1
|
Igoshin AV, Romashov GA, Yurchenko AA, Yudin NS, Larkin DM. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Animals (Basel) 2024; 14:2059. [PMID: 39061521 PMCID: PMC11274160 DOI: 10.3390/ani14142059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Past and ongoing selection shapes the genomes of livestock breeds. Identifying such signatures of selection allows for uncovering the genetic bases of affected phenotypes, including economically important traits and environmental adaptations, for the further improvement of breed genetics to respond to climate and economic challenges. Turano-Mongolian cattle are a group of taurine breeds known for their adaptation to extreme environmental conditions and outstanding production performance. Buryat Turano-Mongolian cattle are among the few breeds adapted to cold climates and poor forage. Wagyu, on the other hand, is famous for high productivity and unique top-quality marbled meat. We used hapFLK, the de-correlated composite of multiple signals (DCMS), PBS, and FST methods to search for signatures of selection in their genomes. The scans revealed signals in genes related to cold adaptation (e.g., STAT3, DOCK5, GSTM3, and CXCL8) and food digestibility (SI) in the Buryat breed, and growth and development traits (e.g., RBFOX2 and SHOX2) and marbling (e.g., DGAT1, IQGAP2, RSRC1, and DIP2B) in Wagyu. Several putatively selected genes associated with reproduction, immunity, and resistance to pathogens were found in both breed genomes. The results of our work could be used for creating new productive adapted breeds or improving the extant breeds.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 94800 Villejuif, France
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
2
|
Lukic B, Curik I, Drzaic I, Galić V, Shihabi M, Vostry L, Cubric-Curik V. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds. J Anim Sci Biotechnol 2023; 14:142. [PMID: 37932811 PMCID: PMC10626677 DOI: 10.1186/s40104-023-00936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.
Collapse
Affiliation(s)
- Boris Lukic
- Faculty of Agrobiotechnical Sciences Osijek, J.J, Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia.
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia.
| | - Ivana Drzaic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Luboš Vostry
- Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praque, Czech Republic
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| |
Collapse
|
3
|
Yudin NS, Larkin DM. Candidate genes for domestication and resistance to cold climate according to whole genome sequencing data of Russian cattle and sheep breeds. Vavilovskii Zhurnal Genet Selektsii 2023; 27:463-470. [PMID: 37867610 PMCID: PMC10587008 DOI: 10.18699/vjgb-23-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 10/24/2023] Open
Abstract
It is known that different species of animals, when living in the same environmental conditions, can form similar phenotypes. The study of the convergent evolution of several species under the influence of the same environmental factor makes it possible to identify common mechanisms of genetic adaptation. Local cattle and sheep breeds have been formed over thousands of years under the influence of domestication, as well as selection aimed at adaptation to the local environment and meeting human needs. Previously, we identified a number of candidate genes in genome regions potentially selected during domestication and adaptation to the climatic conditions of Russia, in local breeds of cattle and sheep using whole genome genotyping data. However, these data are of low resolution and do not reveal most nucleotide substitutions. The aim of the work was to create, using the whole genome sequencing data, a list of genes associated with domestication, selection and adaptation in Russian cattle and sheep breeds, as well as to identify candidate genes and metabolic pathways for selection for cold adaptation. We used our original data on the search for signatures of selection in the genomes of Russian cattle (Yakut, Kholmogory, Buryat, Wagyu) and sheep (Baikal, Tuva) breeds. We used the HapFLK, DCMS, FST and PBS methods to identify DNA regions with signatures of selection. The number of candidate genes in potentially selective regions was 946 in cattle and 151 in sheep. We showed that the studied Russian cattle and sheep breeds have at least 10 genes in common, apparently involved in the processes of adaptation/selection, including adaptation to a cold climate, including the ASTN2, PM20D1, TMEM176A, and GLIS1 genes. Based on the intersection with the list of selected genes in at least two Arctic/Antarctic mammal species, 20 and 8 genes, have been identified in cattle and sheep, respectively, that are potentially involved in cold adaptation. Among them, the most promising for further research are the ASPH, NCKAP5L, SERPINF1, and SND1 genes. Gene ontology analysis indicated the existence of possible common biochemical pathways for adaptation to cold in domestic and wild mammals associated with cytoskeleton disassembly and apoptosis.
Collapse
Affiliation(s)
- N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
4
|
Tobler R, Souilmi Y, Huber CD, Bean N, Turney CSM, Grey ST, Cooper A. The role of genetic selection and climatic factors in the dispersal of anatomically modern humans out of Africa. Proc Natl Acad Sci U S A 2023; 120:e2213061120. [PMID: 37220274 PMCID: PMC10235988 DOI: 10.1073/pnas.2213061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/14/2023] [Indexed: 05/25/2023] Open
Abstract
The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.
