1
|
Igonina TN, Voronkova OM, Ragaeva DS, Brusentsev EY, Rozhkova IN, Kolosova NG, Amstislavsky SY. Effects of the Maternal Environment on Early Postnatal Development in OXYS Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2023. [DOI: 10.1007/s11055-023-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 08/04/2023]
|
2
|
Calorie Restriction Provides Kidney Ischemic Tolerance in Senescence-Accelerated OXYS Rats. Int J Mol Sci 2022; 23:ijms232315224. [PMID: 36499550 PMCID: PMC9735762 DOI: 10.3390/ijms232315224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases belong to a group of pathologies, which are most common among elderly people. With age, even outwardly healthy organisms start to exhibit some age-related changes in the renal tissue, which reduce the filtration function of kidneys and increase the susceptibility to injury. The therapy of acute kidney injury (AKI) is aggravated by the absence of targeted pharmacotherapies thus yielding high mortality of patients with AKI. In this study, we analyzed the protective effects of calorie restriction (CR) against ischemic AKI in senescence-accelerated OXYS rats. We observed that CR afforded OXYS rats with significant nephroprotection. To uncover molecular mechanisms of CR beneficial effects, we assessed the levels of anti- and proapoptotic proteins of the Bcl-2 family, COX IV, GAPDH, and mitochondrial deacetylase SIRT-3, as well as alterations in total protein acetylation and carbonylation, mitochondrial dynamics (OPA1, Fis1, Drp1) and kidney regeneration pathways (PCNA, GDF11). The activation of autophagy and mitophagy was analyzed by LC3 II/LC3 I ratio, beclin-1, PINK-1, and total mitochondrial protein ubiquitination. Among all considered protective pathways, the improvement of mitochondrial functioning may be suggested as one of the possible mechanisms for beneficial effects of CR.
Collapse
|
3
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
4
|
Rozhkova IN, Brusentsev EY, Igonina TN, Ragaeva DS, Petrova OM, Naprimerov VA, Tikhonova MA, Amstislavskaya TG, Amstislavsky SY. Delayed Effects of Surgery during Early Pregnancy on Brain Development in OXYS Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2020; 50:723-729. [DOI: 10.1007/s11055-020-00960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 08/04/2023]
|
5
|
Devyatkin VA, Redina OE, Muraleva NA, Kolosova NG. Single-Nucleotide Polymorphisms (SNPs) Both Associated with Hypertension and Contributing to Accelerated-Senescence Traits in OXYS Rats. Int J Mol Sci 2020; 21:ijms21103542. [PMID: 32429546 PMCID: PMC7279015 DOI: 10.3390/ijms21103542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/26/2023] Open
Abstract
Aging is a major risk factor of numerous human diseases. Adverse genetic variants may contribute to multiple manifestations of aging and increase the number of comorbid conditions. There is evidence of links between hypertension and age-related diseases, although the genetic relationships are insufficiently studied. Here, we investigated the contribution of hypertension to the development of accelerated-senescence syndrome in OXYS rats. We compared transcriptome sequences of the prefrontal cortex, hippocampus, and retina of OXYS rats with the genotypes of 45 rat strains and substrains (which include models with hypertension) to find single-nucleotide polymorphisms (SNPs) both associated with hypertension and possibly contributing to the development of age-related diseases. A total of 725 polymorphisms were common between OXYS rats and one or more hypertensive rat strains/substrains being analyzed. Multidimensional scaling detected significant similarities between OXYS and ISIAH rat genotypes and significant differences between these strains and the other hypertensive rat strains/substrains. Nonetheless, similar sets of SNPs produce a different phenotype in OXYS and ISIAH rats depending on hypertension severity. We identified 13 SNPs causing nonsynonymous amino-acid substitutions having a deleterious effect on the structure or function of the corresponding proteins and four SNPs leading to functionally significant structural rearrangements of transcripts in OXYS rats. Among them, SNPs in genes Ephx1, Pla2r1, and Ccdc28b were identified as candidates responsible for the concomitant manifestation of hypertension and signs of accelerated aging in OXYS rats.
Collapse
Affiliation(s)
- Vasiliy A. Devyatkin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., Novosibirsk 630090, Russia; (V.A.D.); (O.E.R.); (N.G.K.)
- Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Olga E. Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., Novosibirsk 630090, Russia; (V.A.D.); (O.E.R.); (N.G.K.)
| | - Natalia A. Muraleva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., Novosibirsk 630090, Russia; (V.A.D.); (O.E.R.); (N.G.K.)
