1
|
Yao Z, Huang K, Qi Y, Fu J. Does brain size of Asiatic toads (Bufo gargarizans) trade-off with other energetically expensive organs along altitudinal gradients? Evolution 2024; 79:28-37. [PMID: 39303020 DOI: 10.1093/evolut/qpae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Brain size variation is often attributed to energetic trade-offs with other metabolically expensive tissues and organs, which is a prediction of the expensive brain hypothesis (EBH). Here we examine Asiatic toads (Bufo gargarizans) along altitudinal gradients and test size trade-offs between the brain and four visceral organs (heart, liver, alimentary tract, and kidney) with altitude. Body size and scaled mass index (a proxy for total energy intake) decline with altitude, implying stronger energetic constraints at high altitudes. Relative brain size decreases along altitudinal gradients, while visceral organs mostly increase in relative sizes. Using structural equation modeling, a significant negative relationship between brain size and a latent variable "budget," which represents the energy allocation to the four visceral organs, is detected among high-altitudinal toads. Heart appears to have the largest and most consistent response to changes in energy allocation. No such relationships are observed among toads at middle- and low-altitudes, where high energy intake may allow individuals to forego energetic trade-offs. When applying EBH to poikilotherms, a great emphasis should be placed on total energy intake in addition to energy allocation. Future research on EBH will benefit from more intra-specific comparisons and the evaluation of fitness consequences beyond energy limitation.
Collapse
Affiliation(s)
- Zhongyi Yao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kun Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Zuo B, Chen R, Tang X, Shao Y, Liu X, Nneji LM, Sun Y. Genomic Insights Into Genetic Basis of Evolutionary Conservatism and Innovation in Frogs. Integr Zool 2024. [PMID: 39663509 DOI: 10.1111/1749-4877.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Examining closely related species evolving in similar environments offers valuable insights into the mechanisms driving phylogenetic conservatism and evolutionary lability. This can elucidate the intricate relationship between inheritance and environmental factors. Nonetheless, the precise genomic dynamics and molecular underpinnings of this process remain enigmatic. This study explores the evolutionary conservatism and adaptation exhibited by two closely related high-altitude frog species: Nanorana parkeri and N. pleskei. We assembled a high-quality genome for Tibetan N. pleskei and compared it to the genomes of N. parkeri and their lowland relatives. Our findings reveal that these two Tibetan frog species diverged approximately 16.6 million years ago, pointing to a possible ancestral colonization of high-elevation habitats. Following this colonization, significant adaptive evolution occurred in both coding and non-coding regions of the ancestral lineage. This evolution led to notable phenotypic alterations, as evidenced by the reduced body size. Also, due to purifying selection, most ancestral adaptive features persisted in descendant species, indicating a strong element of evolutionary conservatism. However, descendant species evolved novel adaptations to exacerbated environmental challenges in the Tibet Plateau, mainly related to hypoxia response. Furthermore, our analysis underscores the critical role of regulatory variations in descendant adaptive evolution. Notably, hub genes in networks, such as EGLN3, accumulated more variations in regulatory regions as they were transmitted from ancestors to descendants. In sum, our study sheds light on the profound and lasting impact of genetic heritage on species' adaptive evolution.
Collapse
Affiliation(s)
- Bin Zuo
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Rongmei Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaolong Liu
- School of Life Sciences, Southwest University, Chongqing, China
| | - Lotanna M Nneji
- Department of Biology, Howard University, Washington, DC, USA
| | - Yanbo Sun
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
3
|
Niu Y, Zhang X, Zhang H, Men S, Xu T, Ding L, Li X, Wang L, Wang H, Storey KB, Chen Q. Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives. BMC Biol 2024; 22:231. [PMID: 39390465 PMCID: PMC11465660 DOI: 10.1186/s12915-024-02033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. RESULTS Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. CONCLUSIONS Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China.