Collapse
Affiliation(s)
- Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Environment Institute, The University of Adelaide, Adelaide, SA5005, Australia
| | - Christian D. Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Nigel Bean
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA5005, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Chris S. M. Turney
- Division of Research, University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Shane T. Grey
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW2052, Australia
- Transplantation Immunology Group, Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Blue Sky Genetics, Ashton, SA5137, Australia
| |
Collapse
|
5
|
Bhardwaj S, Singh S, Ganguly I, Bhatia AK, Dixit SP. Deciphering local adaptation of native Indian cattle ( Bos indicus) breeds using landscape genomics and in-silico prediction of deleterious SNP effects on protein structure and function. 3 Biotech 2023; 13:86. [PMID: 36816754 PMCID: PMC9931982 DOI: 10.1007/s13205-023-03493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
India has 50 registered breeds of native cattle (Bos indicus) which are locally adapted to diverse environmental conditions. This study aimed to investigate the genomic basis of adaptation of native Indian cattle and to predict the impact of key SNPs on the amino acid changes that affect protein function. The Illumina 777 K BovineHD BeadChip was used to genotype 178 native cattle belonging to contrasting landscapes and agro-climatic conditions. The genotype-environment association was investigated with R. SamBada, using 5,74,382 QC passed SNPs and 11 predictor variables (10 multi-collinearity controlled environmental variables and 1 variable as "score of PCA" on ancestry coefficients of individuals). In total, 1,12,780 models were selected as significant (q < 0.05) based on G score. The pathway ontology of the annotated genes revealed many important pathways and genes having a direct and indirect role in cold and hot adaptation. Only ten SNP variants had a SIFT score of < 0.05 (deleterious), and only two of them, each lying in the genes CRYBA1 and USP18, were predicted to be deleterious with high confidence. RaptorX predicted the tertiary structures of proteins encoded by wild and mutant variants of these genes. The quality of the models was determined using Ramachandran plots and RaptorX parameters, indicating that they are accurate. RaptorX and I-Mutant 2.0 softwares revealed significant differences among wild and mutant proteins. Adaptive alleles identified in the present investigation might be responsible for the local adaptation of these cattle breeds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03493-3.
Collapse
Affiliation(s)
- Shivam Bhardwaj
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Sanjeev Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Indrajit Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Avnish Kumar Bhatia
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - S. P. Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| |
Collapse
|
6
|
Assessing Genetic Diversity and Searching for Selection Signatures by Comparison between the Indigenous Livni and Duroc Breeds in Local Livestock of the Central Region of Russia. DIVERSITY 2022. [DOI: 10.3390/d14100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Indigenous pig breeds are mainly associated with the adaptive capacity that is necessary to respond adequately to climate change, food security, and livelihood needs, and natural resources conservation. Livni pigs are an indigenous fat-type breed farmed in a single farm in the Orel region and located in the Central European part of the Russian Federation. To determine the genomic regions and genes that are affected by artificial selection, we conducted the comparative study of two pig breeds with different breeding histories and breeding objectives, i.e., the native fat-type Livni and meat-type Duroc breeds using the Porcine GGP HD BeadChip, which contains ~80,000 SNPs. To check the Livni pigs for possible admixture, the Landrace and the Large White breeds were included into the study of genetic diversity as these breeds participated in the formation of the Livni pigs. We observed the highest level of genetic diversity in Livni pigs compared to commercial breeds (UHE = 0.409 vs. 0.319–0.359, p < 0.001; AR = 1.995 vs. 1.894–1.964, p < 0.001). A slight excess of heterozygotes was found in all of the breeds. We identified 291 candidate genes, which were localized within the regions under putative selection, including 22 and 228 genes, which were specific for Livni and Duroc breeds, respectively, and 41 genes common for both breeds. A detailed analysis of the molecular functions identified the genes, which were related to the formation of meat and fat traits, and adaptation to environmental stress, including extreme temperatures, which were different between breeds. Our research results are useful for conservation and sustainable breeding of Livni breed, which shows a high level of genetic diversity. This makes Livni one of the valuable national pig genetic resources.
Collapse
|
7
|
Wang X, Ran X, Niu X, Huang S, Li S, Wang J. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs. Sci Rep 2022; 12:11823. [PMID: 35821031 PMCID: PMC9276726 DOI: 10.1038/s41598-022-14686-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Xiang pig (XP) is one of the best-known indigenous pig breeds in China, which is characterized by its small body size, strong disease resistance, high adaptability, favorite meat quality, small litter sizes, and early sexual maturity. However, the genomic evidence that links these unique traits of XP is still poorly understood. To identify the genomic signatures of selection in XP, we performed whole-genome resequencing on 25 unrelated individual XPs. We obtained 876.70 Gb of raw data from the genomic libraries. The LD analysis showed that the lowest level of linkage disequilibrium was observed in Xiang pig. Comparative genomic analysis between XPs and other breeds including Tibetan, Meishan, Duroc and Landrace revealed 3062, 1228, 907 and 1519 selected regions, respectively. The genes identified in selected regions of XPs were associated with growth and development processes (IGF1R, PROP1, TBX19, STAC3, RLF, SELENOM, MSTN), immunity and disease resistance (ZCCHC2, SERPINB2, ADGRE5, CYP7B1, STAT6, IL2, CD80, RHBDD3, PIK3IP1), environmental adaptation (NR2E1, SERPINB8, SERPINB10, SLC26A7, MYO1A, SDR9C7, UVSSA, EXPH5, VEGFC, PDE1A), reproduction (CCNB2, TRPM6, EYA3, CYP7B1, LIMK2, RSPO1, ADAM32, SPAG16), meat quality traits (DECR1, EWSR1), and early sexual maturity (TAC3). Through the absolute allele frequency difference (ΔAF) analysis, we explored two population-specific missense mutations occurred in NR6A1 and LTBP2 genes, which well explained that the vertebrae numbers of Xiang pigs were less than that of the European pig breeds. Our results indicated that Xiang pigs were less affected by artificial selection than the European and Meishan pig breeds. The selected candidate genes were mainly involved in growth and development, disease resistance, reproduction, meat quality, and early sexual maturity. This study provided a list of functional candidate genes, as well as a number of genetic variants, which would provide insight into the molecular basis for the unique traits of Xiang pig.
