1
|
Rahim F, Tao L, Khan K, Ali I, Zeb A, Khan I, Dil S, Abbas T, Hussain A, Zubair M, Zhang H, Hui M, Khan MA, Shah W, Shi Q. A homozygous ARMC3 splicing variant causes asthenozoospermia and flagellar disorganization in a consanguineous family. Clin Genet 2024; 106:437-447. [PMID: 39221575 DOI: 10.1111/cge.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Male infertility due to asthenozoospermia is quite frequent, but its etiology is poorly understood. We recruited two infertile brothers, born to first-cousin parents from Pakistan, displaying idiopathic asthenozoospermia with mild stuttering disorder but no ciliary-related symptoms. Whole-exome sequencing identified a splicing variant (c.916+1G>A) in ARMC3, recessively co-segregating with asthenozoospermia in the family. The ARMC3 protein is evolutionarily highly conserved and is mostly expressed in the brain and testicular tissue of human. The ARMC3 splicing mutation leads to the exclusion of exon 8, resulting in a predicted truncated protein (p.Glu245_Asp305delfs*16). Quantitative real-time PCR revealed a significant decrease at mRNA level for ARMC3 and Western blot analysis did not detect ARMC3 protein in the patient's sperm. Individuals homozygous for the ARMC3 splicing variant displayed reduced sperm motility with frequent morphological abnormalities of sperm flagella. Transmission electron microscopy of the affected individual IV: 2 revealed vacuolation in sperm mitochondria at the midpiece and disrupted flagellar ultrastructure in the principal and end piece. Altogether, our results indicate that this novel homozygous ARMC3 splicing mutation destabilizes sperm flagella and leads to asthenozoospermia in our patients, providing a novel marker for genetic counseling and diagnosis of male infertility.
Collapse
Affiliation(s)
- Fazal Rahim
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Liu Tao
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Khalid Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Imtiaz Ali
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Aurang Zeb
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ihsan Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Sobia Dil
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Tanveer Abbas
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ansar Hussain
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Muhammad Zubair
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ma Hui
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
3
|
Dementieva NV, Dysin AP, Shcherbakov YS, Nikitkina EV, Musidray AA, Petrova AV, Mitrofanova OV, Plemyashov KV, Azovtseva AI, Griffin DK, Romanov MN. Risk of Sperm Disorders and Impaired Fertility in Frozen-Thawed Bull Semen: A Genome-Wide Association Study. Animals (Basel) 2024; 14:251. [PMID: 38254422 PMCID: PMC10812825 DOI: 10.3390/ani14020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cryopreservation is a widely used method of semen conservation in animal breeding programs. This process, however, can have a detrimental effect on sperm quality, especially in terms of its morphology. The resultant sperm disorders raise the risk of reduced sperm fertilizing ability, which poses a serious threat to the long-term efficacy of livestock reproduction and breeding. Understanding the genetic factors underlying these effects is critical for maintaining sperm quality during cryopreservation, and for animal fertility in general. In this regard, we performed a genome-wide association study to identify genomic regions associated with various cryopreservation sperm abnormalities in Holstein cattle, using single nucleotide polymorphism (SNP) markers via a high-density genotyping assay. Our analysis revealed a significant association of specific SNPs and candidate genes with absence of acrosomes, damaged cell necks and tails, as well as wrinkled acrosomes and decreased motility of cryopreserved sperm. As a result, we identified candidate genes such as POU6F2, LPCAT4, DPYD, SLC39A12 and CACNB2, as well as microRNAs (bta-mir-137 and bta-mir-2420) that may play a critical role in sperm morphology and disorders. These findings provide crucial information on the molecular mechanisms underlying acrosome integrity, motility, head abnormalities and damaged cell necks and tails of sperm after cryopreservation. Further studies with larger sample sizes, genome-wide coverage and functional validation are needed to explore causal variants in more detail, thereby elucidating the mechanisms mediating these effects. Overall, our results contribute to the understanding of genetic architecture in cryopreserved semen quality and disorders in bulls, laying the foundation for improved animal reproduction and breeding.
Collapse
Affiliation(s)
- Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Elena V. Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem A. Musidray
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Anna V. Petrova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Olga V. Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Kirill V. Plemyashov
- Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, 196084 St. Petersburg, Russia;
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | | | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| |
Collapse
|
4
|
O’Callaghan E, Navarrete-Lopez P, Štiavnická M, Sánchez JM, Maroto M, Pericuesta E, Fernández-González R, O’Meara C, Eivers B, Kelleher MM, Evans RD, Mapel XM, Lloret-Villas A, Pausch H, Balastegui-Alarcón M, Avilés M, Sanchez-Rodriguez A, Roldan ERS, McDonald M, Kenny DA, Fair S, Gutiérrez-Adán A, Lonergan P. Adenylate kinase 9 is essential for sperm function and male fertility in mammals. Proc Natl Acad Sci U S A 2023; 120:e2305712120. [PMID: 37812723 PMCID: PMC10589668 DOI: 10.1073/pnas.2305712120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.
Collapse
Affiliation(s)
- Elena O’Callaghan
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Paula Navarrete-Lopez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Miriama Štiavnická
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, LimerickV94 T9PX, Ireland
| | - José M. Sánchez
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Maria Maroto
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Raul Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Ciara O’Meara
- National Cattle Breeding Centre, County KildareW91 WF59, Ireland
| | - Bernard Eivers
- National Cattle Breeding Centre, County KildareW91 WF59, Ireland
| | - Margaret M. Kelleher
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County CorkP31 D452, Ireland
| | - Ross D. Evans
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County CorkP31 D452, Ireland
| | - Xena M. Mapel
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Audald Lloret-Villas
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Miriam Balastegui-Alarcón
- Departamento de Biología Celular e Histología, Universidad de Murcia-Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, Murcia30120, Spain
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Universidad de Murcia-Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, Murcia30120, Spain
| | - Ana Sanchez-Rodriguez
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Eduardo R. S. Roldan
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Michael McDonald
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - David A. Kenny
- Animal and Bioscience Department, Teagasc, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, County MeathC15 PW93, Ireland
| | - Sean Fair
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, LimerickV94 T9PX, Ireland
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Patrick Lonergan
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| |
Collapse
|
5
|
Powell J, Talenti A, Fisch A, Hemmink JD, Paxton E, Toye P, Santos I, Ferreira BR, Connelley TK, Morrison LJ, Prendergast JGD. Profiling the immune epigenome across global cattle breeds. Genome Biol 2023; 24:127. [PMID: 37218021 DOI: 10.1186/s13059-023-02964-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Understanding the variation between well and poorly adapted cattle breeds to local environments and pathogens is essential for breeding cattle with improved climate and disease-resistant phenotypes. Although considerable progress has been made towards identifying genetic differences between breeds, variation at the epigenetic and chromatin levels remains poorly characterized. Here, we generate, sequence and analyse over 150 libraries at base-pair resolution to explore the dynamics of DNA methylation and chromatin accessibility of the bovine immune system across three distinct cattle lineages. RESULTS We find extensive epigenetic divergence between the taurine and indicine cattle breeds across immune cell types, which is linked to the levels of local DNA sequence divergence between the two cattle sub-species. The unique cell type profiles enable the deconvolution of complex cellular mixtures using digital cytometry approaches. Finally, we show distinct sub-categories of CpG islands based on their chromatin and methylation profiles that discriminate between classes of distal and gene proximal islands linked to discrete transcriptional states. CONCLUSIONS Our study provides a comprehensive resource of DNA methylation, chromatin accessibility and RNA expression profiles of three diverse cattle populations. The findings have important implications, from understanding how genetic editing across breeds, and consequently regulatory backgrounds, may have distinct impacts to designing effective cattle epigenome-wide association studies in non-European breeds.
