, GRN in melanocytes and SORT1 in IRS play an important role in cell communication between melanocytes and IRS. These findings offer new insights into the natural polymorphism of yaks and provide a valuable reference for future research on high-altitude mammals, and potentially even human genetics.
Collapse
Affiliation(s)
- Qingbo Zheng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuelan Zhou
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tong Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chaofan Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Minghao Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
5
|
Zhang S, Li J, Zhao Y, Tang Y, Li H, Song T, An T, Guan J, Li X, Zhang M. Whole-genome resequencing reveals genetic diversity, differentiation, and selection signatures of yak breeds/populations in southwestern China. Front Genet 2024; 15:1382128. [PMID: 38873117 PMCID: PMC11169580 DOI: 10.3389/fgene.2024.1382128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
The Sichuan-Yunnan region is the main production area of yaks in southwestern China, with rich genetic resources of Yaks. Nevertheless, there have been limited study on the genetic characteristics of the entire yak populations in Tibet and southwestern China. In this study, we performed whole-genome resequencing to identify genetic variation information in a total of 198 individuals from six yak breeds (populations) in Sichuan (Muli yak, Jinchuan yak, Changtai yak, Maiwa yak), Yunnan (Zhongdian yak), and Tibet (Tibetan yak). The aim was to investigate the whole-genome genetic diversity, population genetic structure, and genome selection signatures. We observed that all six populations exhibit abundant genetic diversity. Except for Tibetan yaks, which showed low nucleotide diversity (0.00104), the remaining yak populations generally displayed high nucleotide diversity (0.00129-0.00153). Population genetic structure analysis revealed that, among the six yak populations, Muli yak exhibited greater differentiation from other yak populations and formed a distinct cluster independently. The Maiwa yak population displayed a complex genetic structure and exhibited gene exchange with Jinchuan and Changtai yaks. Positive selection signals were detected in candidate genes associated with growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), lactation (SNX13 and CPM), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2) using the integrated Pi and F ST methods. This study provides significant insights into understanding the whole-genome genetic characteristics of yak populations in Tibet and southwestern China.
Collapse
Affiliation(s)
- Shilin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanhua Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yujun Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Tianwu An
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiaowei Li
- Breeding Fram of Longri, Agriculture and Rural Bureau of Aba Prefecture in Sichuan, Hongyuan, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Lan D, Fu W, Ji W, Mipam TD, Xiong X, Ying S, Xiong Y, Sheng P, Ni J, Bai L, Shan T, Kong X, Li J. Pangenome and multi-tissue gene atlas provide new insights into the domestication and highland adaptation of yaks. J Anim Sci Biotechnol 2024; 15:64. [PMID: 38706000 PMCID: PMC11071219 DOI: 10.1186/s40104-024-01027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND The genetic diversity of yak, a key domestic animal on the Qinghai-Tibetan Plateau (QTP), is a vital resource for domestication and breeding efforts. This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes. RESULTS We discovered 290 Mb of nonreference sequences and 504 new genes. Our pangenome-wide presence and absence variation (PAV) analysis revealed 5,120 PAV-related genes, highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations. Principal component analysis (PCA) based on binary gene PAV data classified yaks into three new groups: wild, domestic, and Jinchuan. Moreover, we proposed a 'two-haplotype genomic hybridization model' for understanding the hybridization patterns among breeds by integrating gene frequency, heterozygosity, and gene PAV data. A gene PAV-GWAS identified a novel gene (BosGru3G009179) that may be associated with the multirib trait in Jinchuan yaks. Furthermore, an integrated transcriptome and pangenome analysis highlighted the significant differences in the expression of core genes and the mutational burden of differentially expressed genes between yaks from high and low altitudes. Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed mRNAs and lncRNAs (between high- and low-altitude regions), especially in the heart and lungs, when comparing high- and low-altitude adaptations. CONCLUSIONS The yak pangenome offers a comprehensive resource and new insights for functional genomic studies, supporting future biological research and breeding strategies.
Collapse
Affiliation(s)
- Daoliang Lan
- Ministry of Education of Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China.
