1
|
Unneberg P, Larsson M, Olsson A, Wallerman O, Petri A, Bunikis I, Vinnere Pettersson O, Papetti C, Gislason A, Glenner H, Cartes JE, Blanco-Bercial L, Eriksen E, Meyer B, Wallberg A. Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins. Nat Commun 2024; 15:6297. [PMID: 39090106 PMCID: PMC11294593 DOI: 10.1038/s41467-024-50239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.
Collapse
Affiliation(s)
- Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Anna Petri
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | | | - Astthor Gislason
- Marine and Freshwater Research Institute, Pelagic Division, Reykjavik, Iceland
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Center for Macroecology, Evolution and Climate Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joan E Cartes
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
| | | | | | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
2
|
Cheng J, Zhang Z, Li Y, Zhang L, Hui M, Sha Z. Rolling with the punches: Organism-environment interactions shape spatial pattern of adaptive differentiation in the widespread mantis shrimp Oratosquilla oratoria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170244. [PMID: 38278258 DOI: 10.1016/j.scitotenv.2024.170244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Investigating spatial pattern of adaptive variation and its underlying processes can inform the adaptive potential distributed within species ranges, which is increasingly important in the context of a changing climate. A correct interpretation of adaptive variation pattern requires that population history and the ensuing population genetic structure are taken into account. Here we carried out such a study by integrating population genomic analyses, demographic model testing and species distribution modeling to investigate patterns and causes of adaptive differentiation in a widespread mantis shrimp, Oratosquilla oratoria, along a replicated, broad-scale temperature gradient in the northwestern Pacific (NWP). Our results supported a strong hierarchical ecogeographic structure dominated by habitat-linked divergence among O. oratoria populations accompanied with introgressive hybridization. A combined FST outlier and environmental correlation analyses revealed remarkable temperature-associated clines in allele frequency across paired North-South populations on Chinese and Japanese coasts, and identified a suite of loci associated with temperature adaptation. Further demographic model testing revealed the observed clinal variation derived partly from Pleistocene divergence followed by recent secondary contact. More importantly, the likelihood of hybridization is predicted to increase as climate change progresses, which would break barriers to gene flow and enable the spread of adaptive genetic variation. These results support that not only is temperature-driven adaptive differentiation occurs in O. oratoria but that such pattern is likely attributed to ancient adaptive variation, sustained by contemporary ocean conditions and a semi-permeable barrier to gene flow maintained by selection. They moreover provide genomic insights into the distribution of adaptive potential across O. oratoria' s species range. This work can serve as a case study to characterize adaptive diversity of marine species in the NWP by integrating environmental and genetic data at temporal and spatial scales in a population genomic framework, which would improve management and conservation actions under climate change.
Collapse
Affiliation(s)
- Jiao Cheng
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510275, China
| | - Yulong Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liwen Zhang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Hui
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhongli Sha
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Legrand C, Andriantsoa R, Lichter P, Raddatz G, Lyko F. Time-resolved, integrated analysis of clonally evolving genomes. PLoS Genet 2023; 19:e1011085. [PMID: 38096267 PMCID: PMC10754456 DOI: 10.1371/journal.pgen.1011085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/28/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Clonal genome evolution is a key feature of asexually reproducing species and human cancer development. While many studies have described the landscapes of clonal genome evolution in cancer, few determine the underlying evolutionary parameters from molecular data, and even fewer integrate theory with data. We derived theoretical results linking mutation rate, time, expansion dynamics, and biological/clinical parameters. Subsequently, we inferred time-resolved estimates of evolutionary parameters from mutation accumulation, mutational signatures and selection. We then applied this framework to predict the time of speciation of the marbled crayfish, an enigmatic, globally invasive parthenogenetic freshwater crayfish. The results predict that speciation occurred between 1986 and 1990, which is consistent with biological records. We also used our framework to analyze whole-genome sequencing datasets from primary and relapsed glioblastoma, an aggressive brain tumor. The results identified evolutionary subgroups and showed that tumor cell survival could be inferred from genomic data that was generated during the resection of the primary tumor. In conclusion, our framework allowed a time-resolved, integrated analysis of key parameters in clonally evolving genomes, and provided novel insights into the evolutionary age of marbled crayfish and the progression of glioblastoma.
Collapse
Affiliation(s)
- Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Ranja Andriantsoa
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Precision Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
4
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|