Collapse
Affiliation(s)
- Xiying Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.,Tongren University, Tongren, 554300, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Duarte INH, Bessa AFDO, Rola LD, Genuíno MVH, Rocha IM, Marcondes CR, Regitano LCDA, Munari DP, Berry DP, Buzanskas ME. Cross-population selection signatures in Canchim composite beef cattle. PLoS One 2022; 17:e0264279. [PMID: 35363779 PMCID: PMC8975110 DOI: 10.1371/journal.pone.0264279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.
Collapse
Affiliation(s)
| | | | - Luciana Diniz Rola
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Iasmin Marques Rocha
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | | | - Danísio Prado Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Donagh Pearse Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co. Cork., Ireland
| | - Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| |
Collapse
|
9
|
Le Duc D, Velluva A, Cassatt-Johnstone M, Olsen RA, Baleka S, Lin CC, Lemke JR, Southon JR, Burdin A, Wang MS, Grunewald S, Rosendahl W, Joger U, Rutschmann S, Hildebrandt TB, Fritsch G, Estes JA, Kelso J, Dalén L, Hofreiter M, Shapiro B, Schöneberg T. Genomic basis for skin phenotype and cold adaptation in the extinct Steller's sea cow. SCIENCE ADVANCES 2022; 8:eabl6496. [PMID: 35119923 PMCID: PMC8816345 DOI: 10.1126/sciadv.abl6496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Steller's sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller's descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller's sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller's sea cows' reportedly bark-like skin. We also found that Steller's sea cows' abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Akhil Velluva
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Molly Cassatt-Johnstone
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Remi-Andre Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031 , SE-17121 Solna, Sweden
| | - Sina Baleka
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- Faculty of Life and Environmental Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, 11221 Taipei, Taiwan
| | - Johannes R. Lemke
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - John R. Southon
- Keck-CCAMS Group, Earth System Science Department, University of California, Irvine, Irvine, CA 92697, USA
| | - Alexander Burdin
- Kamchatka Branch of Pacific Geographical Institute, Russian Academy of Science, 683000 Petropavlovsk-Kamchatsky, Russia
| | - Ming-Shan Wang
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sonja Grunewald
- Department of Dermatology, Venerology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Wilfried Rosendahl
- Reiss-Engelhorn-Museum and Curt-Engelhorn-Centre of Archaeometry, 68159 Mannheim, Germany
| | - Ulrich Joger
- State Museum of Natural History, 38106 Braunschweig, Germany
| | - Sereina Rutschmann
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Faculty of Veterinary Medicine, Free University Berlin, 14195 Berlin, Germany
| | - Guido Fritsch
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - James A. Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Maiorano AM, Cardoso DF, Carvalheiro R, Júnior GAF, de Albuquerque LG, de Oliveira HN. Signatures of selection in Nelore cattle revealed by whole-genome sequencing data. Genomics 2022; 114:110304. [DOI: 10.1016/j.ygeno.2022.110304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
11
|
Significant genes in response to low temperature in Penaeus chinensis screened from multiple groups of transcriptome comparison. J Therm Biol 2022; 107:103198. [DOI: 10.1016/j.jtherbio.2022.103198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/21/2023]
|
12
|
Wollenberg Valero KC, Garcia-Porta J, Irisarri I, Feugere L, Bates A, Kirchhof S, Jovanović Glavaš O, Pafilis P, Samuel SF, Müller J, Vences M, Turner AP, Beltran-Alvarez P, Storey KB. Functional genomics of abiotic environmental adaptation in lacertid lizards and other vertebrates. J Anim Ecol 2021; 91:1163-1179. [PMID: 34695234 DOI: 10.1111/1365-2656.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Understanding the genomic basis of adaptation to different abiotic environments is important in the context of climate change and resulting short-term environmental fluctuations. Using functional and comparative genomics approaches, we here investigated whether signatures of genomic adaptation to a set of environmental parameters are concentrated in specific subsets of genes and functions in lacertid lizards and other vertebrates. We first identify 200 genes with signatures of positive diversifying selection from transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in physiological and morphological adaptations to climate. To understand how functionally similar these genes are to previously predicted candidate functions for climate adaptation and to compare them with other vertebrate species, we then performed a meta-analysis of 1,100 genes under selection obtained from -omics studies in vertebrate species adapted to different abiotic factors. We found that the vertebrate gene set formed a tightly connected interactome, which was to 23% enriched in previously predicted functions of adaptation to climate, and to a large part (18%) involved in organismal stress response. We found a much higher degree of identical genes being repeatedly selected among different animal groups (43.6%), and of functional similarity and post-translational modifications than expected by chance, and no clear functional division between genes used for ectotherm and endotherm physiological strategies. In total, 171 out of 200 genes of Lacertidae were part of this network. These results highlight an important role of a comparatively small set of genes and their functions in environmental adaptation and narrow the set of candidate pathways and markers to be used in future research on adaptation and stress response related to climate change.