Collapse
Affiliation(s)
- Jessica Powell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - Andrea Talenti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Johanneke D Hemmink
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Philip Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, PO Box 30709, Nairobi, 00100, Kenya
| | - Isabel Santos
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Beatriz R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Tim K Connelley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Liam J Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
6
|
Mukherjee A, Gali J, Kar I, Datta S, Roy M, Acharya AP, Patra AK. Candidate genes and proteins regulating bull semen quality: a review. Trop Anim Health Prod 2023; 55:212. [PMID: 37208528 DOI: 10.1007/s11250-023-03617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Poor semen profile reflected by suboptimum fertility statistics is a concern in bulls reared for breeding purpose. A critical review of research on candidate genes and proteins associated with semen quality traits will be useful to understand the progress of molecular marker development for bull semen quality traits. Here, we have tabulated and classified candidate genes and proteins associated with bull semen quality based on a literature survey. A total of 175 candidate genes are associated with semen quality traits in various breeds of cattle. Several studies using candidate gene approach have identified 26 genes carrying a total of 44 single nucleotide polymorphisms. Furthermore, nine genome-wide association studies (GWASes) have identified 150 candidate genes using bovine single nucleotide polymorphisms (SNP) chips. Three genes, namely membrane-associated ring-CH-type finger 1 (MARCH1), platelet-derived growth factor receptor beta, and phosphodiesterase type 1, were identified commonly in two GWASes, which, especially MARCH1, are required to explore their regulatory roles in bull semen quality in in-depth studies. With the advancement of high-throughput-omic technologies, more candidate genes associated with bull semen quality may be identified in the future. Therefore, the functional significance of candidate genes and proteins need to be delved further into future investigations to augment bull semen quality.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Veterinary Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Jaganmohanarao Gali
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - Indrajit Kar
- Department of Avian Science, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Sanjoy Datta
- Department of Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Manoranjan Roy
- Department of Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Aditya Pratap Acharya
- Department of Veterinary Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India.
- American Institute for Goat Research, Langston University, Langston, Oklahoma, USA.
| |
Collapse
|
7
|
Pausch H, Mapel XM. Review: Genetic mutations affecting bull fertility. Animal 2023; 17 Suppl 1:100742. [PMID: 37567657 DOI: 10.1016/j.animal.2023.100742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cattle are a well-suited "model organism" to study the genetic underpinnings of variation in male reproductive performance. The adoption of artificial insemination and genomic prediction in many cattle breeds provide access to microarray-derived genotypes and repeated measurements for semen quality and insemination success in several thousand bulls. Similar-sized mapping cohorts with phenotypes for male fertility are not available for most other species precluding powerful association testing. The repeated measurements of the artificial insemination bulls' semen quality enable the differentiation between transient and biologically relevant trait fluctuations, and thus, are an ideal source of phenotypes for variance components estimation and genome-wide association testing. Genome-wide case-control association testing involving bulls with either aberrant sperm quality or low insemination success revealed several causal recessive loss-of-function alleles underpinning monogenic reproductive disorders. These variants are routinely monitored with customised genotyping arrays in the male selection candidates to avoid the use of subfertile or infertile bulls for artificial insemination and natural service. Genome-wide association studies with quantitative measurements of semen quality and insemination success revealed quantitative trait loci for male fertility, but the underlying causal variants remain largely unknown. Moreover, these loci explain only a small part of the heritability of male fertility. Integrating genome-wide association studies with gene expression and other omics data from male reproductive tissues is required for the fine-mapping of candidate causal variants underlying variation in male reproductive performance in cattle.
Collapse
Affiliation(s)
- Hubert Pausch
- Animal Genomics, Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland.
| | - Xena Marie Mapel
- Animal Genomics, Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Silva Dos Santos F, Neves RAF, Bernay B, Krepsky N, Teixeira VL, Artigaud S. The first use of LC-MS/MS proteomic approach in the brown mussel Perna perna after bacterial challenge: Searching for key proteins on immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108622. [PMID: 36803779 DOI: 10.1016/j.fsi.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The brown mussel Perna perna is a valuable fishing resource, primarily in tropical and subtropical coastal regions. Because of their filter-feeding habits, mussels are directly exposed to bacteria in the water column. Escherichia coli (EC) and Salmonella enterica (SE) inhabit human guts and reach the marine environment through anthropogenic sources, such as sewage. Vibrio parahaemolyticus (VP) is indigenous to coastal ecosystems but can be harmful to shellfish. In this study, we aimed to assess the protein profile of the hepatopancreas of P. perna mussel challenged by introduced - E. coli and S. enterica - and indigenous marine bacteria - V. parahaemolyticus. Bacterial-challenge groups were compared with non-injected (NC) and injected control (IC) - that consisted in mussels not challenged and mussels injected with sterile PBS-NaCl, respectively. Through LC-MS/MS proteomic analysis, 3805 proteins were found in the hepatopancreas of P. perna. From the total, 597 were significantly different among conditions. Mussels injected with VP presented 343 proteins downregulated compared with all the other conditions, suggesting that VP suppresses their immune response. Particularly, 31 altered proteins - upregulated or downregulated - for one or more challenge groups (EC, SE, and VP) compared with controls (NC and IC) are discussed in detail in the paper. For the three tested bacteria, significantly different proteins were found to perform critical roles in immune response at all levels, namely: recognition and signal transduction; transcription; RNA processing; translation and protein processing; secretion; and humoral effectors. This is the first shotgun proteomic study in P. perna mussel, therefore providing an overview of the protein profile of the mussel hepatopancreas, focused on the immune response against bacteria. Hence, it is possible to understand the immune-bacteria relationship at molecular levels better. This knowledge can support the development of strategies and tools to be applied to coastal marine resource management and contribute to the sustainability of coastal systems.
