1
|
Murgiano L, Banjeree E, O'Connor C, Miyadera K, Werner P, Niggel JK, Aguirre GD, Casal ML. A naturally occurring canine model of syndromic congenital microphthalmia. G3 (BETHESDA, MD.) 2024; 14:jkae067. [PMID: 38682429 DOI: 10.1093/g3journal/jkae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
In humans, the prevalence of congenital microphthalmia is estimated to be 0.2-3.0 for every 10,000 individuals, with nonocular involvement reported in ∼80% of cases. Inherited eye diseases have been widely and descriptively characterized in dogs, and canine models of ocular diseases have played an essential role in unraveling the pathophysiology and development of new therapies. A naturally occurring canine model of a syndromic disorder characterized by microphthalmia was discovered in the Portuguese water dog. As nonocular findings included tooth enamel malformations, stunted growth, anemia, and thrombocytopenia, we hence termed this disorder Canine Congenital Microphthalmos with Hematopoietic Defects. Genome-wide association study and homozygosity mapping detected a 2 Mb candidate region on canine chromosome 4. Whole-genome sequencing and mapping against the Canfam4 reference revealed a Short interspersed element insertion in exon 2 of the DNAJC1 gene (g.74,274,883ins[T70]TGCTGCTTGGATT). Subsequent real-time PCR-based mass genotyping of a larger Portuguese water dog population found that the homozygous mutant genotype was perfectly associated with the Canine Congenital Microphthalmos with Hematopoietic Defects phenotype. Biallelic variants in DNAJC21 are mostly found to be associated with bone marrow failure syndrome type 3, with a phenotype that has a certain degree of overlap with Fanconi anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, and reports of individuals showing thrombocytopenia, microdontia, and microphthalmia. We, therefore, propose Canine Congenital Microphthalmos with Hematopoietic Defects as a naturally occurring model for DNAJC21-associated syndromes.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esha Banjeree
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia O'Connor
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- East Bridgewater Veterinary Hospitla, East Bridgewater, MA 02333, USA
| | - Keiko Miyadera
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Petra Werner
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetic Diagnostic Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K Niggel
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Chatterjee S, Gupta S, Chaudhry VN, Chaudhry P, Mukherjee A, Mutsuddi M. Whole exome sequencing identifies a novel splice-site mutation in IMPG2 gene causing Stargardt-like juvenile macular dystrophy in a north Indian family. Gene 2022; 816:146158. [PMID: 34990796 DOI: 10.1016/j.gene.2021.146158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022]
Abstract
We report on the genetic analysis of a north Indian family affected with Stargardt-like juvenile macular dystrophy. Considering an autosomal recessive inheritance of macular dystrophy in the recruited family, whole exome sequencing was employed in two affected siblings and their mother. We have identified a novel splice-site variant NC_000003.11(NM_016247.3):c.1239 + 1G > T, co-segregating in the affected siblings, in the Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) gene. The identified variant is present immediately after exon 11, and is predicted to disrupt the wild-type donor splice-site of IMPG2 transcripts. We confirmed the splice-site changes in the IMPG2 transcripts using minigene functional assay. Although a number of studies on IMPG2 have demonstrated its involvement in retinitis pigmentosa and vitelliform macular dystrophy, this is the first report of a splice-site variant in IMPG2 that is responsible for Stargardt-like juvenile macular dystrophy.
Collapse
Affiliation(s)
- Souradip Chatterjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shashank Gupta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | | | | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
A Missense Variant in the Bardet-Biedl Syndrome 2 Gene ( BBS2) Leads to a Novel Syndromic Retinal Degeneration in the Shetland Sheepdog. Genes (Basel) 2021; 12:genes12111771. [PMID: 34828377 PMCID: PMC8624581 DOI: 10.3390/genes12111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Canine progressive retinal atrophy (PRA) describes a group of hereditary diseases characterized by photoreceptor cell death in the retina, leading to visual impairment. Despite the identification of multiple PRA-causing variants, extensive heterogeneity of PRA is observed across and within dog breeds, with many still genetically unsolved. This study sought to elucidate the causal variant for a distinct form of PRA in the Shetland sheepdog, using a whole-genome sequencing approach. Filtering variants from a single PRA-affected Shetland sheepdog genome compared to 176 genomes of other breeds identified a single nucleotide variant in exon 11 of the Bardet-Biedl syndrome-2 gene (BBS2) (c.1222G>C; p.Ala408Pro). Genotyping 1386 canids of 155 dog breeds, 15 cross breeds and 8 wolves indicated the c.1222G>C variant was only segregated within Shetland sheepdogs. Out of 505 Shetland sheepdogs, seven were homozygous for the variant. Clinical history and photographs for three homozygotes indicated the presence of a novel phenotype. In addition to PRA, additional clinical features in homozygous dogs support the discovery of a novel syndromic PRA in the breed. The development and utilization of a diagnostic DNA test aim to prevent the mutation from becoming more prevalent in the breed.