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
| | - Wei Fu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Wenhui Ji
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Tserang-Donko Mipam
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Xianrong Xiong
- Ministry of Education of Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Shi Ying
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Ministry of Education of Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Peng Sheng
- Jiguang Gene Biotechnology Co., Ltd., Nanjing, China
| | - Jiangping Ni
- Jiguang Gene Biotechnology Co., Ltd., Nanjing, China
| | - Lijun Bai
- Chengdu Genepre Technology Co., Ltd., Chengdu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | | | - Jian Li
- Ministry of Education of Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
7
|
Guo S, Yu T, Wang X, Zhao S, Zhao E, Ainierlitu, Ba T, Gan M, Dong C, Naerlima, Yin L, Ke X, Dana D, Guo X. Whole-genome resequencing reveals the uniqueness of Subei yak. J Anim Sci 2024; 102:skae152. [PMID: 38832496 PMCID: PMC11217902 DOI: 10.1093/jas/skae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024] Open
Abstract
Subei yak is an essential local yak in the Gansu Province, which genetic resource has recently been discovered. It is a meat-milk dual-purpose variety with high fecundity and relatively stable population genetic structure. However, its population genetic structure and genetic diversity are yet to be reported. Therefore, this study aimed to identify molecular markers of Subei yak genome by whole-genome resequencing, and to analyze the population structure and genetic diversity of Subei yak. This study screened 12,079,496 single nucleotide polymorphism (SNP) molecular markers in the 20 Subei yaks genome using whole-genome resequencing technology. Of these SNPs, 32.09% were located in the intronic region of the genome. Principal component analysis, phylogenetic analysis, and population structure analysis revealed that the Subei yak belonged to an independent group in the domestic yak population. A selective clearance analysis was carried out on Subei yak and other domestic yaks, and the genes under positive selection were annotated. The functional enrichment analysis showed that Subei yak possessed prominent selection characteristics in terms of external environment perception, hypoxia adaptation, and muscle development. Furthermore, Subei yak showed excellent muscle fat deposition and meat quality traits. Thus, this study will serve as a reference for discovering population structure, genetic evolution, and other unique traits of Subei yak and for expanding the genetic variation catalog of yaks.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Tianjun Yu
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Shuangquan Zhao
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Erjun Zhao
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Ainierlitu
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Teer Ba
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Manyu Gan
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Cunmei Dong
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Naerlima
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Lian Yin
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xikou Ke
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Dawuti Dana
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| |
Collapse
|
8
|
Chen N, Zhang Z, Hou J, Chen J, Gao X, Tang L, Wangdue S, Zhang X, Sinding MHS, Liu X, Han J, Lü H, Lei C, Marshall F, Liu X. Evidence for early domestic yak, taurine cattle, and their hybrids on the Tibetan Plateau. SCIENCE ADVANCES 2023; 9:eadi6857. [PMID: 38091398 PMCID: PMC10848728 DOI: 10.1126/sciadv.adi6857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Domestic yak, cattle, and their hybrids are fundamental to herder survival at high altitudes on the Tibetan Plateau. However, little is known about their history. Bos remains are uncommon in this region, and ancient domestic yak have not been securely identified. To identify Bos taxa and investigate their initial management, we conducted zooarchaeological analyses of 193 Bos specimens and sequenced five nuclear genomes from recently excavated assemblages at Bangga. Morphological data indicated that more cattle than yak were present. Ancient mitochondrial DNA and nuclear genome sequences identified taurine cattle and provided evidence for domestic yak and yak-cattle hybridization ~2500 years ago. Reliance on diverse Bos species and their hybrid has increased cattle adaptation and herder resilience to plateau conditions. Ancient cattle and yak at Bangga were closely related to contemporary livestock, indicating early herder legacies and the continuity of cattle and yak husbandry on the Tibetan Plateau.