Collapse
Affiliation(s)
| | - Joan Garcia-Porta
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany.,Campus Institut Data Science (CIDAS), Göttingen, Germany
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Sebastian Kirchhof
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sabrina F Samuel
- Department of Biomedical Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
13
|
Upadhyay M, Kunz E, Sandoval-Castellanos E, Hauser A, Krebs S, Graf A, Blum H, Dotsev A, Okhlopkov I, Shakhin A, Bagirov V, Brem G, Fries R, Zinovieva N, Medugorac I. Whole genome sequencing reveals a complex introgression history and the basis of adaptation to subarctic climate in wild sheep. Mol Ecol 2021; 30:6701-6717. [PMID: 34534381 DOI: 10.1111/mec.16184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
To predict species responses to anthropogenic disturbances and climate change, it is reasonable to use species with high sensitivity to such factors. Snow sheep (Ovis nivicola) could represent a good candidate for this; as the only large herbivore species adapted to the cold and alpine habitats of northeastern Siberia, it plays a crucial role in its ecosystem. Despite having an extensive geographical distribution among all ovine species, it is one of the least studied. In this study, we sequenced and analysed six genomes of snow sheep in combination with all other wild sheep species to infer key aspects of their evolutionary history and unveil the genetic basis of their adaptation to subarctic environments. Despite their large census population size, snow sheep genomes showed remarkably low heterozygosity, which could reflect the effect of isolation and historical bottlenecks that we inferred using the pairwise sequential Markovian coalescent and runs of homozygosity. F4 -statistics indicated instances of introgression involving snow sheep with argali (Ovis ammon) and Dall (Ovis dalli) sheep, suggesting that these species might have been more widespread during the Pleistocene. Furthermore, the introgressed segments, which were identified using mainly minimum relative node depth, covered genes associated with immunity, adipogenesis and morphology-related traits, representing potential targets of adaptive introgression. Genes related to mitochondrial functions and thermogenesis associated with adipose tissue were identified to be under selection. Overall, our data suggest introgression as a mechanism facilitating adaptation in wild sheep species and provide insights into the genetic mechanisms underlying cold adaptation in snow sheep.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Andreas Hauser
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Arsen Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | | | - Alexey Shakhin
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Vugar Bagirov
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, VMU, Vienna, Austria
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany
| | - Natalia Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Igoshin A, Yudin N, Aitnazarov R, Yurchenko AA, Larkin DM. Whole-Genome Resequencing Points to Candidate DNA Loci Affecting Body Temperature under Cold Stress in Siberian Cattle Populations. Life (Basel) 2021; 11:959. [PMID: 34575108 PMCID: PMC8467296 DOI: 10.3390/life11090959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Despite the economic importance of creating cold resilient cattle breeds, our knowledge of the genetic basis of adaptation to cold environments in cattle is still scarce compared to information on other economically important traits. Herein, using whole-genome resequencing of animals showing contrasting phenotypes on temperature maintenance under acute cold stress combined with the existing SNP (single nucleotide polymorphism) functional annotations, we report chromosomal regions and candidate SNPs controlling body temperature in the Siberian cattle populations. The SNP ranking procedure based on regional FST calculations, functional annotations, and the allele frequency difference between cold-tolerant and cold-sensitive groups of animals pointed to multiple candidate genes. Among these, GRIA4, COX17, MAATS1, UPK1B, IFNGR1, DDX23, PPT1, THBS1, CCL5, ATF1, PLA1A, PRKAG1, and NR1I2 were previously related to thermal adaptations in cattle. Other genes, for example KMT2D and SNRPA1, are known to be related to thermogenesis in mice and cold adaptation in common carp, respectively. This work could be useful for cattle breeding strategies in countries with harsh climates, including the Russian Federation.