Collapse
Affiliation(s)
- Fernanda Silva Dos Santos
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Benoît Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032, Caen cedex, France.
| | - Natascha Krepsky
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Valéria Laneuville Teixeira
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Sébastien Artigaud
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
9
|
Patient with multiple morphological abnormalities of sperm flagella caused by a novel ARMC2 mutation has a favorable pregnancy outcome from intracytoplasmic sperm injection. J Assist Reprod Genet 2022; 39:1673-1681. [PMID: 35543806 DOI: 10.1007/s10815-022-02516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To investigate the potential genetic cause in a primary infertility patient with multiple morphological abnormalities of sperm flagella (MMAF). METHODS The patient's sperm was observed by light and electron microscopy. Whole-exome sequencing (WES) was carried out to identify candidate genes. Then, the mutation found by WES was verified by Sanger sequencing. The proteins interacting with ARMC2 were revealed by co-immunoprecipitation (co-IP) and mass spectrometry. Intracytoplasmic sperm injection (ICSI) was carried out to achieve successful pregnancy. RESULTS Typical MMAF phenotype (absent, short, coiled, bent irregular flagella) was shown in the patient's sperm. A novel homozygous mutation in ARMC2 (c.1264C > T) was identified. The proteins interacting with ARMC2 we found were CEP78, PGAM5, RHOA, FXR1, and SKIV2L2. The ICSI therapy was successful, and boy-girl twins were given birth. CONCLUSION We found a novel mutation in ARMC2 which led to MMAF and male infertility. This is the first report of ICSI outcome of patient harboring ARMC2 mutation. The interacting proteins indicated that ARMC2 might be involved in multiple processes of spermatogenesis.
Collapse
|
10
|
Genetic Variations and mRNA Expression of Goat DNAH1 and Their Associations with Litter Size. Cells 2022; 11:cells11081371. [PMID: 35456050 PMCID: PMC9024473 DOI: 10.3390/cells11081371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Dynein Axonemal Heavy Chain 1 (DNAH1) encodes proteins which provide structural support for the physiological function and motor structure of spermatozoa (hereafter referred to as sperm) and ova. This study found that three single nucleotide polymorphisms (SNPs), the 27-bp insertion/deletion (InDel) mutations and three exonic copy number variations (CNVs) within DNAH1 were significantly associated with litter size of Shaanbei white cashmere goats (n = 1101). Goats with the wildtypes of these three SNPs had higher litter sizes than other carriers (p < 0.05). II genotype of the 27-bp InDel had the highest litter size compared with ID carriers (p = 0.000022). The gain genotype had the largest litter sizes compared with the loss or medium carriers for the three CNV mutations (p < 0.01). Individuals with the AA-TT-CC-II-M1-M2-M3 and AA-TT-CC-II-G1-G2-M3 combination genotypes had larger litter sizes compared with the other genotypes. This study also showed the DNAH1 expression in mothers of multiple kids was higher than mothers of single kids. These three SNPs, the 27-bp InDel and three CNVs in DNAH1 could be used as molecular markers for the selection of goat reproductive traits.
Collapse
|
11
|
Candidate Genes in Bull Semen Production Traits: An Information Approach Review. Vet Sci 2022; 9:vetsci9040155. [PMID: 35448653 PMCID: PMC9028852 DOI: 10.3390/vetsci9040155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Semen quality plays a crucial role in the successful implementation of breeding programs, especially where artificial insemination (AI) is practiced. Bulls with good semen traits have good fertility and can produce a volume of high semen per ejaculation. The aim of this review is to use an information approach to highlight candidate genes and their relation to bull semen production traits. The use of genome-wide association studies (GWAS) has been demonstrated to be successful in identifying genomic regions and individual variations associated with production traits. Studies have reported over 40 genes associated with semen traits using Illumina BeadChip single-nucleotide polymorphism (SNPs).
Collapse
|
12
|
Hiltpold M, Janett F, Mapel XM, Kadri NK, Fang ZH, Schwarzenbacher H, Seefried FR, Spengeler M, Witschi U, Pausch H. A 1-bp deletion in bovine QRICH2 causes low sperm count and immotile sperm with multiple morphological abnormalities. Genet Sel Evol 2022; 54:18. [PMID: 35255804 PMCID: PMC8900305 DOI: 10.1186/s12711-022-00710-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Semen quality and insemination success are monitored in artificial insemination bulls to ensure high male fertility rates. Only ejaculates that fulfill minimum quality requirements are processed and eventually used for artificial inseminations. We examined 70,990 ejaculates from 1343 Brown Swiss bulls to identify bulls from which all ejaculates were rejected due to low semen quality. This procedure identified a bull that produced 12 ejaculates with an aberrantly small number of sperm (0.2 ± 0.2 × 109 sperm per mL) which were mostly immotile due to multiple morphological abnormalities. RESULTS The genome of this bull was sequenced at a 12× coverage to investigate a possible genetic cause. Comparing the sequence variant genotypes of this bull with those from 397 fertile bulls revealed a 1-bp deletion in the coding sequence of the QRICH2 gene which encodes the glutamine rich 2 protein, as a compelling candidate causal variant. This 1-bp deletion causes a frameshift in translation and a premature termination codon (ENSBTAP00000018337.1:p.Cys1644AlafsTer52). The analysis of testis transcriptomes from 76 bulls showed that the transcript with the premature termination codon is subject to nonsense-mediated mRNA decay. The 1-bp deletion resides in a 675-kb haplotype that includes 181 single nucleotide polymorphisms (SNPs) from the Illumina BovineHD Bead chip. This haplotype segregates at a frequency of 5% in the Brown Swiss cattle population. Our analysis also identified another bull that carried the 1-bp deletion in the homozygous state. Semen analyses from the second bull confirmed low sperm concentration and immotile sperm with multiple morphological abnormalities that primarily affect the sperm flagellum and, to a lesser extent, the sperm head. CONCLUSIONS A recessive loss-of-function allele of the bovine QRICH2 gene likely causes low sperm concentration and immotile sperm with multiple morphological abnormalities. Routine sperm analyses unambiguously identify homozygous bulls for this allele. A direct gene test can be implemented to monitor the frequency of the undesired allele in cattle populations.
Collapse
Affiliation(s)
- Maya Hiltpold
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Fredi Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057 Zürich, Switzerland
| | - Xena Marie Mapel
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Naveen Kumar Kadri
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Zih-Hua Fang
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
- Present Address: Genome Biology of Neurodegenerative Diseases, Deutsches Zentrum Für Neurodegenerative Erkrankungen e. V. (DZNE), Otfried-Müller-Str. 23, 72076 Tübingen, Germany
| | | | | | | | - Ulrich Witschi
- Swissgenetics, Meielenfeldweg 12, 3052 Zollikofen, Switzerland
| | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Huang Y, Jiang Z, Gao X, Luo P, Jiang X. ARMC Subfamily: Structures, Functions, Evolutions, Interactions, and Diseases. Front Mol Biosci 2021; 8:791597. [PMID: 34912852 PMCID: PMC8666550 DOI: 10.3389/fmolb.2021.791597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Armadillo repeat-containing proteins (ARMCs) are widely distributed in eukaryotes and have important influences on cell adhesion, signal transduction, mitochondrial function regulation, tumorigenesis, and other processes. These proteins share a similar domain consisting of tandem repeats approximately 42 amino acids in length, and this domain constitutes a substantial platform for the binding between ARMCs and other proteins. An ARMC subfamily, including ARMC1∼10, ARMC12, and ARMCX1∼6, has received increasing attention. These proteins may have many terminal regions and play a critical role in various diseases. On the one hand, based on their similar central domain of tandem repeats, this ARMC subfamily may function similarly to other ARMCs. On the other hand, the unique domains on their terminals may cause these proteins to have different functions. Here, we focus on the ARMC subfamily (ARMC1∼10, ARMC12, and ARMCX1∼6), which is relatively conserved in vertebrates and highly conserved in mammals, particularly primates. We review the structures, biological functions, evolutions, interactions, and related diseases of the ARMC subfamily, which involve more than 30 diseases and 40 bypasses, including interactions and relationships between more than 100 proteins and signaling molecules. We look forward to obtaining a clearer understanding of the ARMC subfamily to facilitate further in-depth research and treatment of related diseases.