Collapse
Affiliation(s)
- Ningbo Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Zhengwei Zhang
- Center for Archaeological Science, Sichuan University, Chengdu 610065, P. R. China
| | - Jiawen Hou
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Jialei Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Xuan Gao
- Center for Archaeological Science, Sichuan University, Chengdu 610065, P. R. China
| | - Li Tang
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena 07745, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena 07745, Germany
| | - Shargan Wangdue
- Institute for Conservation and Research of Cultural Relics of Tibet Autonomous Region, Lhasa 850000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming 650201, P. R. China
| | - Mikkel-Holger S. Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - Xuexue Liu
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse 31000, France
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya 572024, P. R. China
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
| | - Hongliang Lü
- Center for Archaeological Science, Sichuan University, Chengdu 610065, P. R. China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Fiona Marshall
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xinyi Liu
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
9
|
Li B, Yang J, Liu Y, Jiang M. Genome Variation Map of Domestic Qinghai-Tibet Plateau Yaks by SLAF-Seq Reveals Genetic Footprint during Artificial Selection. Animals (Basel) 2023; 13:2963. [PMID: 37760363 PMCID: PMC10525144 DOI: 10.3390/ani13182963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The yak (Bos grunniens) was domesticated in the high-altitude QTP. Research about their genetic diversity and population structure is limited. In this study, we resequenced the genome of 494 domestic yaks using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). The survey was conducted on six populations sampled from isolated locations in China in order to analyze their structure and genetic diversity. These six domestic populations were clearly grouped into two independent clusters, with Jinchuan, Changtai, and Jiulong showing a tight genetic relationship with the wild yak. Nerve development pathways were enriched with GO enrichment analysis of 334 domesticated genes. Major genomic regions associated with the differentiation of domestic yaks were detected. These findings provide preliminary information on the yak genome variability, useful to understand the genomic characteristics of different populations in QTP.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China; (B.L.)
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Yili Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China; (B.L.)
| | - Mingfeng Jiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China; (B.L.)
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
10
|
Liu X, Liu W, Lenstra JA, Zheng Z, Wu X, Yang J, Li B, Yang Y, Qiu Q, Liu H, Li K, Liang C, Guo X, Ma X, Abbott RJ, Kang M, Yan P, Liu J. Evolutionary origin of genomic structural variations in domestic yaks. Nat Commun 2023; 14:5617. [PMID: 37726270 PMCID: PMC10509194 DOI: 10.1038/s41467-023-41220-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Yak has been subject to natural selection, human domestication and interspecific introgression during its evolution. However, genetic variants favored by each of these processes have not been distinguished previously. We constructed a graph-genome for 47 genomes of 7 cross-fertile bovine species. This allowed detection of 57,432 high-resolution structural variants (SVs) within and across the species, which were genotyped in 386 individuals. We distinguished the evolutionary origins of diverse SVs in domestic yaks by phylogenetic analyses. We further identified 334 genes overlapping with SVs in domestic yaks that bore potential signals of selection from wild yaks, plus an additional 686 genes introgressed from cattle. Nearly 90% of the domestic yaks were introgressed by cattle. Introgression of an SV spanning the KIT gene triggered the breeding of white domestic yaks. We validated a significant association of the selected stratified SVs with gene expression, which contributes to phenotypic variations. Our results highlight that SVs of different origins contribute to the phenotypic diversity of domestic yaks.
Collapse
Affiliation(s)
- Xinfeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China
| | - Wenyu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3508 TD, The Netherlands
| | - Zeyu Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jiao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Qiu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, KY16 9AJ, UK
| | - Minghui Kang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
| |
Collapse
|
11
|
Liu X, Wang M, Qin J, Liu Y, Chai Z, Peng W, Kangzhu Y, Zhong J, Wang J. Identification of Candidate Genes Associated with Yak Body Size Using a Genome-Wide Association Study and Multiple Populations of Information. Animals (Basel) 2023; 13:ani13091470. [PMID: 37174506 PMCID: PMC10177615 DOI: 10.3390/ani13091470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Yaks have evolved several breeds or genetic resources owing to their geographical and ecological environment, and investigating the genetic construction of body size among breeds is key for breeding. Here, a genome-wide association study (GWAS) was performed for five body size traits in 31 yak breeds and genetic resources. The information from clustering individuals according to their habitats was used for kinship grouping in the compressed mixed linear model (CMLM). We named this approach the pCMLM method. A total of 3,584,464 high-quality single nucleotide polymorphisms (SNPs) were obtained, and six markers were found to be significantly associated with height by pCMLM. Four candidate genes, including FXYD6, SOHLH2, ADGRB2, and OSBPL6, were identified. Our results show that when CMLM cannot identify optimal clustering groups, pCMLM can provide sufficient associated results based on population information. Moreover, this study provides basic information on the gene localization of quantitative traits of body size among yak breeds.