Collapse
Affiliation(s)
- Alexander Igoshin
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.); (N.Y.); (R.A.); (A.A.Y.)
| | - Nikolay Yudin
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.); (N.Y.); (R.A.); (A.A.Y.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ruslan Aitnazarov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.); (N.Y.); (R.A.); (A.A.Y.)
| | - Andrey A. Yurchenko
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.); (N.Y.); (R.A.); (A.A.Y.)
| | - Denis M. Larkin
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.); (N.Y.); (R.A.); (A.A.Y.)
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
15
|
Buggiotti L, Yurchenko AA, Yudin NS, Vander Jagt CJ, Vorobieva NV, Kusliy MA, Vasiliev SK, Rodionov AN, Boronetskaya OI, Zinovieva NA, Graphodatsky AS, Daetwyler HD, Larkin DM. Demographic History, Adaptation, and NRAP Convergent Evolution at Amino Acid Residue 100 in the World Northernmost Cattle from Siberia. Mol Biol Evol 2021; 38:3093-3110. [PMID: 33784744 PMCID: PMC8321547 DOI: 10.1093/molbev/msab078] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Native cattle breeds represent an important cultural heritage. They are a reservoir of genetic variation useful for properly responding to agriculture needs in the light of ongoing climate changes. Evolutionary processes that occur in response to extreme environmental conditions could also be better understood using adapted local populations. Herein, different evolutionary histories of the world northernmost native cattle breeds from Russia were investigated. They highlighted Kholmogory as a typical taurine cattle, whereas Yakut cattle separated from European taurines approximately 5,000 years ago and contain numerous ancestral and some novel genetic variants allowing their adaptation to harsh conditions of living above the Polar Circle. Scans for selection signatures pointed to several common gene pathways related to adaptation to harsh climates in both breeds. But genes affected by selection from these pathways were mostly different. A Yakut cattle breed-specific missense mutation in a highly conserved NRAP gene represents a unique example of a young amino acid residue convergent change shared with at least 16 species of hibernating/cold-adapted mammals from six distinct phylogenetic orders. This suggests a convergent evolution event along the mammalian phylogenetic tree and fast fixation in a single isolated cattle population exposed to a harsh climate.
Collapse
Affiliation(s)
- Laura Buggiotti
- Royal Veterinary College, University of London, London, United Kingdom
| | - Andrey A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | | | - Nadezhda V Vorobieva
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Mariya A Kusliy
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Sergei K Vasiliev
- Paleometal Archeology Department, Institute of Archaeology and Ethnography SB RAS, Novosibirsk, Russia
| | - Andrey N Rodionov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Podolsk, Russia
| | - Oksana I Boronetskaya
- Moscow Agrarian Academy, Timiryazev Russian State Agrarian University, Moscow, Russia
| | | | - Alexander S Graphodatsky
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Denis M Larkin
- Royal Veterinary College, University of London, London, United Kingdom
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
16
|
Peng Y, Li H, Liu Z, Zhang C, Li K, Gong Y, Geng L, Su J, Guan X, Liu L, Zhou R, Zhao Z, Guo J, Liang Q, Li X. Chromosome-level genome assembly of the Arctic fox (Vulpes lagopus) using PacBio sequencing and Hi-C technology. Mol Ecol Resour 2021; 21:2093-2108. [PMID: 33829635 DOI: 10.1111/1755-0998.13397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The Arctic fox (Vulpes lagopus) is the only fox species occurring in the Arctic and has adapted to its extreme climatic conditions. Currently, the molecular basis of its adaptation to the extreme climate has not been characterized. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first V. lagopus genome assembly, which is assembled into chromosome fragments. The genome assembly has a total length of 2.345 Gb with a contig N50 of 31.848 Mb and a scaffold N50 of 131.537 Mb, consisting of 25 pseudochromosomal scaffolds. The V. lagopus genome had approximately 32.33% repeat sequences. In total, 21,278 protein-coding genes were predicted, of which 99.14% were functionally annotated. Compared with 12 other mammals, V. lagopus was most closely related to V. Vulpes with an estimated divergence time of ~7.1 Ma. The expanded gene families and positively selected genes potentially play roles in the adaptation of V. lagopus to Arctic extreme environment. This high-quality assembled genome will not only promote future studies of genetic diversity and evolution in foxes and other canids but also provide important resources for conservation of Arctic species.