Collapse
Affiliation(s)
- Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zijian Jiang
- Department of Hepato-biliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Khan I, Dil S, Zhang H, Zhang B, Khan T, Zeb A, Zhou J, Nawaz S, Zubair M, Khan K, Ma H, Shi Q. A novel stop-gain mutation in ARMC2 is associated with multiple morphological abnormalities of the sperm flagella. Reprod Biomed Online 2021; 43:913-919. [PMID: 34493464 DOI: 10.1016/j.rbmo.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
RESEARCH QUESTION Male infertility is a global issue worldwide and multiple morphological abnormalities of the sperm flagella (MMAF) is one of the most severe forms of the qualitative sperm defects with a heterogeneous genetic cause that has not been completely understood. Can whole-exome sequencing (WES) reveal novel genetic causes contributing to MMAF in a consanguineous Pakistani family, comprising three infertile brothers? DESIGN WES and bioinformatic analysis were conducted to screen potential pathogenic variants. The identified variant was validated by Sanger sequencing in all available family members Transmission electron microscopy analyses was carried out to examine the flagella ultrastructure of spermatozoa from patient. RESULTS WES and Sanger sequencing identified a novel homozygous stop-gain mutation (ENST00000392644.4, c.182C>G, p.S61X) in ARMC2, which is expected to lead to loss of protein functions. Transmission electron microscopy analyses revealed that the flagellar ultrastructure of the patient's spermatozoa was disorganized along with a complete absence of central pair complex (CPC), suggesting that ARMC2 is involved in the assembly, stability of the axonemal complex, or both, particularly the CPC. CONCLUSION We report that a familial stop-gain mutation in ARMC2 is associated with male infertility in humans caused by MMAF accompanied with loss of CPCs and axonemal disorganization. We provide genetic evidence that ARMC2 is essential for human spermatogenesis and its mutation may be pathogenic for MMAF. These findings will improve the knowledge about the genetic basis of MMAF and provide information for genetic counselling of this disease.
Collapse
Affiliation(s)
- Ihsan Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Sobia Dil
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Beibei Zhang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Teka Khan
- Bond life sciences Center, University of Missouri 65211, Columbia Missouri, USA
| | - Aurang Zeb
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Jianteng Zhou
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Shoaib Nawaz
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zubair
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Khalid Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China.
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
15
|
Nosková A, Hiltpold M, Janett F, Echtermann T, Fang ZH, Sidler X, Selige C, Hofer A, Neuenschwander S, Pausch H. Infertility due to defective sperm flagella caused by an intronic deletion in DNAH17 that perturbs splicing. Genetics 2021; 217:6041611. [PMID: 33724408 DOI: 10.1093/genetics/iyaa033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Artificial insemination in pig (Sus scrofa domesticus) breeding involves the evaluation of the semen quality of breeding boars. Ejaculates that fulfill predefined quality requirements are processed, diluted and used for inseminations. Within short time, eight Swiss Large White boars producing immotile sperm that had multiple morphological abnormalities of the sperm flagella were noticed at a semen collection center. The eight boars were inbred on a common ancestor suggesting that the novel sperm flagella defect is a recessive trait. Transmission electron microscopy cross-sections revealed that the immotile sperm had disorganized flagellar axonemes. Haplotype-based association testing involving microarray-derived genotypes at 41,094 SNPs of six affected and 100 fertile boars yielded strong association (P = 4.22 × 10-15) at chromosome 12. Autozygosity mapping enabled us to pinpoint the causal mutation on a 1.11 Mb haplotype located between 3,473,632 and 4,587,759 bp. The haplotype carries an intronic 13-bp deletion (Chr12:3,556,401-3,556,414 bp) that is compatible with recessive inheritance. The 13-bp deletion excises the polypyrimidine tract upstream exon 56 of DNAH17 (XM_021066525.1: c.8510-17_8510-5del) encoding dynein axonemal heavy chain 17. Transcriptome analysis of the testis of two affected boars revealed that the loss of the polypyrimidine tract causes exon skipping which results in the in-frame loss of 89 amino acids from DNAH17. Disruption of DNAH17 impairs the assembly of the flagellar axoneme and manifests in multiple morphological abnormalities of the sperm flagella. Direct gene testing may now be implemented to monitor the defective allele in the Swiss Large White population and prevent the frequent manifestation of a sterilizing sperm tail disorder in breeding boars.
Collapse
Affiliation(s)
- Adéla Nosková
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
| | - Maya Hiltpold
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
| | - Fredi Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Echtermann
- Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Zih-Hua Fang
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
| | - Xaver Sidler
- Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Stefan Neuenschwander
- Animal Genetics, Institute of Agricultural Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
| |
Collapse
|
16
|
Özbek M, Hitit M, Kaya A, Jousan FD, Memili E. Sperm Functional Genome Associated With Bull Fertility. Front Vet Sci 2021; 8:610888. [PMID: 34250055 PMCID: PMC8262648 DOI: 10.3389/fvets.2021.610888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Bull fertility is an important economic trait in sustainable cattle production, as infertile or subfertile bulls give rise to large economic losses. Current methods to assess bull fertility are tedious and not totally accurate. The massive collection of functional data analyses, including genomics, proteomics, metabolomics, transcriptomics, and epigenomics, helps researchers generate extensive knowledge to better understand the unraveling physiological mechanisms underlying subpar male fertility. This review focuses on the sperm phenomes of the functional genome and epigenome that are associated with bull fertility. Findings from multiple sources were integrated to generate new knowledge that is transferable to applied andrology. Diverse methods encompassing analyses of molecular and cellular dynamics in the fertility-associated molecules and conventional sperm parameters can be considered an effective approach to determine bull fertility for efficient and sustainable cattle production. In addition to gene expression information, we also provide methodological information, which is important for the rigor and reliability of the studies. Fertility is a complex trait influenced by several factors and has low heritability, although heritability of scrotal circumference is high and that it is a known fertility maker. There is a need for new knowledge on the expression levels and functions of sperm RNA, proteins, and metabolites. The new knowledge can shed light on additional fertility markers that can be used in combination with scrotal circumference to predict the fertility of breeding bulls. This review provides a comprehensive review of sperm functional characteristics or phenotypes associated with bull fertility.