Collapse
Affiliation(s)
- Xinrui Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jie Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yaxin Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Science, Qinghai University, Xining 810016, China
| | - Yixi Kangzhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
12
|
Yan C, Song MH, Jiang D, Ren JL, Lv Y, Chang J, Huang S, Zaher H, Li JT. Genomic evidence reveals intraspecific divergence of the hot-spring snake (Thermophis baileyi), an endangered reptile endemic to the Qinghai-Tibet plateau. Mol Ecol 2023; 32:1335-1350. [PMID: 36073004 DOI: 10.1111/mec.16687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Understanding how and why species evolve requires knowledge on intraspecific divergence. In this study, we examined intraspecific divergence in the endangered hot-spring snake (Thermophis baileyi), an endemic species on the Qinghai-Tibet Plateau (QTP). Whole-genome resequencing of 58 sampled individuals from 15 populations was performed to identify the drivers of intraspecific divergence and explore the potential roles of genes under selection. Our analyses resolved three groups, with major intergroup admixture occurring in regions of group contact. Divergence probably occurred during the Pleistocene as a result of glacial climatic oscillations, Yadong-Gulu rift, and geothermal fields differentiation, while complex gene flow between group pairs reflected a unique intraspecific divergence pattern on the QTP. Intergroup fixed loci involved selected genes functionally related to divergence and local adaptation, especially adaptation to hot spring microenvironments in different geothermal fields. Analysis of structural variants, genetic diversity, inbreeding, and genetic load indicated that the hot-spring snake population has declined to a low level with decreased diversity, which is important for the conservation management of this endangered species. Our study demonstrated that the integration of demographic history, gene flow, genomic divergence genes, and other information is necessary to distinguish the evolutionary processes involved in speciation.
Collapse
Affiliation(s)
- Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Meng-Huan Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Song Huang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hussam Zaher
- Museu de Zoologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Mangkang Biodiversity and Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| |
Collapse
|
13
|
Li G, Luo J, Wang F, Xu D, Ahmed Z, Chen S, Li R, Ma Z. Whole-genome resequencing reveals genetic diversity, differentiation, and selection signatures of yak breeds/populations in Qinghai, China. Front Genet 2023; 13:1034094. [PMID: 36704337 PMCID: PMC9871260 DOI: 10.3389/fgene.2022.1034094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 01/12/2023] Open
Abstract
The Qinghai Province of China is located in the northeast region of the Qinghai-Tibetan Plateau (QTP) and carries abundant yak genetic resources. Previous investigations of archaeological records, mitochondrial DNA, and Y chromosomal markers have suggested that Qinghai was the major center of yak domestication. In the present study, we examined the genomic diversity, differentiation, and selection signatures of 113 Qinghai yak, including 42 newly sequenced Qinghai yak and 71 publicly available individuals, from nine yak breeds/populations (wild, Datong, Huanhu, Xueduo, Yushu, Qilian, Geermu, Tongde, and Huzhu white) using high-depth whole-genome resequencing data. We observed that most of Qinghai yak breeds/populations have abundant genomic diversity based on four genomic parameters (nucleotide diversity, inbreeding coefficients, linkage disequilibrium decay, and runs of homozygosity). Population genetic structure analysis showed that Qinghai yak have two lineages with two ancestral origins and that nine yak breeds/populations are clustered into three distinct groups of wild yak, Geermu yak, and seven other domestic yak breeds/populations. F ST values showed moderate genetic differentiation between wild yak, Geermu yak, and the other Qinghai yak breeds/populations. Positive selection signals were detected in candidate genes associated with disease resistance (CDK2AP2, PLEC, and CYB5B), heat stress (NFAT5, HSF1, and SLC25A48), pigmentation (MCAM, RNF26, and BOP1), vision (C1QTNF5, MFRP, and TAX1BP3), milk quality (OPLAH and GRINA), neurodevelopment (SUSD4, INSYN1, and PPP1CA), and meat quality (ZRANB1), using the integrated PI, composite likelihood ratio (CLR), and F ST methods. These findings offer new insights into the genetic mechanisms underlying target traits in yak and provide important information for understanding the genomic characteristics of yak breeds/populations in Qinghai.