| | - Xuejing Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haiying Zhang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Shengkang Men
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tisen Xu
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Li Ding
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiangyong Li
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Lei Wang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Huisong Wang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Tan S, Li J, Chen J, Fu J. Context-dependent effects of thermal acclimation on physiological correlates of animal personality in Asiatic toads. Proc Biol Sci 2024; 291:20241012. [PMID: 39079664 PMCID: PMC11288686 DOI: 10.1098/rspb.2024.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
Persistent individual variation in behaviour, or 'personality', is a widespread phenomenon in animals, and understanding the evolution of animal personality is a key task of current biology. Natural selection has been proposed to promote the integration of personality with animal 'intrinsic states', such as metabolic or endocrine traits, and this integration varies with ecological conditions. However, these external ecological modulatory effects have rarely been examined. Here, we investigate the effects of thermal acclimation on between-individual covariations between physiology and behaviour in Asiatic toads (Bufo gargarizans) along an altitudinal gradient. Our results reveal that the thermal modulatory effects on the covariations depend on the altitudinal population. Specifically, at low altitudes, between-individual covariations are highly plastic, with risk-taking behaviour covarying with baseline glucocorticoids (GCs) under warm acclimation, but risk-taking and exploration behaviour covarying with resting metabolic rate (RMR) under cold acclimation. In contrast, between-individual covariations are relatively fixed at high altitudes, with risk-taking behaviour consistently covarying with baseline GCs. Furthermore, at low altitudes, changes in covariations between RMR and personality are associated with adjustment of energy management models. Evidently, animal physiological states that determine or covary with personality can adapt according to the seasonal thermal environment and the thermal evolutionary background of populations. Our findings highlight the importance of a multi-system physiological approach to understand the evolution of animal personality.
Collapse
Affiliation(s)
- Song Tan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
- University of the Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing100049, People’s Republic of China
| | - Juan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
| | - Jingfeng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- University of the Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing100049, People’s Republic of China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- Department of Integrative Biology, University of Guelph, Guelph, OntarioN1G 2W1, Canada
| |
Collapse
|
5
|
Lu B. Evolutionary Insights into the Relationship of Frogs, Salamanders, and Caecilians and Their Adaptive Traits, with an Emphasis on Salamander Regeneration and Longevity. Animals (Basel) 2023; 13:3449. [PMID: 38003067 PMCID: PMC10668855 DOI: 10.3390/ani13223449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The extant amphibians have developed uncanny abilities to adapt to their environment. I compared the genes of amphibians to those of other vertebrates to investigate the genetic changes underlying their unique traits, especially salamanders' regeneration and longevity. Using the well-supported Batrachia tree, I found that salamander genomes have undergone accelerated adaptive evolution, especially for development-related genes. The group-based comparison showed that several genes are under positive selection, rapid evolution, and unexpected parallel evolution with traits shared by distantly related species, such as the tail-regenerative lizard and the longer-lived naked mole rat. The genes, such as EEF1E1, PAFAH1B1, and OGFR, may be involved in salamander regeneration, as they are involved in the apoptotic process, blastema formation, and cell proliferation, respectively. The genes PCNA and SIRT1 may be involved in extending lifespan, as they are involved in DNA repair and histone modification, respectively. Some genes, such as PCNA and OGFR, have dual roles in regeneration and aging, which suggests that these two processes are interconnected. My experiment validated the time course differential expression pattern of SERPINI1 and OGFR, two genes that have evolved in parallel in salamanders and lizards during the regeneration process of salamander limbs. In addition, I found several candidate genes responsible for frogs' frequent vocalization and caecilians' degenerative vision. This study provides much-needed insights into the processes of regeneration and aging, and the discovery of the critical genes paves the way for further functional analysis, which could open up new avenues for exploiting the genetic potential of humans and improving human well-being.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
6
|
Chen Y, Tan S, Fu J. Modified Metabolism and Response to UV Radiation: Gene Expression Variations Along an Elevational Gradient in the Asiatic Toad (Bufo gargarizans). J Mol Evol 2022; 90:389-399. [PMID: 36029325 DOI: 10.1007/s00239-022-10070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
High-elevation adaptation provides an excellent system for examining adaptive evolution, and adaptive variations may manifest at gene expression or any other phenotypic levels. We examined gene expression profiles of Asiatic toads (Bufo gargarizans) along an elevational gradient from both wild and common-garden acclimated populations. Asiatic toads originated from high altitudes have distinctive gene expression patterns. We identified 18 fixed differentially expressed genes (DEGs), which are different in both wild and acclimated samples, and 1217 plastic DEGs, which are different among wild samples. The expression levels of most genes were linearly correlated with altitude gradient and down-regulated in high-altitude populations. Expression variations of several genes associated with metabolic process are fixed, and we also identified a co-expression module that is significantly different between acclimated populations and has functions related to DNA repair. The differential expression of the vast majority genes, however, are due to phenotypic plasticity, revealing the highly plastic nature of gene expression variations. Expression modification of some specific genes related to metabolism and response to UV radiation play crucial role in adaptation to high altitude for Asiatic toads. Common-garden experiments are essential for evaluating adaptive evolution of natural populations.