Collapse
|
4
|
In Silico identification of a common mobile element insertion in exon 4 of RP1. Sci Rep 2021; 11:13381. [PMID: 34183725 PMCID: PMC8238996 DOI: 10.1038/s41598-021-92834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Mobile element insertions (MEIs) typically exceed the read lengths of short-read sequencing technologies and are therefore frequently missed. Recently, a founder Alu insertion in exon 4 of RP1 has been detected in Japanese patients with macular dystrophy by PCR and gel electrophoresis. We aimed to develop a grep search program for the detection of the Alu insertion in exon 4 of RP1 using unprocessed short reads. Among 494 unrelated Korean patients with inherited eye diseases, 273 patients with specific retinal phenotypes who were previously genotyped by targeted panel or whole exome sequencing were selected. Five probands had a single heterozygous truncating RP1 variant, and one of their unaffected parents also carry this variant. To find a hidden genetic variant, whole genome sequencing was performed in two patients, and it revealed AluY c.4052_4053ins328/p.(Tyr1352Alafs*9) insertion in RP1 exon 4. This AluY insertion was additionally identified in other 3 families, which was confirmed by PCR and gel electrophoresis. We developed simplified grep search program to detect this AluY insertion in RP1 exon 4. The simple grep search revealed a median variant allele frequency of 0.282 (interquartile range, 0.232–0.383), with no false-positive results using 120 control samples. The MEI in RP1 exon 4 was a common founder mutation in Korean, occurring in 1.8% of our cohort. The RP1-Alu grep program efficiently detected the AluY insertion, without the preprocessing of raw data or complex installation processes.
Collapse
|
5
|
Next-Generation Sequencing Applications for Inherited Retinal Diseases. Int J Mol Sci 2021; 22:ijms22115684. [PMID: 34073611 PMCID: PMC8198572 DOI: 10.3390/ijms22115684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal diseases (IRDs) represent a collection of phenotypically and genetically diverse conditions. IRDs phenotype(s) can be isolated to the eye or can involve multiple tissues. These conditions are associated with diverse forms of inheritance, and variants within the same gene often can be associated with multiple distinct phenotypes. Such aspects of the IRDs highlight the difficulty met when establishing a genetic diagnosis in patients. Here we provide an overview of cutting-edge next-generation sequencing techniques and strategies currently in use to maximise the effectivity of IRD gene screening. These techniques have helped researchers globally to find elusive causes of IRDs, including copy number variants, structural variants, new IRD genes and deep intronic variants, among others. Resolving a genetic diagnosis with thorough testing enables a more accurate diagnosis and more informed prognosis and should also provide information on inheritance patterns which may be of particular interest to patients of a child-bearing age. Given that IRDs are heritable conditions, genetic counselling may be offered to help inform family planning, carrier testing and prenatal screening. Additionally, a verified genetic diagnosis may enable access to appropriate clinical trials or approved medications that may be available for the condition.
Collapse
|
6
|
Kaukonen M, Pettinen IT, Wickström K, Arumilli M, Donner J, Juhola IJ, Holopainen S, Turunen JA, Yoshihara M, Kere J, Lohi H. A missense variant in IFT122 associated with a canine model of retinitis pigmentosa. Hum Genet 2021; 140:1569-1579. [PMID: 33606121 PMCID: PMC8519925 DOI: 10.1007/s00439-021-02266-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
Retinitis pigmentosa (RP) is a blinding eye disease affecting nearly two million people worldwide. Dogs are affected with a similar illness termed progressive retinal atrophy (PRA). Lapponian herders (LHs) are affected with several types of inherited retinal dystrophies, and variants in PRCD and BEST1 genes have been associated with generalized PRA and canine multifocal retinopathy 3 (cmr3), respectively. However, all retinal dystrophy cases in LHs are not explained by these variants, indicating additional genetic causes of disease in the breed. We collected DNA samples from 10 PRA affected LHs, with known PRCD and BEST1 variants excluded, and 34 unaffected LHs. A genome-wide association study identified a locus on CFA20 (praw = 2.4 × 10-7, pBonf = 0.035), and subsequent whole-genome sequencing of an affected LH revealed a missense variant, c.3176G>A, in the intraflagellar transport 122 (IFT122) gene. The variant was also found in Finnish Lapphunds, in which its clinical relevancy needs to be studied further. The variant interrupts a highly conserved residue, p.(R1059H), in IFT122 and likely impairs its function. Variants in IFT122 have not been associated with retinal degeneration in mammals, but the loss of ift122 in zebrafish larvae impaired opsin transport and resulted in progressive photoreceptor degeneration. Our study establishes a new spontaneous dog model to study the role of IFT122 in RP biology, while the affected breed will benefit from a genetic test for a recessive condition.
Collapse
Affiliation(s)
- Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Inka-Tuulevi Pettinen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | | | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Genoscoper Laboratories Ltd (Wisdom Health), Helsinki, Finland
| | - Ida-Julia Juhola
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Saila Holopainen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Joni A Turunen
- Folkhälsan Research Center, Helsinki, Finland.,Department of Ophthalmology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juha Kere
- Folkhälsan Research Center, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Stem Cells and Metabolism Research Program STEMM, University of Helsinki, 00014, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|