Collapse
Affiliation(s)
- Guangzhen Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Jing Luo
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Fuwen Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Donghui Xu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Shengmei Chen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Ruizhe Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Zhijie Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China,*Correspondence: Zhijie Ma,
| |
Collapse
|
14
|
Wu ZL, Wei R, Tan X, Yang D, Liu D, Zhang J, Wang W. Characterization of gut microbiota dysbiosis of diarrheic adult yaks through 16S rRNA gene sequences. Front Vet Sci 2022; 9:946906. [PMID: 36157193 PMCID: PMC9500532 DOI: 10.3389/fvets.2022.946906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022] Open
Abstract
The ruminant gut microbial community has a strong impact on host health and can be altered during diarrhea disease. As an indigenous breed of the Tibetan Plateau, domestic yak displays a high diarrhea rate, but little research has been done to characterize the bacterial microbial structure in diarrheic yaks. In the present study, a total of 30 adult yaks, assigned to diarrhea (case, N = 15) and healthy (control, N = 15) groups, were subjected to gut microbiota profiling using the V3–V4 regions of the 16S rRNA gene. The results showed that the gut microbiome of the case group had a significant decrease in alpha diversity. Additionally, differences in beta diversity were consistently observed for the case and control groups, indicating that the microbial community structure was changed due to diarrhea. Bacterial taxonomic analysis indicated that the Bacteroidetes, Firmicutes, and Proteobacteria were the three most dominant phyla in both groups but different in relative abundance. Especially, the proportion of Proteobacteria in the case group was increased as compared with the control group, whereas Spirochaetota and Firmicutes were significantly decreased. At the genus level, the relative abundance of Escherichia-Shigella and Prevotellaceae_UCG-003 were dramatically increased, whereas that of Treponema, p-2534-18B5_gut_group, and Prevotellaceae_UCG-001 were observably decreased with the effect of diarrhea. Furthermore, based on our linear discriminant analysis (LDA) effect size (LEfSe) results, Alistipes, Solibacillus, Bacteroides, Prevotellaceae_UCG_003, and Bacillus were significantly enriched in the case group, while the other five genera, such as Alloprevotella, RF39, Muribaculaceae, Treponema, and Enterococcus, were the most preponderant in the control group. In conclusion, alterations in gut microbiota community composition were associated with yak diarrhea, differentially represented bacterial species enriched in case animals providing a theoretical basis for establishing a prevention and treatment system for yak diarrhea.
Collapse
Affiliation(s)
- Zhou-Lin Wu
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ranlei Wei
- National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Tan
- National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding, China
| | - Dayu Liu
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Wei Wang
| |
Collapse
|
15
|
Liang J, Zhu Z, Lan R, Meng J, Vrancken B, Lu S, Jin D, Yang J, Wang J, Qin T, Pu J, Zhang L, Dong K, Xu M, Tian H, Jiang T, Xu J. Evolutionary and genomic insights into the long-term colonization of Shigella flexneri in animals. Emerg Microbes Infect 2022; 11:2069-2079. [PMID: 35930371 PMCID: PMC9448383 DOI: 10.1080/22221751.2022.2109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enteroinvasive bacterium Shigella flexneri is known as a highly host-adapted human pathogen. There had been no known other reservoirs reported until recently. Here 34 isolates obtained from animals (yaks, dairy cows and beef cattle) from 2016-2017 and 268 human S. flexneri isolates from China were sequenced to determine the relationships between animal and human isolates and infer the evolutionary history of animal-associated S. flexneri. The 18 animal isolates (15 yak and 3 beef cattle isolates) in PG1 were separated into 4 lineages, and the 16 animal isolates (1 yak, 5 beef cattle and 10 dairy cow isolates) in PG3 were clustered in 8 lineages. The most recent human isolates from China belonged to PG3 whereas Chinese isolates from the 1950s-1960s belonged to PG1. PG1 S. flexneri may has been transmitted to the yaks during PG1 circulation in the human population in China and has remained in the yak population since, while PG3 S. flexneri in animals were likely recent transmissions from the human population. Increased stability of the large virulence plasmid and acquisition of abundant antimicrobial resistance determinants may have enabled PG3 to expand globally and replaced PG1 in China. Our study confirms that animals may act as a reservoir for S. flexneri. Genomic analysis revealed the evolutionary history of multiple S. flexneri lineages in animals and humans in China. However, further studies are required to determine the public health threat of S. flexneri from animals.