Collapse
Affiliation(s)
- Memmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Abdullah Kaya
- Department of Artificial Insemination and Reproduction, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Frank Dean Jousan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
17
|
Terán E, Azcona F, Ramón M, Molina A, Dorado J, Hidalgo M, Ross P, Goszczynski D, Demyda-Peyrás S. Sperm morphometry is affected by increased inbreeding in the Retinta cattle breed: A molecular approach. Mol Reprod Dev 2021; 88:416-426. [PMID: 34009693 DOI: 10.1002/mrd.23475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
The effect of inbreeding depression on sperm motility is well documented, but its influence on sperm morphometry has been scarcely examined to date. Here, we combined the use of computer-assisted sperm morphometry analysis (CASMA) with a SNP-based genomic approach to determine and characterize the effect of inbreeding on the sperm shape of a highly inbred cattle population. We determined seven morphometric parameters on frozen-thawed sperm samples of 57 Retinta bulls: length (L, µm), width (W, µm), area (A, µm2 ), perimeter (P, µm), ellipticity (ELI; L/W), elongation (L-W)/(L + W) and perimeter-to-area shape factor (p2a; P2 /4 × π × A). The comparison of highly inbred (HI) and lowly inbreed (LI) individuals based on runs of homozygosity (ROH) inbreeding values (F ROH ) showed no differences between groups. An additional two-step unsupervised sperm subpopulation analysis based on morphometric parameters showed significant differences in the abundance of different sperm subpopulations between groups (p < 0.05). This analysis revealed that HI bulls harbored a higher percentage of narrow-head sperm as opposed to the higher percentage of large- and round-headed sperm detected in LI. A further genomic characterization revealed 23 regions differentially affected by inbreeding in both groups, detecting six genes (SPAG6, ARMC3, PARK7, VAMP3, DYNLRB2, and PHF7) previously related to different spermatogenesis-associated processes.
Collapse
Affiliation(s)
- Ester Terán
- IGEVET - Instituto de Genética Veterinaria, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina.,Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Florencia Azcona
- IGEVET - Instituto de Genética Veterinaria, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Manuel Ramón
- CERSYRA-Centro Regional de Selección y Reproducción Animal de Castilla-La Mancha, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Valdepeñas, España
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, España
| | - Jesús Dorado
- Grupo de Reproducción Veterinaria, Departamento de Medicina y Cirugía animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, España
| | - Manuel Hidalgo
- Grupo de Reproducción Veterinaria, Departamento de Medicina y Cirugía animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, España
| | - Pablo Ross
- Department of Animal Science, University of California at Davis, Davis, California, USA
| | - Daniel Goszczynski
- Department of Animal Science, University of California at Davis, Davis, California, USA
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
18
|
Hiltpold M, Kadri NK, Janett F, Witschi U, Schmitz-Hsu F, Pausch H. Autosomal recessive loci contribute significantly to quantitative variation of male fertility in a dairy cattle population. BMC Genomics 2021; 22:225. [PMID: 33784962 PMCID: PMC8010996 DOI: 10.1186/s12864-021-07523-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cattle are ideally suited to investigate the genetics of male fertility. Semen from individual bulls is used for thousands of artificial inseminations for which the fertilization success is monitored. Results from the breeding soundness examination and repeated observations of semen quality complement the fertility evaluation for each bull. RESULTS In a cohort of 3881 Brown Swiss bulls that had genotypes at 683,609 SNPs, we reveal four novel recessive QTL for male fertility on BTA1, 18, 25, and 26 using haplotype-based association testing. A QTL for bull fertility on BTA1 is also associated with sperm head shape anomalies. All other QTL are not associated with any of the semen quality traits investigated. We perform complementary fine-mapping approaches using publicly available transcriptomes as well as whole-genome sequencing data of 125 Brown Swiss bulls to reveal candidate causal variants. We show that missense or nonsense variants in SPATA16, VWA3A, ENSBTAG00000006717 and ENSBTAG00000019919 are in linkage disequilibrium with the QTL. Using whole-genome sequence data, we detect strong association (P = 4.83 × 10- 12) of a missense variant (p.Ile193Met) in SPATA16 with male fertility. However, non-coding variants exhibit stronger association at all QTL suggesting that variants in regulatory regions contribute to variation in bull fertility. CONCLUSION Our findings in a dairy cattle population provide evidence that recessive variants may contribute substantially to quantitative variation in male fertility in mammals. Detecting causal variants that underpin variation in male fertility remains difficult because the most strongly associated variants reside in poorly annotated non-coding regions.
Collapse
Affiliation(s)
- Maya Hiltpold
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland.
| | - Naveen Kumar Kadri
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | - Fredi Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | | | | | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| |
Collapse
|
19
|
Wang Z, Pan Y, He L, Song X, Chen H, Pan C, Qu L, Zhu H, Lan X. Multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes: The relationships between genetic variation and litter size in goats. Gene 2020; 753:144778. [DOI: 10.1016/j.gene.2020.144778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
|
20
|
Hiltpold M, Niu G, Kadri NK, Crysnanto D, Fang ZH, Spengeler M, Schmitz-Hsu F, Fuerst C, Schwarzenbacher H, Seefried FR, Seehusen F, Witschi U, Schnieke A, Fries R, Bollwein H, Flisikowski K, Pausch H. Activation of cryptic splicing in bovine WDR19 is associated with reduced semen quality and male fertility. PLoS Genet 2020; 16:e1008804. [PMID: 32407316 PMCID: PMC7252675 DOI: 10.1371/journal.pgen.1008804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/27/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cattle are ideally suited to investigate the genetics of male reproduction, because semen quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed 26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentration, sperm motility, sperm head and tail anomalies and insemination success. The heritability of the six semen traits was between 0 and 0.26. Genome-wide association testing on 607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm motility (P = 2.5 x 10−27), head (P = 2.0 x 10−44) and tail anomalies (P = 7.2 x 10−49) and insemination success (P = 9.9 x 10−13). The QTL harbors a recessive allele that compromises semen quality and male fertility. We replicated the effect of the QTL on fertility (P = 7.1 x 10−32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of whole-genome sequencing data revealed that a synonymous variant (BTA6:58373887C>T, rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage disequilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a constituent of the intraflagellar transport complex that is essential for the physiological function of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolutionarily conserved amino acids from WDR19. Western blot analysis demonstrated that the BTA6:58373887 T-allele decreases protein expression. We make the remarkable observation that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887 T-allele has a frequency of 24% in the Brown Swiss population. Our findings are the first to uncover a variant that is associated with quantitative variation in semen quality and male fertility in cattle. In cattle farming, artificial insemination is the most common method of breeding. To ensure high fertilization rates, ejaculate quality and insemination success are closely monitored in artificial insemination bulls. We analyse semen quality, insemination success and microarray-called genotypes at more than 600,000 genome-wide SNP markers of 794 bulls to identify a recessive allele that compromises semen quality. We take advantage of whole-genome sequencing to pinpoint a variant in the coding sequence of WDR19 encoding WD repeat-containing protein 19 that activates a novel exonic splice site. Our results indicate that cryptic splicing in WDR19 is associated with reduced male reproductive performance. This is the first report of a variant that contributes to quantitative variation in bovine semen quality.