Collapse
Affiliation(s)
- Yongdong Peng
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Hong Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhengzhu Liu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Chuansheng Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Keqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Mathematics and Information Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Liying Geng
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jingjing Su
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Xuemin Guan
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lei Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai-an, China
| | - Ruihong Zhou
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Ziya Zhao
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jianxu Guo
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Xianglong Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
17
|
Harris AM, DeGiorgio M. A Likelihood Approach for Uncovering Selective Sweep Signatures from Haplotype Data. Mol Biol Evol 2021; 37:3023-3046. [PMID: 32392293 PMCID: PMC7530616 DOI: 10.1093/molbev/msaa115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Selective sweeps are frequent and varied signatures in the genomes of natural populations, and detecting them is consequently important in understanding mechanisms of adaptation by natural selection. Following a selective sweep, haplotypic diversity surrounding the site under selection decreases, and this deviation from the background pattern of variation can be applied to identify sweeps. Multiple methods exist to locate selective sweeps in the genome from haplotype data, but none leverages the power of a model-based approach to make their inference. Here, we propose a likelihood ratio test statistic T to probe whole-genome polymorphism data sets for selective sweep signatures. Our framework uses a simple but powerful model of haplotype frequency spectrum distortion to find sweeps and additionally make an inference on the number of presently sweeping haplotypes in a population. We found that the T statistic is suitable for detecting both hard and soft sweeps across a variety of demographic models, selection strengths, and ages of the beneficial allele. Accordingly, we applied the T statistic to variant calls from European and sub-Saharan African human populations, yielding primarily literature-supported candidates, including LCT, RSPH3, and ZNF211 in CEU, SYT1, RGS18, and NNT in YRI, and HLA genes in both populations. We also searched for sweep signatures in Drosophila melanogaster, finding expected candidates at Ace, Uhg1, and Pimet. Finally, we provide open-source software to compute the T statistic and the inferred number of presently sweeping haplotypes from whole-genome data.
Collapse
Affiliation(s)
- Alexandre M Harris
- Department of Biology, Pennsylvania State University, University Park, PA.,Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL
| |
Collapse
|
18
|
Freitas PHF, Wang Y, Yan P, Oliveira HR, Schenkel FS, Zhang Y, Xu Q, Brito LF. Genetic Diversity and Signatures of Selection for Thermal Stress in Cattle and Other Two Bos Species Adapted to Divergent Climatic Conditions. Front Genet 2021; 12:604823. [PMID: 33613634 PMCID: PMC7887320 DOI: 10.3389/fgene.2021.604823] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding the biological mechanisms of climatic adaptation is of paramount importance for the optimization of breeding programs and conservation of genetic resources. The aim of this study was to investigate genetic diversity and unravel genomic regions potentially under selection for heat and/or cold tolerance in thirty-two worldwide cattle breeds, with a focus on Chinese local cattle breeds adapted to divergent climatic conditions, Datong yak (Bos grunniens; YAK), and Bali (Bos javanicus) based on dense SNP data. In general, moderate genetic diversity levels were observed in most cattle populations. The proportion of polymorphic SNP ranged from 0.197 (YAK) to 0.992 (Mongolian cattle). Observed and expected heterozygosity ranged from 0.023 (YAK) to 0.366 (Sanhe cattle; SH), and from 0.021 (YAK) to 0.358 (SH), respectively. The overall average inbreeding (±SD) was: 0.118 ± 0.028, 0.228 ± 0.059, 0.194 ± 0.041, and 0.021 ± 0.004 based on the observed versus expected number of homozygous genotypes, excess of homozygosity, correlation between uniting gametes, and runs of homozygosity (ROH), respectively. Signatures of selection based on multiple scenarios and methods (F ST, HapFLK, and ROH) revealed important genomic regions and candidate genes. The candidate genes identified are related to various biological processes and pathways such as heat-shock proteins, oxygen transport, anatomical traits, mitochondrial DNA maintenance, metabolic activity, feed intake, carcass conformation, fertility, and reproduction. This highlights the large number of biological processes involved in thermal tolerance and thus, the polygenic nature of climatic resilience. A comprehensive description of genetic diversity measures in Chinese cattle and YAK was carried out and compared to 24 worldwide cattle breeds to avoid potential biases. Numerous genomic regions under positive selection were detected using three signature of selection methods and candidate genes potentially under positive selection were identified. Enriched function analyses pinpointed important biological pathways, molecular function and cellular components, which contribute to a better understanding of the biological mechanisms underlying thermal tolerance in cattle. Based on the large number of genomic regions identified, thermal tolerance has a complex polygenic inheritance nature, which was expected considering the various mechanisms involved in thermal stress response.
Collapse
Affiliation(s)
- Pedro H. F. Freitas
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA – National Engineering Laboratory for Animal Breeding – College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA – National Engineering Laboratory for Animal Breeding – College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
19
|
Aligning functional network constraint to evolutionary outcomes. BMC Evol Biol 2020; 20:58. [PMID: 32448114 PMCID: PMC7245893 DOI: 10.1186/s12862-020-01613-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functional constraint through genomic architecture is suggested to be an important dimension of genome evolution, but quantitative evidence for this idea is rare. In this contribution, existing evidence and discussions on genomic architecture as constraint for convergent evolution, rapid adaptation, and genic adaptation are summarized into alternative, testable hypotheses. Network architecture statistics from protein-protein interaction networks are then used to calculate differences in evolutionary outcomes on the example of genomic evolution in yeast, and the results are used to evaluate statistical support for these longstanding hypotheses. RESULTS A discriminant function analysis lent statistical support to classifying the yeast interactome into hub, intermediate and peripheral nodes based on network neighborhood connectivity, betweenness centrality, and average shortest path length. Quantitative support for the existence of genomic architecture as a mechanistic basis for evolutionary constraint is then revealed through utilizing these statistical parameters of the protein-protein interaction network in combination with estimators of protein evolution. CONCLUSIONS As functional genetic networks are becoming increasingly available, it will now be possible to evaluate functional genetic network constraint against variables describing complex phenotypes and environments, for better understanding of commonly observed deterministic patterns of evolution in non-model organisms. The hypothesis framework and methodological approach outlined herein may help to quantify the extrinsic versus intrinsic dimensions of evolutionary constraint, and result in a better understanding of how fast, effectively, or deterministically organisms adapt.