Collapse
Affiliation(s)
- Junrong Liang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jing Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Bram Vrancken
- Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, KU Leuven, Leuven, Belgium
| | - Shan Lu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianping Wang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tian Qin
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Pu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Kui Dong
- Shanxi Eye Hospital, Taiyuan, China
| | - Mingchao Xu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Taijiao Jiang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Guangzhou Laboratory, Guangzhou, China
| | - Jianguo Xu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Research Institute of Public Heath, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Genome-Wide Selective Analysis of Boer Goat to Investigate the Dynamic Heredity Evolution under Different Stages. Animals (Basel) 2022; 12:ani12111356. [PMID: 35681821 PMCID: PMC9204547 DOI: 10.3390/ani12111356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Boer goats, as kemp in meat-type goats, are selected and bred from African indigenous goats under a long period of artificial selection. Their advantages in multiple economic traits, particularly their plump growth, have attracted worldwide attention. The current study displayed the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian Boer (AS) to investigate the hereditary basis of artificial selection in different stages. Four methods (principal component analysis, nucleotide diversity, linkage disequilibrium decay, and neighbor-joining tree) implied the genomic diversity changes with different artificial selection intensities in Boer goats. In addition, the θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection in Boer goats. Consequently, 339 (BH vs. AF) and 295 (AS vs. BH) candidate genes were obtained from SNP data. Especially, 10 genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were identified. Functional annotation analysis revealed that these genes are potentially responsible for reproduction, metabolism, growth, and development. This study used genome-wide sequencing data to identify inheritance by artificial selection. The results of the current study are valuable for future molecular-assisted breeding and genetic improvement of goats.
Collapse
|
17
|
Duarte INH, Bessa AFDO, Rola LD, Genuíno MVH, Rocha IM, Marcondes CR, Regitano LCDA, Munari DP, Berry DP, Buzanskas ME. Cross-population selection signatures in Canchim composite beef cattle. PLoS One 2022; 17:e0264279. [PMID: 35363779 PMCID: PMC8975110 DOI: 10.1371/journal.pone.0264279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.
Collapse
Affiliation(s)
| | | | - Luciana Diniz Rola
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Iasmin Marques Rocha
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | | | - Danísio Prado Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Donagh Pearse Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co. Cork., Ireland
| | - Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| |
Collapse
|
18
|
Kour A, Niranjan SK, Malayaperumal M, Surati U, Pukhrambam M, Sivalingam J, Kumar A, Sarkar M. Genomic Diversity Profiling and Breed-Specific Evolutionary Signatures of Selection in Arunachali Yak. Genes (Basel) 2022; 13:254. [PMID: 35205299 PMCID: PMC8872319 DOI: 10.3390/genes13020254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Arunachali yak, the only registered yak breed of India, is crucial for the economic sustainability of pastoralist Monpa community. This study intended to determine the genomic diversity and to identify signatures of selection in the breed. Previously available double digest restriction-site associated DNA (ddRAD) sequencing data of Arunachali yak animals was processed and 99,919 SNPs were considered for further analysis. The genomic diversity profiled based on nucleotide diversity, π (π = 0.041 in 200 bp windows), effective population size, Ne (Ne = 83) and Runs of homozygosity (ROH) (predominance of shorter length ROHs) was found to be optimum. Subsequently, 207 regions were identified to be under selective sweeps through de-correlated composite of multiple signals (DCMS) statistic which combined three individual test statistics viz. π, Tajima's D and |iHS| in non-overlapping 100 kb windows. Mapping of these regions revealed 611 protein-coding genes including KIT, KITLG, CDH12, FGG, FGA, FGB, PDGFRA, PEAR1, STXBP3, olfactory receptor genes (OR5K3, OR5H6 and OR1E1) and taste receptor genes (TAS2R1, TAS2R3 and TAS2R4). Functional annotation highlighted that biological processes like platelet aggregation and sensory perception were the most overrepresented and the associated regions could be considered as breed-specific signatures of selection in Arunachali yak. These findings point towards evolutionary role of natural selection in environmental adaptation of Arunachali yak population and provide useful insights for pursuing genome-wide association studies in future.