- Correspondence: ; Tel.: +7-(383)-363-4980; Fax: +7-(383)-333-1278
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., Novosibirsk 630090, Russia; (V.A.D.); (O.E.R.); (N.G.K.)
| |
Collapse
|
6
|
Telegina DV, Suvorov GK, Kozhevnikova OS, Kolosova NG. Mechanisms of Neuronal Death in the Cerebral Cortex during Aging and Development of Alzheimer's Disease-Like Pathology in Rats. Int J Mol Sci 2019; 20:E5632. [PMID: 31717998 PMCID: PMC6888576 DOI: 10.3390/ijms20225632] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the commonest type of late-life dementia and damages the cerebral cortex, a vulnerable brain region implicated in memory, emotion, cognition, and decision-making behavior. AD is characterized by progressive neuronal loss, but the mechanisms of cell death at different stages of the disease remain unknown. Here, by means of OXYS rats as an appropriate model of the most common (sporadic) AD form, we studied the main pathways of cell death during development of AD-like pathology, including the preclinical stage. We found that apoptosis is activated at the pre-symptomatic stage (age 20 days) correlating with the retardation of brain development in the OXYS strain early in life. Progression of the AD-like pathology was accompanied by activation of apoptosis and necroptosis resulting from a decline of autophagy-mediated proteostasis. Our results are consistent with the idea that the nature of changes in the pathways of apoptosis, autophagy, and necrosis depends on the stage of AD.
Collapse
Affiliation(s)
- Darya V. Telegina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia; (D.V.T.); (G.K.S.); (O.S.K.)
| | - Gleb K. Suvorov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia; (D.V.T.); (G.K.S.); (O.S.K.)
| | - Oyuna S. Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia; (D.V.T.); (G.K.S.); (O.S.K.)
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia; (D.V.T.); (G.K.S.); (O.S.K.)
- Novosibirsk State University, 1 Pirogova str., Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Kozhevnikova OS, Telegina DV, Tyumentsev MA, Kolosova NG. Disruptions of Autophagy in the Rat Retina with Age During the Development of Age-Related-Macular-Degeneration-like Retinopathy. Int J Mol Sci 2019; 20:E4804. [PMID: 31569675 PMCID: PMC6801580 DOI: 10.3390/ijms20194804] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the main causes of vision impairment in the elderly. Autophagy is the process of delivery of cytoplasmic components into lysosomes for cleavage; its age-related malfunction may contribute to AMD. Here we showed that the development of AMD-like retinopathy in OXYS rats is accompanied by retinal transcriptome changes affecting genes involved in autophagy. These genes are associated with kinase activity, immune processes, and FoxO, mTOR, PI3K-AKT, MAPK, AMPK, and neurotrophin pathways at preclinical and manifestation stages, as well as vesicle transport and processes in lysosomes at the progression stage. We demonstrated a reduced response to autophagy modulation (inhibition or induction) in the OXYS retina at age 16 months: expression of genes Atg5, Atg7, Becn1, Nbr1, Map1lc3b, p62, and Gabarapl1 differed between OXYS and Wistar (control) rats. The impaired reactivity of autophagy was confirmed by a decreased number of autophagosomes under the conditions of blocked autophagosome-lysosomal fusion according to immunohistochemical analysis and transmission electron microscopy. Thus, the development of AMD signs occurs against the background of changes in the expression of autophagy-related genes and a decrease in autophagy reactivity: the ability to enhance autophagic flux in response to stress.
Collapse
Affiliation(s)
- Oyuna S Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, Novosibirsk 630090, Russia.
| | - Darya V Telegina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Mikhail A Tyumentsev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Muraleva NA, Kozhevnikova OS, Fursova AZ, Kolosova NG. Suppression of AMD-Like Pathology by Mitochondria-Targeted Antioxidant SkQ1 Is Associated with a Decrease in the Accumulation of Amyloid β and in mTOR Activity. Antioxidants (Basel) 2019; 8:antiox8060177. [PMID: 31208023 PMCID: PMC6616484 DOI: 10.3390/antiox8060177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 11/01/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible visual impairment and blindness in developed countries, and the molecular pathogenesis of AMD is poorly understood. Recent studies strongly indicate that amyloid β (Aβ) accumulation -found in the brain and a defining feature of Alzheimer's disease-also forms in the retina in both Alzheimer's disease and AMD. The reason why highly neurotoxic proteins of consistently aggregate in the aging retina, and to what extent they contribute to AMD, remains to be fully addressed. Nonetheless, the hypothesis that Aβ is a therapeutic target in AMD is debated. Here, we showed that long-term treatment with SkQ1 (250 nmol/[kg body weight] daily from the age of 1.5 to 22 months) suppressed the development of AMD-like pathology in senescence-accelerated OXYS rats by reducing the level of Aβ and suppressing the activity of mTOR in the retina. Inhibition of mTOR signaling activity, which plays key roles in aging and age-related diseases, can be considered a new mechanism of the prophylactic effect of SkQ1. It seems probable that dietary supplementation with mitochondria-targeted antioxidant SkQ1 can be a good prevention strategy to maintain eye health and possibly a treatment of AMD.
Collapse
Affiliation(s)
- Natalia A Muraleva
- Institute of Cytology and Genetics SB RAS, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia.
| | - Oyuna S Kozhevnikova
- Institute of Cytology and Genetics SB RAS, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia.
| | - Anzhela Z Fursova
- Institute of Cytology and Genetics SB RAS, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia.
