1
|
Ledesma DT, Scarpetta SG, Jacisin JJ, Meza A, Kemp ME. Identification of Late Pleistocene and Holocene fossil lizards from Hall's Cave (Kerr County, Texas) and a primer on morphological variation in North American lizard skulls. PLoS One 2024; 19:e0308714. [PMID: 39146299 PMCID: PMC11326655 DOI: 10.1371/journal.pone.0308714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Fossil identification practices have a profound effect on our interpretation of the past because these identifications form the basis for downstream analyses. Therefore, well-supported fossil identifications are necessary for examining the impact of past environmental changes on populations and communities. Here we apply an apomorphic identification framework in a case study identifying fossil lizard remains from Hall's Cave, a late Quaternary fossil site located in Central Texas, USA. We present images and descriptions of a broad comparative sample of North American lizard cranial elements and compile new and previously reported apomorphic characters for identifying fossil lizards. Our fossil identifications from Hall's Cave resulted in a minimum of 11 lizard taxa, including five lizard taxa previously unknown from the site. Most of the identified fossil lizard taxa inhabit the area around Hall's Cave today, but we reinforce the presence of an extirpated species complex of horned lizard. A main goal of this work is to establish a procedure for making well-supported fossil lizard identifications across North America. The data from this study will assist researchers endeavoring to identify fossil lizards, increasing the potential for novel discoveries related to North American lizards and facilitating more holistic views of ancient faunal assemblages.
Collapse
Affiliation(s)
- David T Ledesma
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
| | - Simon G Scarpetta
- Department of Integrative Biology, Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, United States of America
| | - John J Jacisin
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
| | - Antonio Meza
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
| | - Melissa E Kemp
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
| |
Collapse
|
2
|
Scarpetta SG. A Palaeogene stem crotaphytid ( Aciprion formosum) and the phylogenetic affinities of early fossil pleurodontan iguanians. ROYAL SOCIETY OPEN SCIENCE 2024; 11:221139. [PMID: 38204790 PMCID: PMC10776235 DOI: 10.1098/rsos.221139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Pleurodonta is an ancient, diverse clade of iguanian lizard distributed primarily in the Western Hemisphere. Although the clade is a frequent subject of systematic research, phylogenetic resolution among the major pleurodontan clades is elusive. That uncertainty has complicated the interpretations of many fossil pleurodontans. I describe a fossil skull of a pleurodontan lizard from the Palaeogene of Wyoming that was previously allocated to the puzzling taxon Aciprion formosum, and provide an updated morphological matrix for iguanian lizards. Phylogenetic analyses using Bayesian inference demonstrate that the fossil skull is the oldest and first definitive stem member of Crotaphytidae (collared and leopard lizards), establishing the presence of that clade in North America during the Palaeogene. I also discuss new or revised hypotheses for the relationships of several early pleurodontans. In particular, I examine potential evidence for crown-Pleurodonta in the Cretaceous of Mongolia (Polrussia), stem Pleurodonta in the Cretaceous of North America (Magnuviator) and a stem anole in the Eocene of North America (Afairiguana). I suggest that the placement of the fossil crotaphytid is stable to the uncertain phylogeny of Pleurodonta, but recognize the dynamic nature of fossil diagnosis and the potential for updated systematic hypotheses for the other fossils analysed here.
Collapse
Affiliation(s)
- Simon G. Scarpetta
- Museum of Vertebrate Zoology, University of California Berkeley, 3101 UC Berkeley Road, Berkeley, CA 94720, USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
3
|
Brownstein CD, Simões TR, Caldwell MW, Lee MSY, Meyer DL, Scarpetta SG. The affinities of the Late Triassic Cryptovaranoides and the age of crown squamates. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230968. [PMID: 37830017 PMCID: PMC10565374 DOI: 10.1098/rsos.230968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Most living reptile diversity is concentrated in Squamata (lizards, including snakes), which have poorly known origins in space and time. Recently, †Cryptovaranoides microlanius from the Late Triassic of the United Kingdom was described as the oldest crown squamate. If true, this result would push back the origin of all major lizard clades by 30-65 Myr and suggest that divergence times for reptile clades estimated using genomic and morphological data are grossly inaccurate. Here, we use computed tomography scans and expanded phylogenetic datasets to re-evaluate the phylogenetic affinities of †Cryptovaranoides and other putative early squamates. We robustly reject the crown squamate affinities of †Cryptovaranoides, and instead resolve †Cryptovaranoides as a potential member of the bird and crocodylian total clade, Archosauromorpha. Bayesian total evidence dating supports a Jurassic origin of crown squamates, not Triassic as recently suggested. We highlight how features traditionally linked to lepidosaurs are in fact widespread across Triassic reptiles. Our study reaffirms the importance of critically choosing and constructing morphological datasets and appropriate taxon sampling to test the phylogenetic affinities of problematic fossils and calibrate the Tree of Life.
Collapse
Affiliation(s)
- Chase D. Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- Stamford Museum and Nature Center, Stamford, CT 06903, USA
| | - Tiago R. Simões
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W. Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
- Earth Sciences Section, South Australian Museum, North Terrace, Adelaide 5000, Australia
| | - Dalton L. Meyer
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
| | - Simon G. Scarpetta
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
4
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|