Collapse
Affiliation(s)
- Aneet Kour
- ICAR-National Research Centre on Yak, Dirang 790101, Arunachal Pradesh, India; (M.P.); (M.S.)
| | - Saket Kumar Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India; (S.K.N.); (A.K.)
| | - Mohan Malayaperumal
- ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India; (M.M.); (U.S.)
| | - Utsav Surati
- ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India; (M.M.); (U.S.)
| | - Martina Pukhrambam
- ICAR-National Research Centre on Yak, Dirang 790101, Arunachal Pradesh, India; (M.P.); (M.S.)
| | | | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India; (S.K.N.); (A.K.)
| | - Mihir Sarkar
- ICAR-National Research Centre on Yak, Dirang 790101, Arunachal Pradesh, India; (M.P.); (M.S.)
| |
Collapse
|
19
|
Adavoudi R, Pilot M. Consequences of Hybridization in Mammals: A Systematic Review. Genes (Basel) 2021; 13:50. [PMID: 35052393 PMCID: PMC8774782 DOI: 10.3390/genes13010050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Hybridization, defined as breeding between two distinct taxonomic units, can have an important effect on the evolutionary patterns in cross-breeding taxa. Although interspecific hybridization has frequently been considered as a maladaptive process, which threatens species genetic integrity and survival via genetic swamping and outbreeding depression, in some cases hybridization can introduce novel adaptive variation and increase fitness. Most studies to date focused on documenting hybridization events and analyzing their causes, while relatively little is known about the consequences of hybridization and its impact on the parental species. To address this knowledge gap, we conducted a systematic review of studies on hybridization in mammals published in 2010-2021, and identified 115 relevant studies. Of 13 categories of hybridization consequences described in these studies, the most common negative consequence (21% of studies) was genetic swamping and the most common positive consequence (8%) was the gain of novel adaptive variation. The total frequency of negative consequences (49%) was higher than positive (13%) and neutral (38%) consequences. These frequencies are biased by the detection possibilities of microsatellite loci, the most common genetic markers used in the papers assessed. As negative outcomes are typically easier to demonstrate than positive ones (e.g., extinction vs hybrid speciation), they may be over-represented in publications. Transition towards genomic studies involving both neutral and adaptive variation will provide a better insight into the real impacts of hybridization.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Nadwiślańska 108, 80-680 Gdańsk, Poland;
| |
Collapse
|
20
|
Ma ZJ, Li GZ, Chen SM, Han JL, Hanif Q. Rich maternal and paternal genetic diversity and divergent lineage composition in wild yak ( Bos mutus). Anim Biotechnol 2021; 33:1318-1321. [PMID: 34009087 DOI: 10.1080/10495398.2021.1895187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wild yak (Bos mutus) is a vulnerable bovine species on the Qinghai-Tibetan Plateau. So far, most studies on the molecular genetic diversity of wild yak have focused on autosomal and mtDNA variations based on the small number of samples. In this study, we analyzed 84 D-loop and 24 whole mitogenome sequences of wild yak to further comprehensively explore its maternal genetic diversity and lineage composition. Meanwhile, using six yak Y-specific polymorphic markers (i.e., SRY4, USP9Y, UTY19, AMELY3, OFD1Y10 and INRA189), we assessed the paternal genetic diversity and lineage composition based on eight wild yak. Our results showed that wild yak exhibited abundant maternal genetic diversity with haplotype diversities of 0.9621 ± 0.0078 and 0.9928 ± 0.0144 in the D-loop and whole mitogenome sequences, respectively. Maternal phylogenetic analysis of wild yak uncovered three defined lineages (mt-I, mt-II and mt-III). Similarly, profuse paternal genetic diversity was observed in wild yak with Y-haplotype diversity at 0.8214 ± 0.1007. Two Y-haplogroups (Y1 and Y2) and four Y-haplotypes (yH1-yH4) were identified in paternal phylogenetic analysis, indicating wild yak to be of two paternal lineages. The present study of genetic diversity and lineage composition of wild yak would provide useful information for the genetic resource conservation and utilization of this vulnerable wild species.
