1
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
2
|
Shademan B, Karamad V, Nourazarian A, Masjedi S, Isazadeh A, Sogutlu F, Avcı CB. MicroRNAs as Targets for Cancer Diagnosis: Interests and Limitations. Adv Pharm Bull 2023; 13:435-445. [PMID: 37646065 PMCID: PMC10460809 DOI: 10.34172/apb.2023.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
MicroRNAs are small RNAs with ability to attach to the large number of RNA that regulate gene expression on post-transcriptional level via inhibition or degradation of specific mRNAs. MiRNAs in cells are the primary regulators of functions such as cell growth, differentiation, and apoptosis and considerably influence cell function. The expression levels of microRNAs change in human diseases, including cancer. These changes highlight their essential role in cancer pathogenesis. Ubiquitous irregular expression profiles of miRNAs have been detected in various human cancers using genome-wide identification techniques, which are emerging as novel diagnostic and prognostic cancer biomarkers of high specificity and sensitivity. The measurable miRNAs with enhanced stability in blood, tissues, and other body fluids provide a comprehensive source of miRNA-dependent biomarkers for human cancers. The leading role of miRNAs as potential biomarkers in human cancers is discussed in this article. In addition, the interests and difficulties of miRNAs as biomarkers have been explored.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
3
|
Chu J, Tao L, Yao T, Chen Z, Lu X, Gao L, Fang L, Chen J, He G, Shen S, Zhang D. Circular RNA circRUNX1 promotes papillary thyroid cancer progression and metastasis by sponging MiR-296-3p and regulating DDHD2 expression. Cell Death Dis 2021; 12:112. [PMID: 33479208 PMCID: PMC7819993 DOI: 10.1038/s41419-020-03350-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Papillary thyroid cancer (PTC) has a continuously increasing incidence and imposes a heavy medical burden to individuals and society due to its high proportion of lymph node metastasis and recurrence in recent years. Circular RNAs, a class of noncoding RNAs, participate in the progression of many cancers, but the role of circRNAs in PTC is still rarely reported. In this study, circRNA deep sequencing was performed to identify differentially expressed circRNAs in PTC. CircRUNX1 was selected for its high expression in PTC, and circRUNX1 silencing was directly associated with the week potential for migration, invasion and proliferation of PTC in vivo and in vitro. Fluorescence in situ hybridization (FISH) was further used to confirm the cytoplasmic localization of circRUNX1, indicating the possible function of circRUNX1 as a ceRNAs in PTC progression through miRNA binding. MiR-296-3p was then confirmed to be regulated by circRUNX1 and to target DDHD domain containing 2 (DDHD2) by luciferase reporter assays. The strong antitumor effect of miR-296-3p and the tumor-promoting effect of DDHD2 were further investigated in PTC, indicating that circRUNX1 modulates PTC progression through the miR-296-3p/DDHD2 pathway. Overall, circRUNX1 plays an oncogenic role in PTC and provides a potentially effective therapeutic strategy for PTC progression.
Collapse
Affiliation(s)
- Junjie Chu
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Tao
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Zizheng Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Xiaoxiao Lu
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Gao
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Liang Fang
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian Chen
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Gaofei He
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China.
| | - Deguang Zhang
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
The microRNA-424/503 cluster: A master regulator of tumorigenesis and tumor progression with paradoxical roles in cancer. Cancer Lett 2020; 494:58-72. [PMID: 32846190 DOI: 10.1016/j.canlet.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a crucial role in post-transcriptional gene regulation and act as indispensable mediators in several critical biological processes, including tumorigenesis, tissue homeostasis, and regeneration. MiR-424 and miR-503 are intragenic miRNAs that are clustered on human chromosome Xq26.3. Previous studies have reported that both miRNAs are dysregulated and play crucial but paradoxical roles in tumor initiation and progression, involving different target genes and molecular pathways. Moreover, these two miRNAs are concomitantly expressed in several cancer cells, indicating a coordinating function as a cluster. In this review, the roles and regulatory mechanisms of miR-424, miR-503, and miR-424/503 cluster are summarized in different types of cancers.