Collapse
Affiliation(s)
| | - Guanglin Niu
- Livestock Biotechnology, TU München, Freising, Germany
| | | | | | - Zih-Hua Fang
- Animal Genomics, ETH Zürich, Lindau, Switzerland
| | | | | | | | | | | | - Frauke Seehusen
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | | | - Ruedi Fries
- Animal Breeding, TU München, Freising, Germany
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, University of Zurich, Zürich, Switzerland
| | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Lindau, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Shan S, Xu F, Bleyer M, Becker S, Melbaum T, Wemheuer W, Hirschfeld M, Wacker C, Zhao S, Schütz E, Brenig B. Association of α/β-Hydrolase D16B with Bovine Conception Rate and Sperm Plasma Membrane Lipid Composition. Int J Mol Sci 2020; 21:E627. [PMID: 31963602 PMCID: PMC7014312 DOI: 10.3390/ijms21020627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/01/2023] Open
Abstract
We have identified a Holstein sire named Tarantino who had been approved for artificial insemination that is based on normal semen characteristics (i.e., morphology, thermoresistance, motility, sperm concentration), but had no progeny after 412 first inseminations, resulting in a non-return rate (NRdev) of -29. Using whole genome association analysis and next generation sequencing, an associated nonsense variant in the α/β-hydrolase domain-containing 16B gene (ABHD16B) on bovine chromosome 13 was identified. The frequency of the mutant allele in the German Holstein population was determined to be 0.0018 in 222,645 investigated cattle specimens. The mutant allele was traced back to Whirlhill Kingpin (bornFeb. 13th, 1959) as potential founder. The expression of ABHD16B was detected by Western blotting and immunohistochemistry in testis and epididymis of control bulls. A lipidome comparison of the plasma membrane of fresh semen from carriers and controls showed significant differences in the concentration of phosphatidylcholine (PC), diacylglycerol (DAG), ceramide (Cer), sphingomyelin (SM), and phosphatidylcholine (-ether) (PC O-), indicating that ABHD16B plays a role in lipid biosynthesis. The altered lipid contents may explain the reduced fertilization ability of mutated sperms.
Collapse
Affiliation(s)
- Shuwen Shan
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
| | - Fangzheng Xu
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
| | - Martina Bleyer
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research Goettingen, 37077 Goettingen, Germany
| | - Svenja Becker
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
| | - Torben Melbaum
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
| | - Wilhelm Wemheuer
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
| | - Marc Hirschfeld
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Christin Wacker
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
| | - Shuhong Zhao
- Key Lab of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ekkehard Schütz
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Goettingen, 37077 Goettingen, Germany
| |
Collapse
|
22
|
Fouchécourt S, Picolo F, Elis S, Lécureuil C, Thélie A, Govoroun M, Brégeon M, Papillier P, Lareyre JJ, Monget P. An evolutionary approach to recover genes predominantly expressed in the testes of the zebrafish, chicken and mouse. BMC Evol Biol 2019; 19:137. [PMID: 31269894 PMCID: PMC6609395 DOI: 10.1186/s12862-019-1462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 11/15/2022] Open
Abstract
Background Previously, we have demonstrated that genes involved in ovarian function are highly conserved throughout evolution. In this study, we aimed to document the conservation of genes involved in spermatogenesis from flies to vertebrates and their expression profiles in vertebrates. Results We retrieved 379 Drosophila melanogaster genes that are functionally involved in male reproduction according to their mutant phenotypes and listed their vertebrate orthologs. 83% of the fly genes have at least one vertebrate ortholog for a total of 625 mouse orthologs. This conservation percentage is almost twice as high as the 42% rate for the whole fly genome and is similar to that previously found for genes preferentially expressed in ovaries. Of the 625 mouse orthologs, we selected 68 mouse genes of interest, 42 of which exhibited a predominant relative expression in testes and 26 were their paralogs. These 68 mouse genes exhibited 144 and 60 orthologs in chicken and zebrafish, respectively, gathered in 28 groups of paralogs. Almost two thirds of the chicken orthologs and half of the zebrafish orthologs exhibited a relative expression ≥50% in testis. Finally, our focus on functional in silico data demonstrated that most of these genes were involved in the germ cell process, primarily in structure elaboration/maintenance and in acid nucleic metabolism. Conclusion Our work confirms that the genes involved in germ cell development are highly conserved across evolution in vertebrates and invertebrates and display a high rate of conservation of preferential testicular expression among vertebrates. Among the genes highlighted in this study, three mouse genes (Lrrc46, Pabpc6 and Pkd2l1) have not previously been described in the testes, neither their zebrafish nor chicken orthologs. The phylogenetic approach developed in this study finally allows considering new testicular genes for further fundamental studies in vertebrates, including model species (mouse and zebrafish). Electronic supplementary material The online version of this article (10.1186/s12862-019-1462-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Floriane Picolo
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Sébastien Elis
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, 37200, Tours, France
| | - Aurore Thélie
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Marina Govoroun
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Mégane Brégeon
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Pascal Papillier
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Jean-Jacques Lareyre
- INRA, UPR 1037, Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, cedex, 35042, Rennes, France
| | - Philippe Monget
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
23
|
Kaundun SS, Marchegiani E, Hutchings SJ, Baker K. Derived Polymorphic Amplified Cleaved Sequence (dPACS): A Novel PCR-RFLP Procedure for Detecting Known Single Nucleotide and Deletion-Insertion Polymorphisms. Int J Mol Sci 2019; 20:E3193. [PMID: 31261867 PMCID: PMC6651057 DOI: 10.3390/ijms20133193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Most methods developed for detecting known single nucleotide polymorphisms (SNP) and deletion-insertion polymorphisms (DIP) are dependent on sequence conservation around the SNP/DIP and are therefore not suitable for application to heterogeneous organisms. Here we describe a novel, versatile and simple PCR-RFLP procedure baptised 'derived Polymorphic Amplified Cleaved Sequence' (dPACS) for genotyping individual samples. The notable advantage of the method is that it employs a pair of primers that cover the entire fragment to be amplified except for one or few diagnostic bases around the SNP/DIP being investigated. As such, it provides greater opportunities to introduce mismatches in one or both of the 35-55 bp primers for creating a restriction site that unambiguously differentiates wild from mutant sequences following PCR-RFLP and horizontal MetaPhorTM gel electrophoresis. Selection of effective restriction enzymes and primers is aided by the newly developed dPACS 1.0 software. The highly transferable dPACS procedure is exemplified here with the positive detection (in up to 24 grass and broadleaf species tested) of wild type proline106 of 5-enolpyruvylshikimate-3-phosphate synthase and its serine, threonine and alanine variants that confer resistance to glyphosate, and serine264 and isoleucine2041 which are key target-site determinants for weed sensitivities to some photosystem II and acetyl-CoA carboxylase inhibiting herbicides, respectively.
Collapse
Affiliation(s)
- Shiv Shankhar Kaundun
- Herbicide Bioscience, Syngenta Ltd., Jealott's Hill International Research Centre, RG42 6EY Bracknell, UK.
| | - Elisabetta Marchegiani
- Herbicide Bioscience, Syngenta Ltd., Jealott's Hill International Research Centre, RG42 6EY Bracknell, UK
| | - Sarah-Jane Hutchings
- Herbicide Bioscience, Syngenta Ltd., Jealott's Hill International Research Centre, RG42 6EY Bracknell, UK
| | - Ken Baker
- General Bioinformatics, Jealott's Hill International Research Centre, RG42 6EY Bracknell, UK
| |
Collapse
|
24
|
CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS One 2019; 14:e0216705. [PMID: 31095607 PMCID: PMC6522010 DOI: 10.1371/journal.pone.0216705] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.