Collapse
Affiliation(s)
- Zhi-Jie Ma
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Guang-Zhen Li
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Sheng-Mei Chen
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Quratulain Hanif
- Computational Biology Laboratory, Department of Agricultural Biotechnology, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| |
Collapse
|
21
|
Qi GA, Zheng YT, Lin F, Huang X, Duan LW, You Y, Liu H, Wang Y, Xu HM, Chen GB. EigenGWAS: An online visualizing and interactive application for detecting genomic signatures of natural selection. Mol Ecol Resour 2021; 21:1732-1744. [PMID: 33665976 DOI: 10.1111/1755-0998.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
Detecting genetic regions under selection in structured populations is of great importance in ecology, evolutionary biology and breeding programmes. We recently proposed EigenGWAS, an unsupervised genomic scanning approach that is similar to F ST but does not require grouping information of the population, for detection of genomic regions under selection. The original EigenGWAS is designed for the random mating population, and here we extend its use to inbred populations. We also show in theory and simulation that eigenvalues, the previous corrector for genetic drift in EigenGWAS, are overcorrected for genetic drift, and the genomic inflation factor is a better option for this adjustment. Applying the updated algorithm, we introduce the new EigenGWAS online platform with highly efficient core implementation. Our online computational tool accepts plink data in a standard binary format that can be easily converted from the original sequencing data, provides the users with graphical results via the R-Shiny user-friendly interface. We applied the proposed method and tool to various data sets, and biologically interpretable results as well as caveats that may lead to an unsatisfactory outcome are given. The EigenGWAS online platform is available at www.eigengwas.com, and can be localized and scaled up via R (recommended) or docker.
Collapse
Affiliation(s)
- Guo-An Qi
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuan-Ting Zheng
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Feng Lin
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Huang
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Li-Wen Duan
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue You
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hailan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hai-Ming Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guo-Bo Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
22
|
Ma ZJ, Li GZ, Chen SM, Han JL, Hanif Q. Rich maternal and paternal genetic diversity and divergent lineage composition in wild yak ( Bos mutus). Anim Biotechnol 2021; 33:1382-1386. [PMID: 33612083 DOI: 10.1080/10495398.2021.1884567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Wild yak (Bos mutus) is a vulnerable bovine species on the Qinghai-Tibetan Plateau (QTP). So far, most studies on molecular genetic diversity of wild yak have focused on autosomal and mtDNA variations based on small number of samples. In this study, we analyzed 84 D-loop and 24 whole mitogenome sequences of wild yak to further comprehensively explore its maternal genetic diversity and lineage composition. Meanwhile, using six yak Y-specific polymorphic markers (i.e., SRY4, USP9Y, UTY19, AMELY3, OFD1Y10 and INRA189), we assessed the paternal genetic diversity and lineage composition based on eight wild yak. Our results showed that wild yak exhibited abundant maternal genetic diversity with haplotype diversities of 0.9621 ± 0.0078 and 0.9928 ± 0.0144 in the D-loop and whole mitogenome sequences, respectively. Maternal phylogenetic analysis of wild yak uncovered three defined lineages (mt-I, mt-II and mt-III). Similarly, profuse paternal genetic diversity was observed in wild yak with Y-haplotype diversity (Hd) at 0.8214 ± 0.1007. Two Y-haplogroups (Y1 and Y2) with four Y-haplotypes (yH1-yH4) were identified in paternal phylogenetic analysis, indicating wild yak to be of two paternal lineages. This study of genetic diversity and lineage composition of wild yak would provide useful information for the genetic resource conservation and utilization of this vulnerable wild species.
Collapse
Affiliation(s)
- Zhi-Jie Ma
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, P. R. China.,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, P. R. China
| | - Guang-Zhen Li
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, P. R. China.,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, P. R. China
| | - Sheng-Mei Chen
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, P. R. China.,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, P. R. China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Quratulain Hanif
- Department of Agricultural Biotechnology, Computational Biology Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| |
Collapse
|