1
|
Marasinghe MSLRP, Nilanthi RMR, Hathurusinghe HABM, Sooriyabandara MGC, Chandrasekara CHWMRB, Jayawardana KANC, Kodagoda MM, Rajapakse RC, Bandaranayake PCG. Revisiting traditional SSR based methodologies available for elephant genetic studies. Sci Rep 2021; 11:8718. [PMID: 33888797 PMCID: PMC8062488 DOI: 10.1038/s41598-021-88034-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Asian elephant (Elephas maximus) plays a significant role in natural ecosystems and it is considered as an endangered animal. Molecular genetics studies on elephants' dates back to 1990s. Microsatellite markers have been the preferred choice and have played a major role in ecological, evolutionary and conservation research on elephants over the past 20 years. However, technical constraints especially related to the specificity of traditionally developed microsatellite markers have brought to question their application, specifically when degraded samples are utilized for analysis. Therefore, we analyzed the specificity of 24 sets of microsatellite markers frequently used for elephant molecular work. Comparative wet lab analysis was done with blood and dung DNA in parallel with in silico work. Our data suggest cross-amplification of unspecific products when field-collected dung samples are utilized in assays. The necessity of Asian elephant specific set of microsatellites and or better molecular techniques are highlighted.
Collapse
Affiliation(s)
- M S L R P Marasinghe
- Department of Wildlife Conservation, 811/A, Jayanthipura Road, Battaramulla, 10120, Sri Lanka
| | - R M R Nilanthi
- Department of Wildlife Conservation, 811/A, Jayanthipura Road, Battaramulla, 10120, Sri Lanka
| | - H A B M Hathurusinghe
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - M G C Sooriyabandara
- Department of Wildlife Conservation, 811/A, Jayanthipura Road, Battaramulla, 10120, Sri Lanka
| | - C H W M R B Chandrasekara
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - K A N C Jayawardana
- Department of Wildlife Conservation, 811/A, Jayanthipura Road, Battaramulla, 10120, Sri Lanka
| | - M M Kodagoda
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - R C Rajapakse
- Department of National Zoological Gardens, Anagarika Dharmapala Mawatha, Dehiwala, 10350, Sri Lanka
| | - P C G Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
2
|
Nittu G, Bhavana PM, Shameer TT, Ramakrishnan B, Archana R, Kaushal KK, Khedkar GD, Mohan G, Jyothi M, Sanil R. Simple Nested Allele-Specific approach with penultimate mismatch for precise species and sex identification of tiger and leopard. Mol Biol Rep 2021; 48:1667-1676. [PMID: 33479828 DOI: 10.1007/s11033-021-06139-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Accurate species and sex identification of non-invasive and forensic samples of the tiger and leopard is still confusing when using the allele-specific methods. We designed allele-specific methods with penultimate nucleotide mismatch in a nested manner for the exact identification and double-checking of forensic samples. The mismatch design is a novel concept in species and sex identification, making the allele-specific targeting precise. We developed three sets of markers, a 365 bp outer and a 98 bp inner marker for nested tiger species identification assay, 136 bp leopard specific marker, and carnivore sex identification markers. We validated the method with tissue/blood forensic samples of various felids and herbivorous available in our lab and on known fecal samples from Vandalur Zoo. We also collected 37 scat samples at diverse stages of deterioration from the Mudumalai Tiger Reserve, Tamil Nadu, India. The 365 bp targeted markers resulted in 70.2% (n = 22; 22/37) amplification success, while the 98 bp FAM-labelled marker amplified 89% (n = 33; 33/37) scat samples independently. The 136 bp leopard markers answered four scat samples (11%) unrequited by the tiger specific markers. We evaluated species and the sex identification with these markers in another 190 non-invasive samples provided by the Mudumalai Tiger Reserve authorities. Among which 56.3% (n = 107) of samples were recognized as tiger (64 male and 43 female) and 38.9% (n = 74) as leopard (41 male and 33 female). The method supersedes any other previous methods in this regard by its high accuracy and simplicity.
