1
|
Sands AF, Andersson AAL, Reid K, Hains T, Joseph L, Drew A, Mason IJ, Rheindt FE, Dingle C, Merilä J. Genomic and Acoustic Biogeography of the Iconic Sulphur-crested Cockatoo Clarifies Species Limits and Patterns of Intraspecific Diversity. Mol Biol Evol 2024; 41:msae222. [PMID: 39447047 PMCID: PMC11586666 DOI: 10.1093/molbev/msae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Many highly recognizable species lack genetic data important for conservation due to neglect over their hyperabundance. This likely applies to the Sulfur-crested Cockatoo (Cacatua galerita), one of the world's most iconic parrots. The species is native to Australia, New Guinea, and some surrounding Melanesian islands of the latter. Four subspecies are currently recognised based on morphology. Australian subspecies and populations are abundant, but several factors threaten those in New Guinea and Melanesia. Genetic data from natural populations are scarce-information that is vital to identifying evolutionarily significant units (ESUs) important for modern conservation planning. We used whole-genome resequencing to investigate patterns of differentiation, evolutionary affinities, and demographic history across C. galerita's distribution range to assess whether currently recognised subspecies represent ESUs. We complement this with an assessment of bioacoustic variation across the species' distribution landscape. Our results point to C. galerita sensu lato (s.l.) comprising two species. We restrict C. galerita sensu stricto (s.s.) to populations in Australia and the Trans-Fly ecodomain of southern New Guinea. The second species, recognised here as Cacatua triton, likely occurs over much of the rest of New Guinea. Restricting further discussion of intraspecific diversity in C. triton, we show that within C. galerita s.s. two ESUs exist, which align to Cacatua galerita galerita in eastern Australia and southern New Guinea and Cacatua galerita fitzroyi in northern and north-western Australia. We suggest that the evolution of these species and ESUs are linked to Middle and Late Pleistocene glacial cycles and their effects on sea level and preferential habitats. We argue that conservation assessments need updating, protection of preferential forest and woodland habitats are important and reintroductions require careful management to avoid possible negative hybridization effects of non-complementary lineages.
Collapse
Affiliation(s)
- Arthur F Sands
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Astrid A L Andersson
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Alex Drew
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Ian J Mason
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Caroline Dingle
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Biology Department, Capilano University, North Vancouver, BC, Canada
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Wang Y, Zhan H, Zhang Y, Long Z, Yang X. Mitochondrial genome analysis, phylogeny and divergence time evaluation of Strixaluco (Aves, Strigiformes, Strigidae). Biodivers Data J 2023; 11:e101942. [PMID: 38327340 PMCID: PMC10848841 DOI: 10.3897/bdj.11.e101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 02/09/2024] Open
Abstract
Background Prior research has shown that the European peninsulas were the main sources of Strixaluco colonisation of Northern Europe during the late glacial period. However, the phylogenetic relationship and the divergence time between S.aluco from Leigong Mountain Nature Reserve, Guizhou Province, China and the Strigiformes from overseas remains unclear. The mitochondrial genome structure of birds is a covalent double-chain loop structure that is highly conserved and, thus, suitable for phylogenetic analysis. This study examined the phylogenetic relationship and divergence time of Strix using the whole mitochondrial genome of S.aluco. New information In this study, the complete mitochondrial genome of Strixaluco, with a total length of 18,632 bp, is reported for the first time. A total of 37 genes were found, including 22 tRNAs, two rRNAs, 13 protein-coding genes and two non-coding control regions. Certain species of Tytoninae were used as out-group and PhyloSuite software was applied to build the ML-tree and BI-tree of Strigiformes. Finally, the divergence time tree was constructed using BEAST 2.6.7 software and the age of Miosurniadiurna fossil-bearing sediments (6.0-9.5 Ma) was set as internal correction point. The common ancestor of Strix was confirmed to have diverged during the Pleistocene (2.58-0.01 Ma). The combined action of the dramatic uplift of the Qinling Mountains in the Middle Pleistocene and the climate oscillation of the Pleistocene caused Strix divergence between the northern and southern parts of mainland China. The isolation of glacial-interglacial rotation and glacier refuge was the main reason for the divergence of Strixuralensis and S.aluco from their common ancestor during this period. This study provides a reference for the evolutionary history of S.aluco.
Collapse
Affiliation(s)
- Yeying Wang
- Guizhou Normal University, Guiyang, ChinaGuizhou Normal UniversityGuiyangChina
| | - Haofeng Zhan
- Guizhou Normal University, Guiyang, ChinaGuizhou Normal UniversityGuiyangChina
| | - Yu Zhang
- Guizhou Normal University, Guiyang, ChinaGuizhou Normal UniversityGuiyangChina
| | - Zhengmin Long
- Guizhou Normal University, Guiyang, ChinaGuizhou Normal UniversityGuiyangChina
| | - Xiaofei Yang
- Guizhou University, Guiyang, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
3
|
Tofanelli S, Bertoncini S, Donati G. Early Human Colonization, Climate Change and Megafaunal Extinction in Madagascar: The Contribution of Genetics in a Framework of Reciprocal Causations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.708345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|