Collapse
Affiliation(s)
- Ying Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
- The University of Chinese Academy of Science, Beijing, China.
| | - Song Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The University of Chinese Academy of Science, Beijing, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
7
|
Lan Y, He L, Dong X, Tang R, Li W, Wang J, Wang L, Yue B, Price M, Guo T, Fan Z. Comparative transcriptomes of three different skin sites for the Asiatic toad ( Bufo gargarizans). PeerJ 2022; 10:e12993. [PMID: 35223212 PMCID: PMC8877344 DOI: 10.7717/peerj.12993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Toads release toxic dry secretions from glands in their skin. Toxin possesses a wide range of biological effects, but little is known about its specific gene expression pattern and regulatory mechanisms. The Asiatic toad (Bufo gargarizans) is widely used to produce toxin. Here, we explored the gene expression of 30 tissue samples from three different skin sites (parotoid gland, dorsal skin, and abdomen skin) of B. gargarizans. After de novo assembly, 783,130 unigenes with an average length of 489 bp (N50 = 556 bp) were obtained. A total of 9,248 significant differentially expressed genes (DEGs) were detected. There were 8,819 DEGs between the parotoid gland and abdomen skin and 1,299 DEGs between the dorsal skin and abdomen skin, while only 1,283 DEGs were obtained between the parotoid gland and dorsal skin. Through enrichment analysis, it was found that the detected differential gene expressions corresponded to the different functions of different skin sites. Our key findings were the genetic expression of toxin secretion, the protection function of skin, and the related genes such as HSD3B, Cyp2c, and CAT, LGALS9. In conclusion, we provide useful transcript resources to study the gene expression and gene function of B. gargarizans and other amphibians. The detected DEGs between different sites of the skin provided better insights into the genetic mechanisms of toxin secretion and the protection function of skin for amphibians.
Collapse
Affiliation(s)
- Yue Lan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lewei He
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xue Dong
- Department of Ambulatory surgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruixiang Tang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wanyu Li
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lei Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China,Sichuan Engineering Research Center for Medicinal Animals, Xichang, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China,Sichuan Engineering Research Center for Medicinal Animals, Xichang, Sichuan, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, kChengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Pu P, Zhao Y, Niu Z, Cao W, Zhang T, He J, Wang J, Tang X, Chen Q. Comparison of hematological traits and oxygenation properties of hemoglobins from highland and lowland Asiatic toad (Bufo gargarizans). J Comp Physiol B 2021; 191:1019-1029. [PMID: 33876256 DOI: 10.1007/s00360-021-01368-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023]
Abstract
The Asiatic toad (Bufo gargarizans) belonging to the family of Bufonidae (Anura: Amphibia) is successfully residing on the Qinghai-Tibetan Plateau (QTP). To investigate whether the oxygen delivery undergoes adaptive adjustments to high-altitude environments in Asian toads inhabiting the QTP (Zoige County, 3446 m), choosing low-altitude populations (Chengdu City, 500 m) as control, we measured hematological traits, O2 affinities of whole blood, Hb-O2 affinities of purified Hbs, their sensitivities to temperature, and allosteric effectors (H+, Cl- and ATP). Our results showed that high-altitude Asiatic toads possessed significantly increased hemoglobin concentration, hematocrit, and red blood cell count, but significantly decreased erythrocyte volume compared with low-altitude toads. The whole blood and purified Hbs of high-altitude Asiatic toads both exhibited significantly higher O2 affinities compared with low-altitude toads. Substantially increased intrinsic Hb-O2 affinities of high-altitude Asiatic toads Hbs are likely to be the main reason for its elevated Hb-O2 affinities given the anionic cofactor sensitivities of high- and low-altitude toads were similar. The Hbs of high-altitude toads were also characterized by distinctly strong Bohr effects at the low temperature and low-temperature sensitivities. The adaptive adjustments of hematological traits could enhance the blood-O2 carrying capacity of high-altitude Asiatic toads. The increased Hb-O2 affinities could safeguard the pulmonary O2 uploading under hypoxia. The strong Bohr effects at the low temperature could help the release of O2 in metabolic tissues and cold limbs, while low-temperature sensitivity could minimize the effect of temperature fluctuation on the Hb-O2 affinity.