Collapse
|
25
|
Liu C, Lv M, He X, Zhu Y, Amiri-Yekta A, Li W, Wu H, Kherraf ZE, Liu W, Zhang J, Tan Q, Tang S, Zhu YJ, Zhong Y, Li C, Tian S, Zhang Z, Jin L, Ray P, Zhang F, Cao Y. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J Med Genet 2019; 57:31-37. [PMID: 31048344 DOI: 10.1136/jmedgenet-2019-106011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Male infertility due to multiple morphological abnormalities of the sperm flagella (MMAF) is a genetically heterogeneous disorder. Previous studies revealed several MMAF-associated genes, which account for approximately 60% of human MMAF cases. The pathogenic mechanisms of MMAF remain to be illuminated. METHODS AND RESULTS We conducted genetic analyses using whole-exome sequencing in 50 Han Chinese probands with MMAF. Two homozygous stop-gain variants (c.910C>T (p.Arg304*) and c.3400delA (p.Ile1134Serfs*13)) of the SPEF2 (sperm flagellar 2) gene were identified in two unrelated consanguineous families. Consistently, an Iranian subject from another cohort also carried a homozygous SPEF2 stop-gain variant (c.3240delT (p.Phe1080Leufs*2)). All these variants affected the long SPEF2 transcripts that are expressed in the testis and encode the IFT20 (intraflagellar transport 20) binding domain, important for sperm tail development. Notably, previous animal studies reported spontaneous mutations of SPEF2 causing sperm tail defects in bulls and pigs. Our further functional studies using immunofluorescence assays showed the absence or a remarkably reduced staining of SPEF2 and of the MMAF-associated CFAP69 protein in the spermatozoa from SPEF2-affected subjects. CONCLUSIONS We identified SPEF2 as a novel gene for human MMAF across the populations. Functional analyses suggested that the deficiency of SPEF2 in the mutated subjects could alter the localisation of other axonemal proteins.
Collapse
Affiliation(s)
- Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yong Zhu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Amir Amiri-Yekta
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble, UM GI-DPI, Grenoble, France.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Weiyu Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Zine-Eddine Kherraf
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble, UM GI-DPI, Grenoble, France
| | - Wangjie Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yong-Jun Zhu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yading Zhong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Caihua Li
- Genesky Biotechnologies Inc, Shanghai, China
| | - Shixiong Tian
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Pierre Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble, UM GI-DPI, Grenoble, France
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| |
Collapse
|
26
|
Iso-Touru T, Wurmser C, Venhoranta H, Hiltpold M, Savolainen T, Sironen A, Fischer K, Flisikowski K, Fries R, Vicente-Carrillo A, Alvarez-Rodriguez M, Nagy S, Mutikainen M, Peippo J, Taponen J, Sahana G, Guldbrandtsen B, Simonen H, Rodriguez-Martinez H, Andersson M, Pausch H. A splice donor variant in CCDC189 is associated with asthenospermia in Nordic Red dairy cattle. BMC Genomics 2019; 20:286. [PMID: 30975085 PMCID: PMC6460654 DOI: 10.1186/s12864-019-5628-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background Cattle populations are highly amenable to the genetic mapping of male reproductive traits because longitudinal data on ejaculate quality and dense microarray-derived genotypes are available for thousands of artificial insemination bulls. Two young Nordic Red bulls delivered sperm with low progressive motility (i.e., asthenospermia) during a semen collection period of more than four months. The bulls were related through a common ancestor on both their paternal and maternal ancestry. Thus, a recessive mode of inheritance of asthenospermia was suspected. Results Both bulls were genotyped at 54,001 SNPs using the Illumina BovineSNP50 Bead chip. A scan for autozygosity revealed that they were identical by descent for a 2.98 Mb segment located on bovine chromosome 25. This haplotype was not found in the homozygous state in 8557 fertile bulls although five homozygous haplotype carriers were expected (P = 0.018). Whole genome-sequencing uncovered that both asthenospermic bulls were homozygous for a mutation that disrupts a canonical 5′ splice donor site of CCDC189 encoding the coiled-coil domain containing protein 189. Transcription analysis showed that the derived allele activates a cryptic splice site resulting in a frameshift and premature termination of translation. The mutated CCDC189 protein is truncated by more than 40%, thus lacking the flagellar C1a complex subunit C1a-32 that is supposed to modulate the physiological movement of the sperm flagella. The mutant allele occurs at a frequency of 2.5% in Nordic Red cattle. Conclusions Our study in cattle uncovered that CCDC189 is required for physiological movement of sperm flagella thus enabling active progression of spermatozoa and fertilization. A direct gene test may be implemented to monitor the asthenospermia-associated allele and prevent the birth of homozygous bulls that are infertile. Our results have been integrated in the Online Mendelian Inheritance in Animals (OMIA) database (https://omia.org/OMIA002167/9913/). Electronic supplementary material The online version of this article (10.1186/s12864-019-5628-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Terhi Iso-Touru
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Christine Wurmser
- Chair of Animal Breeding, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | | | - Maya Hiltpold
- Animal Genomics, ETH Zurich, 8001, Zurich, Switzerland
| | | | - Anu Sironen
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Konrad Fischer
- Chair of Livestock Biotechnology, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | - Ruedi Fries
- Chair of Animal Breeding, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | | | - Manuel Alvarez-Rodriguez
- Department of Clinical and Experimental Medicine, Linköping University, 58183, Linköping, Sweden
| | | | - Mervi Mutikainen
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Jaana Peippo
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | | | - Goutam Sahana
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | | | | | | | - Hubert Pausch
- Animal Genomics, ETH Zurich, 8001, Zurich, Switzerland.
| |
Collapse
|
27
|
Coutton C, Martinez G, Kherraf ZE, Amiri-Yekta A, Boguenet M, Saut A, He X, Zhang F, Cristou-Kent M, Escoffier J, Bidart M, Satre V, Conne B, Fourati Ben Mustapha S, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Pernet-Gallay K, Bonhivers M, Hennebicq S, Rives N, Dulioust E, Touré A, Gourabi H, Cao Y, Zouari R, Hosseini SH, Nef S, Thierry-Mieg N, Arnoult C, Ray PF. Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. Am J Hum Genet 2019; 104:331-340. [PMID: 30686508 DOI: 10.1016/j.ajhg.2018.12.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022] Open
Abstract
Male infertility is a major health concern. Among its different causes, multiple morphological abnormalities of the flagella (MMAF) induces asthenozoospermia and is one of the most severe forms of qualitative sperm defects. Sperm of affected men display short, coiled, absent, and/or irregular flagella. To date, six genes (DNAH1, CFAP43, CFAP44, CFAP69, FSIP2, and WDR66) have been found to be recurrently associated with MMAF, but more than half of the cases analyzed remain unresolved, suggesting that many yet-uncharacterized gene defects account for this phenotype. Here, whole-exome sequencing (WES) was performed on 168 infertile men who had a typical MMAF phenotype. Five unrelated affected individuals carried a homozygous deleterious mutation in ARMC2, a gene not previously linked to the MMAF phenotype. Using the CRISPR-Cas9 technique, we generated homozygous Armc2 mutant mice, which also presented an MMAF phenotype, thus confirming the involvement of ARMC2 in human MMAF. Immunostaining experiments in AMRC2-mutated individuals and mutant mice evidenced the absence of the axonemal central pair complex (CPC) proteins SPAG6 and SPEF2, whereas the other tested axonemal and peri-axonemal components were present, suggesting that ARMC2 is involved in CPC assembly and/or stability. Overall, we showed that bi-allelic mutations in ARMC2 cause male infertility in humans and mice by inducing a typical MMAF phenotype, indicating that this gene is necessary for sperm flagellum structure and assembly.