Collapse
Affiliation(s)
- George Nittu
- Molecular Biodiversity Lab, Department of Zoology & Wildlife Biology, Government Arts College, Udhagamandalam, The Nilgiris, Tamil Nadu, 643002, India
| | - Pudupet Madhavan Bhavana
- Molecular Biodiversity Lab, Department of Zoology & Wildlife Biology, Government Arts College, Udhagamandalam, The Nilgiris, Tamil Nadu, 643002, India
| | - Thekke Thumbath Shameer
- Molecular Biodiversity Lab, Department of Zoology & Wildlife Biology, Government Arts College, Udhagamandalam, The Nilgiris, Tamil Nadu, 643002, India
| | - Balasundaram Ramakrishnan
- Molecular Biodiversity Lab, Department of Zoology & Wildlife Biology, Government Arts College, Udhagamandalam, The Nilgiris, Tamil Nadu, 643002, India.,Mudumalai Tiger Conservation Foundation, Mudumalai Tiger Reserve, The Nilgiris, Tamil Nadu, India
| | - Rajan Archana
- Molecular Biodiversity Lab, Department of Zoology & Wildlife Biology, Government Arts College, Udhagamandalam, The Nilgiris, Tamil Nadu, 643002, India
| | - Krishan Kumar Kaushal
- Mudumalai Tiger Conservation Foundation, Mudumalai Tiger Reserve, The Nilgiris, Tamil Nadu, India.,Office of the Field Director and Assistant Principal Chief Conservator of Forest, Mudumalai Tiger Reserve & Mukkurthi National Park, Udhagamandalam, The Nilgiris, Tamil Nadu, 643002, India
| | - Gulab Dattarao Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431 004, India
| | - Govindarajan Mohan
- Molecular Biodiversity Lab, Department of Zoology & Wildlife Biology, Government Arts College, Udhagamandalam, The Nilgiris, Tamil Nadu, 643002, India
| | - Manikkiri Jyothi
- Department of Zoology, Providence College for Women, Coonoor, Tamil Nadu, 643104, India
| | - Raveendranathanpillai Sanil
- Molecular Biodiversity Lab, Department of Zoology & Wildlife Biology, Government Arts College, Udhagamandalam, The Nilgiris, Tamil Nadu, 643002, India.
| |
Collapse
|
3
|
Bhatt S, Biswas S, Karanth K, Pandav B, Mondol S. Genetic analyses reveal population structure and recent decline in leopards ( Panthera pardus fusca) across the Indian subcontinent. PeerJ 2020; 8:e8482. [PMID: 32117616 PMCID: PMC7006512 DOI: 10.7717/peerj.8482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/29/2019] [Indexed: 11/21/2022] Open
Abstract
Background Large carnivores maintain the stability and functioning of ecosystems. Currently, many carnivore species face declining population sizes due to natural and anthropogenic pressures. The leopard, Panthera pardus, is probably the most widely distributed and highly adaptable large felid globally, still persisting in most of its historic range. However, we lack subspecies-level data on country or regional scale on population trends, as ecological monitoring approaches are difficult to apply on such wide-ranging species. We used genetic data from leopards sampled across the Indian subcontinent to investigate population structure and patterns of demographic decline. Methods We collected faecal samples from the Terai-Arc landscape of northern India and identified 56 unique individuals using a panel of 13 microsatellite markers. We merged this data with already available 143 leopard individuals and assessed genetic structure at country scale. Subsequently, we investigated the demographic history of each identified subpopulations and compared genetic decline analyses with countrywide local extinction probabilities. Results Our genetic analyses revealed four distinct subpopulations corresponding to Western Ghats, Deccan Plateau-Semi Arid, Shivalik and Terai region of the north Indian landscape, each with high genetic variation. Coalescent simulations with microsatellite loci revealed a possibly human-induced 75–90% population decline between ∼120–200 years ago across India. Population-specific estimates of genetic decline are in concordance with ecological estimates of local extinction probabilities in these subpopulations obtained from occupancy modeling of the historic and current distribution of leopards in India. Conclusions Our results confirm the population decline of a widely distributed, adaptable large carnivore. We re-iterate the relevance of indirect genetic methods for such species in conjunction with occupancy assessment and recommend that detailed, landscape-level ecological studies on leopard populations are critical to future conservation efforts. Our approaches and inference are relevant to other widely distributed, seemingly unaffected carnivores such as the leopard.
Collapse
Affiliation(s)
- Supriya Bhatt
- Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, India
| | - Suvankar Biswas
- Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, India
| | - Krithi Karanth
- Centre for Wildlife Studies, Bengaluru, India.,Nicholas School of Environment, Duke University, Durham, United States of America
| | - Bivash Pandav
- Endangered Species Management, Wildlife Institute of India, Dehradun, India
| | - Samrat Mondol
- Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, India
| |
Collapse
|
6
|
Maroju PA, Yadav S, Kolipakam V, Singh S, Qureshi Q, Jhala Y. Erratum to: Schrodinger’s scat: a critical review of the currently available tiger (Panthera Tigris) and leopard (Panthera pardus) specific primers in India, and a novel leopard specific primer. BMC Genet 2017; 18:28. [PMID: 28340564 PMCID: PMC5366152 DOI: 10.1186/s12863-016-0451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
|