Collapse
Affiliation(s)
- Peng Pu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yao Zhao
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wangjie Cao
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jie He
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinzhou Wang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
9
|
Tan S, Li P, Yao Z, Liu G, Yue B, Fu J, Chen J. Metabolic cold adaptation in the Asiatic toad: intraspecific comparison along an altitudinal gradient. J Comp Physiol B 2021; 191:765-776. [PMID: 34089366 DOI: 10.1007/s00360-021-01381-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
The metabolic cold adaptation (MCA) hypothesis predicts an increase in metabolic rate and thermal sensitivity of poikilotherms from cold environments as compared to those from warm environments, when measured under standardized conditions. This compensatory response is also expected to evolve in life history and behavioral traits if the reductions in these phenotypic traits at low temperature involves in a reduction in fitness. We investigated the extent to which the level of energy intake (measured as feeding rate), energy turnover (measured as standard metabolic rate, SMR) and the energy budget (energy allocation to growth and physical activity) are influenced by climatic conditions in three populations of the Asiatic toad (Bufo gargarizans) distributed across an altitudinal gradient of 1350 m in the Qionglai Mountains of Western China. We found a similar thermal reaction norm of SMR at both population and individual levels; therefore, the data did not support the MCA hypothesis. However, there was a co-gradient variation (CoGV) for mass change rate in which the high and medium altitudinal populations displayed slower mass change rates than their counterparts from low altitudes. Moreover, this CoGV pattern was accompanied by a low feeding rate and high physical activity for the high- and medium-altitude populations. Our results highlight that adjustments in energy intake and energy allocation to behaviors, but not energy allocation to metabolism of maintenance, could act as an energetic strategy to accommodate the varied growth efficiency in Asiatic toads along an altitudinal gradient.
Collapse
Affiliation(s)
- Song Tan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ping Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhongyi Yao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gaohui Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Chinese Research Academy of Environmental Sciences, No.8, Dayangfang, Beiyuan, Beijing, 100012, China
| | - Bisong Yue
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Department of Integrative Biology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Jingfeng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
10
|
Cayuela H, Valenzuela-Sánchez A, Teulier L, Martínez-Solano Í, Léna JP, Merilä J, Muths E, Shine R, Quay L, Denoël M, Clobert J, Schmidt BR. Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: A Review of Pond-Breeding Amphibians. QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/707862] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Gurung PD, Upadhyay AK, Bhardwaj PK, Sowdhamini R, Ramakrishnan U. Transcriptome analysis reveals plasticity in gene regulation due to environmental cues in Primula sikkimensis, a high altitude plant species. BMC Genomics 2019; 20:989. [PMID: 31847812 PMCID: PMC6916092 DOI: 10.1186/s12864-019-6354-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Studying plasticity in gene expression in natural systems is crucial, for predicting and managing the effects of climate change on plant species. To understand the contribution of gene expression level variations to abiotic stress compensation in a Himalaya plant (Primula sikkimensis), we carried out a transplant experiment within (Ambient), and beyond (Below Ambient and Above Ambient) the altitudinal range limit of species. We sequenced nine transcriptomes (three each from each altitudinal range condition) using Illumina sequencing technology. We compared the fitness variation of transplants among three transplant conditions. RESULTS A large number of significantly differentially expressed genes (DEGs) between below ambient versus ambient (109) and above ambient versus ambient (85) were identified. Transcripts involved in plant growth and development were mostly up-regulated in below ambient conditions. Transcripts involved in signalling, defence, and membrane transport were mostly up-regulated in above ambient condition. Pathway analysis revealed that most of the genes involved in metabolic processes, secondary metabolism, and flavonoid biosynthesis were differentially expressed in below ambient conditions, whereas most of the genes involved in photosynthesis and plant hormone signalling were differentially expressed in above ambient conditions. In addition, we observed higher reproductive fitness in transplant individuals at below ambient condition compared to above ambient conditions; contrary to what we expect from the cold adaptive P. sikkimensis plants. CONCLUSIONS We reveal P. sikkimensis's capacity for rapid adaptation to climate change through transcriptome variation, which may facilitate the phenotypic plasticity observed in morphological and life history traits. The genes and pathways identified provide a genetic resource for understanding the temperature stress (both the hot and cold stress) tolerance mechanism of P. sikkimensis in their natural environment.