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics SB RAS, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia.
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentieva Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
9
|
Telegina DV, Kolosova NG, Kozhevnikova OS. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics 2019; 12:48. [PMID: 30871541 PMCID: PMC6417162 DOI: 10.1186/s12920-019-0493-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a major cause of blindness in developed countries, and the molecular pathogenesis of AMD is poorly understood. A large body of evidence has corroborated the key role of neurotrophins in development, proliferation, differentiation, and survival of retinal cells. Neurotrophin deprivation has been proposed to contribute to retinal-cell death associated with neurodegenerative diseases. Little is known about the expression of the immature form of neurotrophins (proneurotrophins) and their mature form [e.g., nerve growth factor (proNGF and mNGF) and brain-derived neurotrophic factor (proBDNF and mBDNF)] in the retina during physiological aging and against the background of AMD. In addition, cell-specific localization of proteins NGF and BDNF in the retina during AMD development is not clear. Here, we evaluated contributions of the age-related alterations in the neurotrophin system to the development of AMD-like retinopathy in OXYS rats. METHODS Male OXYS rats at preclinical (20 days), early (3 months), and late (18 months) stages of the disease and age-matched male Wistar rats (as controls) were used. We performed immunohistochemical localization of NGF, BDNF, and their receptors TrkA, TrkB, and p75NTR by fluorescence microscopy in retinal sections from OXYS and Wistar rats. RESULTS We found increased NGF staining in Muller cells in 18-month-old OXYS rats (progressive stage of retinopathy). In contrast, we observed only subtle changes in the labeling of mature BDNF (mBDNF) and TrkB during the development of AMD-like retinopathy in OXYS rats. Using colocalization with vimentin and NeuN, we detected a difference in the cell type-specific localization of mBDNF between OXYS and Wistar rats. We showed that the mBDNF protein was located in Muller cells in OXYS rats, whereas in the Wistar retina, mBDNF immunoreactivity was detected in Muller cells and ganglion cells. During the development of AMD-like retinopathy, proBDNF dominated over mBDNF during increasing cell loss in the OXYS retina. CONCLUSIONS These data indicate that alterations in the balance of neurotrophic factors in the retina are involved in the development of AMD-like retinopathy in OXYS rats and confirm their participation in the pathogenesis of AMD in humans.
Collapse
Affiliation(s)
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
10
|
Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats. Biogerontology 2018; 19:223-235. [PMID: 29492791 DOI: 10.1007/s10522-018-9751-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/24/2018] [Indexed: 12/31/2022]
Abstract
Age-related macular degeneration (AMD) is a complex neurodegenerative disease resulting in a loss of central vision in the elderly. It is currently assumed that impairment of autophagy may be one of the key mechanisms leading to AMD. Here we estimated the influence of age-related autophagy alterations in the retina on the development of AMD-like retinopathy in senescence-accelerated OXYS rats. Significant changes in the expression of the autophagy proteins were absent at the age preceding the development of retinopathy (age 20 days). We found increased levels of LC3A/B, Atg7, and Atg12-Atg5 conjugated proteins in the OXYS retina during manifestation of this retinopathy at the age of 3 months. By contrast, in the retina of 18-month-old OXYS rats with a progressive stage of retinopathy, we revealed significantly decreased protein levels of Atg7 and Atg12-Atg5 as compared to age-matched Wistar rats. Simultaneously with perturbation of the autophagic response, the necrosome subunits Ripk1 and Ripk3 were detected in the OXYS retina. The downregulation of autophagy markers coincided with amyloid β accumulation (Moab-2) in the retinal pigment epithelium and choroid. Using high-throughput RNA sequencing, we found a missense single-nucleotide polymorphism (SNP) in the Pik3c2b gene associated with autophagy regulation. This SNP was predicted to significantly affect protein structure. Our data prove participation of the autophagic pathway in the progression of AMD-like retinopathy.
Collapse
|
11
|
Igonina TN, Ragaeva DS, Tikhonova MA, Petrova OM, Herbeck YE, Rozhkova IN, Amstislavskaya TG, Amstislavsky SY. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res 2018; 1681:75-84. [DOI: 10.1016/j.brainres.2017.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/14/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
|
12
|
Orlov YL, Baranova AV, Markel AL. Computational models in genetics at BGRS\SB-2016: introductory note. BMC Genet 2016; 17:155. [PMID: 28105935 PMCID: PMC5249000 DOI: 10.1186/s12863-016-0465-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Yuriy L Orlov
- Institute of Cytology and Genetics SB RAS, Lavrentyeva, 10, 630090, Novosibirsk, Russia. .,Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia.
| | - Ancha V Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA.,Research Centre for Medical Genetics, Moskvorechie 1, Moscow, Russia
| | - Arcady L Markel
- Institute of Cytology and Genetics SB RAS, Lavrentyeva, 10, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia
| |
Collapse
|