Collapse
|
20
|
Yudin NS, Larkin DM. Whole genome studies of origin, selection and adaptation of the Russian cattle breeds. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our review presents several recent studies on the genetic history and signatures of selection in genomes of the native Russian cattle breeds. Most of these works are not easily accessible for the Russian-speaking audience. We describe the origins of appearance of the Russian cattle breeds from the genetics perspective. We point to the links between most of the Russian breeds with the taurine breeds of the European origin and for some Russian breeds with the breeds of the Asian origin. We describe major phylogenetic clusters of the Russian breeds and point to those that still maintain their unique genetics, meaning that their preservation is a priority. In addition, we review the results of the search for signatures of selection in genomes of the Russian cattle breeds. Some unique signatures of selection present in the genomes of so-called “turano-mongolian” cattle (i. e. the Yakut cattle) are described which allowed the Yakut cattle to adapt to harsh environments found above the Polar Circle. Signatures of selection which could help other cattle breeds of the Russian origin to adapt to various climatic condition of the Russian Federation are reviewed. The Russian cattle genomes also contain known signatures of selection related to cattle domestication about 8–10 thousand years ago. The most profound ones include genes related to changes of the coat colour. This phenotype in many cases could be related to the distinction of the first domesticated populations and lead to the formation of so-called land races (primitive breeds). Whole-genome association studies of Russian cattle breeds pointed to a novel gene which could be related to the “white-faced” phenotype and to a gene which is related to body temperature support under the acute cold stress. The data presented in our review could be used for identification of genetic markers to focus on in future efforts on designing new highly productive cattle breeds adapted to climates of the Russian Federation and other countries with similar climates.
Collapse
Affiliation(s)
| | - D. M. Larkin
- Royal Veterinary College, University of London; Institute of Cytology and Genetics, SB RAS
| |
Collapse
|
21
|
Igoshin AV, Gunbin KV, Yudin NS, Voevoda MI. Searching for Signatures of Cold Climate Adaptation in TRPM8 Gene in Populations of East Asian Ancestry. Front Genet 2019; 10:759. [PMID: 31507633 PMCID: PMC6716346 DOI: 10.3389/fgene.2019.00759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Dispersal of Homo sapiens across the globe during the last 200,000 years was accompanied by adaptation to local climatic conditions, with severe winter temperatures being probably one of the most significant selective forces. The TRPM8 gene codes for a cold-sensing ion channel, and adaptation to low temperatures is the major determinant of its molecular evolution. Here, our aim was to search for signatures of cold climate adaptation in TRPM8 gene using a combined data set of 19 populations of East Asian ancestry from the 1000 Genomes Project and Human Genome Diversity Project. As a result, out of a total of 60 markers under study, none showed significant association with the average winter temperatures at the locations of the studied populations considering the multiple testing thresholds. This might suggest that the principal mode of TRPM8 evolution may be different from widespread models, where adaptive alleles are additive, dominant or recessive, at least in populations with the predominant East Asian component. For example, evolution by means of selectively preferable epistatic interactions among amino acids may have taken place. Despite the lack of strong signals of association, however, a very promising single nucleotide polymorphism (SNP) was found. The SNP rs7577262 is considered the best candidate based on its allelic correlations with winter temperatures, signatures of selective sweep and physiological evidences. The second top SNP, rs17862920, may participate in adaptation as well. Additionally, to assist in interpreting the nominal associations, the other markers reached, we performed SNP prioritization based on functional evidences found in literature and on evolutionary conservativeness.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- Sector of the Genetics of Industrial Microorganisms, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin V. Gunbin
- Center of Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology Novosibirsk State University, Novosibirsk, Russia
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Nikolay S. Yudin
- V. Zelman Institute for Medicine and Psychology Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Livestock Molecular Genetics and Breeding, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russia
| | - Mikhail I. Voevoda
- Laboratory of Human Molecular Genetics, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
22
|
Yudin N, Larkin DM. Shared Signatures of Selection Related to Adaptation and Acclimation in Local Cattle and Sheep Breeds from Russia. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics 2019; 12:61. [PMID: 31122248 PMCID: PMC6533173 DOI: 10.1186/s12920-019-0503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. Results Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4,ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. Conclusions Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery. Electronic supplementary material The online version of this article (10.1186/s12920-019-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Andrey A Yurchenko
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail I Voevoda
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630004, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
24
|
Affiliation(s)
- Yuriy L. Orlov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatiana V. Tatarinova
- Department of Biology, University of La Verne, La Verne, CA USA