Collapse
Affiliation(s)
- Priya Darshini Gurung
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
- Manipal University, Manipal, India
| | - Atul Kumar Upadhyay
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
- Present Address: Thapar Institute of Engineering & Technology, Department of Biotechnology, Patiala, Punjab 147004 India
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresource & Sustainable Development, A National Institute under Department of Biotechnology, Ministry of Science & Technology, Government of India, Gangtok, Sikkim 737102 India
- Present address: Institute of Bioresources and Sustainable Development, Meghalaya, 6th Mile, Upper Shillong, Meghalaya 793009 India
| | - Ramanathan Sowdhamini
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
| | - Uma Ramakrishnan
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
| |
Collapse
|
12
|
Lee CY, Hsieh PH, Chiang LM, Chattopadhyay A, Li KY, Lee YF, Lu TP, Lai LC, Lin EC, Lee H, Ding ST, Tsai MH, Chen CY, Chuang EY. Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant. Gigascience 2018; 7:4990948. [PMID: 29722814 PMCID: PMC5941149 DOI: 10.1093/gigascience/giy044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Background The Mikado pheasant (Syrmaticus mikado) is a nearly endangered species indigenous to high-altitude regions of Taiwan. This pheasant provides an opportunity to investigate evolutionary processes following geographic isolation. Currently, the genetic background and adaptive evolution of the Mikado pheasant remain unclear. Results We present the draft genome of the Mikado pheasant, which consists of 1.04 Gb of DNA and 15,972 annotated protein-coding genes. The Mikado pheasant displays expansion and positive selection of genes related to features that contribute to its adaptive evolution, such as energy metabolism, oxygen transport, hemoglobin binding, radiation response, immune response, and DNA repair. To investigate the molecular evolution of the major histocompatibility complex (MHC) across several avian species, 39 putative genes spanning 227 kb on a contiguous region were annotated and manually curated. The MHC loci of the pheasant revealed a high level of synteny, several rapidly evolving genes, and inverse regions compared to the same loci in the chicken. The complete mitochondrial genome was also sequenced, assembled, and compared against four long-tailed pheasants. The results from molecular clock analysis suggest that ancestors of the Mikado pheasant migrated from the north to Taiwan about 3.47 million years ago. Conclusions This study provides a valuable genomic resource for the Mikado pheasant, insights into its adaptation to high altitude, and the evolutionary history of the genus Syrmaticus, which could potentially be useful for future studies that investigate molecular evolution, genomics, ecology, and immunogenetics.
Collapse
Affiliation(s)
- Chien-Yueh Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Ping-Han Hsieh
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Mei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kuan-Yi Li
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Fang Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei 10051, Taiwan
| | - En-Chung Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsinyu Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan University, Taipei, Taiwan
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei 10672, Taiwan
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
13
|
Tokita M, Hasegawa Y, Yano W, Tsuji H. Characterization of the Adaptive Morphology of Japanese Stream Toad (Bufo torrenticola) Using Geometric Morphometrics. Zoolog Sci 2018; 35:99-108. [DOI: 10.2108/zs170099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yuya Hasegawa
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Wataru Yano
- Department of Oral Anatomy, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Hiroshi Tsuji
- Department of Preschool Education, Nagoya College, 48 Takeji, Toyoake, Aichi 470-1193, Japan
| |
Collapse
|