Collapse
Affiliation(s)
- Charles Coutton
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; Unité Médicale (UM) de Génétique Chromosomique, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble 38000, France.
| | - Guillaume Martinez
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; Unité Médicale (UM) de Génétique Chromosomique, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble 38000, France
| | - Zine-Eddine Kherraf
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; Unité Médicale de génétique de l'infertilité et de diagnostic pré-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble 38000, France
| | - Amir Amiri-Yekta
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; Unité Médicale de génétique de l'infertilité et de diagnostic pré-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble 38000, France; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, the Academic Center for Education, Culture, and Research, PO Box 16635-148, Tehran, Iran
| | - Magalie Boguenet
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France
| | - Antoine Saut
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France
| | - Xiaojin He
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Feng Zhang
- Institute of Metabolism and Integrative Biology, Obstetrics and Gynecology Hospital, School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Marie Cristou-Kent
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France
| | - Jessica Escoffier
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France
| | - Marie Bidart
- Clinatec, Pôle Recherche, Inserm UMR 1205, Centre Hospitalier Universitaire Grenoble, Alpes, Université Grenoble Alpes, Grenoble 38000, France
| | - Véronique Satre
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; Unité Médicale (UM) de Génétique Chromosomique, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble 38000, France
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | | | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis 1003, Tunisia
| | - Ouafi Marrakchi
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis 1003, Tunisia
| | - Mounir Makni
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis 1003, Tunisia
| | - Habib Latrous
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis 1003, Tunisia
| | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis 1003, Tunisia
| | | | - Mélanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, Centre National de la Recherche Scientifique UMR 5234, Bordeaux 33000, France
| | - Sylviane Hennebicq
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; Unité fonctionnelle de Biologie de la Procréation, Centre Hospitalier Universitaire de Grenoble, Grenoble 38000, France
| | - Nathalie Rives
- EA 4308 Gametogenesis and Gamete Quality, Department of Reproductive Biology-CECOS, Rouen University Hospital, UNIROUEN, Normandie Université, 76000 Rouen, France; Institut de Recherche en Santé, Environnement, et Travail, Inserm U1085, Université de Rennes 1, Rennes, France
| | - Emmanuel Dulioust
- Laboratoire d'Histologie Embryologie et de la Biologie de la Reproduction, Groupe Hospitalier Cochin, Broca, et Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Aminata Touré
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Inserm U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR 8104, Paris 75014, France
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, the Academic Center for Education, Culture, and Research, PO Box 16635-148, Tehran, Iran
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis 1003, Tunisia
| | - Seyedeh Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, the Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Nicolas Thierry-Mieg
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, Téchniques de l'Ingénierie Médicale et de la Complexité et Informatiques, Mathématiques, Applications, Grenoble (TIMC-IMAG), Biologie Computationnelle et Mathématique (BCM), 38000 Grenoble 38000, France
| | - Christophe Arnoult
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France
| | - Pierre F Ray
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; Unité Médicale de génétique de l'infertilité et de diagnostic pré-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble 38000, France.
| |
Collapse
|
28
|
Liang S, Liu D, Li X, Wei M, Yu X, Li Q, Ma H, Zhang Z, Qin Z. SOX2 participates in spermatogenesis of Zhikong scallop Chlamys farreri. Sci Rep 2019; 9:76. [PMID: 30635613 PMCID: PMC6329761 DOI: 10.1038/s41598-018-35983-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/13/2018] [Indexed: 01/25/2023] Open
Abstract
As an important transcription factor, SOX2 involves in embryogenesis, maintenance of stem cells and proliferation of primordial germ cell (PGC). However, little was known about its function in mature gonads. Herein, we investigated the SOX2 gene profiles in testis of scallop, Chlamys farreri. The level of C. farreri SOX2 (Cf-SOX2) mRNA increased gradually along with gonadal development and reached the peak at mature stage, and was located in all germ cells, including spermatogonia, spermatocytes, spermatids and spermatozoa. Knockdown of Cf-SOX2 using RNAi leaded to a mass of germ cells lost, and only a few spermatogonia retained in the nearly empty testicular acini after 21 days. TUNEL assay showed that apoptosis occurred in spermatocytes. Furthermore, transcriptome profiles of the testes were compared between Cf-SOX2 knockdown and normal scallops, 131,340 unigenes were obtained and 2,067 differential expression genes (DEGs) were identified. GO and KEGG analysis showed that most DEGs were related to cell apoptosis (casp2, casp3, casp8), cell proliferation (samd9, crebzf, iqsec1) and spermatogenesis (htt, tusc3, zmynd10, nipbl, mfge8), and enriched in p53, TNF and apoptosis pathways. Our study revealed Cf-SOX2 is essential in spermatogenesis and testis development of C. farreri and provided important clues for better understanding of SOX2 regulatory mechanisms in bivalve testis.
Collapse
Affiliation(s)
- Shaoshuai Liang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,The Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaohan Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huixin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
29
|
Gul IS, Hulpiau P, Saeys Y, van Roy F. Metazoan evolution of the armadillo repeat superfamily. Cell Mol Life Sci 2017; 74:525-541. [PMID: 27497926 PMCID: PMC11107757 DOI: 10.1007/s00018-016-2319-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023]
Abstract
The superfamily of armadillo repeat proteins is a fascinating archetype of modular-binding proteins involved in various fundamental cellular processes, including cell-cell adhesion, cytoskeletal organization, nuclear import, and molecular signaling. Despite their diverse functions, they all share tandem armadillo (ARM) repeats, which stack together to form a conserved three-dimensional structure. This superhelical armadillo structure enables them to interact with distinct partners by wrapping around them. Despite the important functional roles of this superfamily, a comprehensive analysis of the composition, classification, and phylogeny of this protein superfamily has not been reported. Furthermore, relatively little is known about a subset of ARM proteins, and some of the current annotations of armadillo repeats are incomplete or incorrect, often due to high similarity with HEAT repeats. We identified the entire armadillo repeat superfamily repertoire in the human genome, annotated each armadillo repeat, and performed an extensive evolutionary analysis of the armadillo repeat proteins in both metazoan and premetazoan species. Phylogenetic analyses of the superfamily classified them into several discrete branches with members showing significant sequence homology, and often also related functions. Interestingly, the phylogenetic structure of the superfamily revealed that about 30 % of the members predate metazoans and represent an ancient subset, which is gradually evolving to acquire complex and highly diverse functions.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium
| | - Paco Hulpiau
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Inflammation Research Center (IRC), VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|