- Vavilov Institute for General Genetics, Moscow, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Alex V. Kochetov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
25
|
Igoshin AV, Yurchenko AA, Belonogova NM, Petrovsky DV, Aitnazarov RB, Soloshenko VA, Yudin NS, Larkin DM. Genome-wide association study and scan for signatures of selection point to candidate genes for body temperature maintenance under the cold stress in Siberian cattle populations. BMC Genet 2019; 20:26. [PMID: 30885142 PMCID: PMC6421640 DOI: 10.1186/s12863-019-0725-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Design of new highly productive livestock breeds, well-adapted to local climatic conditions is one of the aims of modern agriculture and breeding. The genetics underlying economically important traits in cattle are widely studied, whereas our knowledge of the genetic mechanisms of adaptation to local environments is still scarce. To address this issue for cold climates we used an integrated approach for detecting genomic intervals related to body temperature maintenance under acute cold stress. Our approach combined genome-wide association studies (GWAS) and scans for signatures of selection applied to a cattle population (Hereford and Kazakh Whiteheaded beef breeds) bred in Siberia. We utilized the GGP HD150K DNA chip containing 139,376 single nucleotide polymorphism markers. Results We detected a single candidate region on cattle chromosome (BTA)15 overlapping between the GWAS results and the results of scans for selective sweeps. This region contains two genes, MSANTD4 and GRIA4. Both genes are functional candidates to contribute to the cold-stress resistance phenotype, due to their indirect involvement in the cold shock response (MSANTD4) and body thermoregulation (GRIA4). Conclusions Our results point to a novel region on BTA15 which is a candidate region associated with the body temperature maintenance phenotype in Siberian cattle. The results of our research and the follow up studies might be used for the development of cattle breeds better adapted to cold climates of the Russian Federation and other Northern countries with similar climates. Electronic supplementary material The online version of this article (10.1186/s12863-019-0725-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander V Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Andrey A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Nadezhda M Belonogova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Dmitry V Petrovsky
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Ruslan B Aitnazarov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | | | - Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia. .,Royal Veterinary College, University of London, London, NW1 0TU, UK.
| |
Collapse
|
26
|
Nutile T, Ruggiero D, Herzig AF, Tirozzi A, Nappo S, Sorice R, Marangio F, Bellenguez C, Leutenegger AL, Ciullo M. Whole-Exome Sequencing in the Isolated Populations of Cilento from South Italy. Sci Rep 2019; 9:4059. [PMID: 30858532 PMCID: PMC6411969 DOI: 10.1038/s41598-019-41022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
The present study describes the genetic architecture of the isolated populations of Cilento, through the analysis of exome sequence data of 245 representative individuals of these populations. By annotating the exome variants and cataloguing them according to their frequency and functional effects, we identified 347,684 variants, 67.4% of which are rare and low frequency variants, and 1% of them (corresponding to 319 variants per person) are classified as high functional impact variants; also, 39,946 (11.5% of the total) are novel variants, for which we determined a significant enrichment for deleterious effects. By comparing the allele frequencies in Cilento with those from the Tuscan population from the 1000 Genomes Project Phase 3, we highlighted an increase in allele frequency in Cilento especially for variants which map to genes involved in extracellular matrix formation and organization. Furthermore, among the variants showing increased frequency we identified several known rare disease-causing variants. By different population genetics analyses, we corroborated the status of the Cilento populations as genetic isolates. Finally, we showed that exome data of Cilento represents a useful local reference panel capable of improving the accuracy of genetic imputation, thus adding power to genetic studies of human traits in these populations.
Collapse
Affiliation(s)
- T Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy
| | - D Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - A F Herzig
- Inserm, UMR 946, Genetic variation and Human diseases, F-75010, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, UMR946, F-75010, Paris, France
| | - A Tirozzi
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - S Nappo
- AORN Santobono-Pausilipon Hospital, Naples, Italy
| | - R Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy
| | - F Marangio
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy
| | - C Bellenguez
- Inserm, U1167, RID-AGE-Risk factors and molecular determinants of aging-related diseases, F-59000, Lille, France.,Institut Pasteur de Lille, F-59000, Lille, France.,Univ. Lille, U1167-Excellence Laboratory LabEx DISTALZ, F-59000, Lille, France
| | - A L Leutenegger
- Inserm, UMR 946, Genetic variation and Human diseases, F-75010, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, UMR946, F-75010, Paris, France
| | - M Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy.
| |
Collapse
|
27
|
Orlov YL, Baranova AV, Tatarinova TV, Kolchanov NA. Genetics at Belyaev Conference - 2017: introductory note. BMC Genet 2017; 18:116. [PMID: 29297300 PMCID: PMC5751695 DOI: 10.1186/s12863-017-0577-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuriy L Orlov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| | - Ancha V Baranova
- Research Centre of Medical Genetics, Moscow, Russia.,George Mason University, Fairfax, VA, USA
| | | | | |
Collapse
|