Collapse
|
5
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
6
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Komsta Ł, Kołodziej P, Chmiel P, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm. J Clin Med 2020; 9:jcm9061974. [PMID: 32599769 PMCID: PMC7355415 DOI: 10.3390/jcm9061974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Abdominal artery aneurysm (AAA) refers to abdominal aortic dilatation of 3 cm or greater. AAA is frequently underdiagnosed due to often asymptomatic character of the disease, leading to elevated mortality due to aneurysm rupture. MiRNA constitute a pool of small RNAs controlling gene expression and is involved in many pathologic conditions in human. Targeted panel detecting altered expression of miRNA and genes involved in AAA would improve early diagnosis of this disease. In the presented study, we selected and analyzed miRNA and gene expression signatures in AAA patients. Next, generation sequencing was applied to obtain miRNA and gene-wide expression profiles from peripheral blood mononuclear cells in individuals with AAA and healthy controls. Differential expression analysis was performed using DESeq2 and uninformative variable elimination by partial least squares (UVE-PLS) methods. A total of 31 miRNAs and 51 genes were selected as the most promising biomarkers of AAA. Receiver operating characteristics (ROC) analysis showed good diagnostic ability of proposed biomarkers. Genes regulated by selected miRNAs were determined in silico and associated with functional terms closely related to cardiovascular and neurological diseases. Proposed biomarkers may be used for new diagnostic and therapeutic approaches in management of AAA. The findings will also contribute to the pool of knowledge about miRNA-dependent regulatory mechanisms involved in pathology of that disease.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
| | - Karol P. Ruszel
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Jacek Bogucki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Łukasz Komsta
- Chair and Department of Medicinal Chemistry, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
| | - Tomasz Zubilewicz
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
- Correspondence: ; Tel.: +48-81-448-7232
| |
Collapse
|
7
|
Luo X, Shen S, Yi S, Hu J, Sun Y, Gao K, Zhu L. Screening of differentially expressed miRNAs in tensile strain‑treated HepG2 cells by miRNA microarray analysis. Mol Med Rep 2020; 21:2415-2426. [PMID: 32323778 PMCID: PMC7185303 DOI: 10.3892/mmr.2020.11057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cirrhosis and portal hypertension are associated with an increased risk of developing liver cancer. However, it is unknown how changes in the cellular mechanical microenvironment induced by portal hypertension affect the occurrence and development of liver cancer. The aim of this study was to determine the effect of tensile strain on the proliferation of a human liver cancer cell line (HepG2 cells) using methods such as flow cytometry, Cell Counting Kit-8 and 5-bromodeoxyuridine assays, and to examine the changes in microRNA (miRNA/miR) expression using microarray, reverse transcription-quantitative (RT-q)PCR and bioinformatics analyses. It was demonstrated that cyclic tensile force promoted the proliferation of HepG2 cells. The most suitable research conditions were as follows: Tensile strain force loading amplitude 15%; frequency 1 Hz; and time 24 h. After loading the HepG2 cells under such conditions, the differentially expressed miRNAs were screened out using an Agilent Human miRNA Microarray, identifying seven miRNAs with significant differences (expression difference >2 times and P<0.05). A total of five were upregulated, including hsa-miR-296-5p, hsa-miR-6752-5p, hsa-miR-6794-5p, hsa-miR-6889-5p and hsa-miR-7845-5p; and two were downregulated, hsa-miR-4428 and hsa-miR-503-5p. The results of RT-qPCR also further confirmed the expression changes of these miRNAs. Gene Ontology and pathway analyses showed the involvement of these miRNAs in numerous important physiological processes. These findings may provide novel miRNA-based information, thus enhancing the understanding of the pathophysiological processes leading to liver cancer.
Collapse
Affiliation(s)
- Xu Luo
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Si Shen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Suhong Yi
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiangfeng Hu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai 200003, P.R. China
| | - Yunchen Sun
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Kewei Gao
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Liang Zhu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
8
|
Sun MX, An Q, Chen LM, Guo L. MIR-520f Regulated Itch Expression and Promoted Cell Proliferation in Human Melanoma Cells. Dose Response 2020; 18:1559325820918450. [PMID: 32425721 PMCID: PMC7218305 DOI: 10.1177/1559325820918450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that abnormal expression and dysfunction of microRNA is involved in development of cancers. However, the function of miR-520f especially in human melanoma remains elusive. In the current study, the underlying function of miR-520f in human melanoma was investigated. Our study demonstrated that the miR-520f level in human melanoma cell lines and clinical tissues was increased. Overexpression of miR-520f promoted cell proliferation by using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation, anchorage-independent growth assay, and 5-bromo-2-deoxyuridine assays. Furthermore, we revealed that miR-520f could interact with circular RNA Itchy E3 ubiquitin protein ligase (ITCH) 3'-untranslated region and suppress ITCH expression in human melanoma cells. The inhibitory effect of miR-520f-in could be partially restored by knockdown of ITCH in human melanoma cells. In summary, this study provides novel insights into miR-520f act as a crucial role in the regulation of human melanoma cell growth via regulating ITCH, which might be a potential biomarker and therapeutic target of human melanoma.
Collapse
Affiliation(s)
- Ming-xia Sun
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Qun An
- Department of Burns and Plastic Surgery, The Second People Hospital of Dezhou, People’s Republic of China
| | - La-mei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ling Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
9
|
Li Y, Wang D, Li X, Shao Y, He Y, Yu H, Ma Z. MiR-199a-5p suppresses non-small cell lung cancer via targeting MAP3K11. J Cancer 2019; 10:2472-2479. [PMID: 31258753 PMCID: PMC6584351 DOI: 10.7150/jca.29426] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) comprise a class of short, non-coding RNAs that directly target 3'UTR of mRNA, causing subsequent degradation or suppression of translation. Here, we verified that miR-199a-5p was significantly down-regulated in mouse NSCLC tissues and human patient samples. To further study the function of miR-199a-5p, lentivirus system was adopted to construct stably over-expressing miR-199a-5p A549, SPC-A1 and H1299 cell lines. Then, miR-199a-5p played a tumor suppression role via directly targeting MAP3K11 gene in non-small cell lung cancer (NSCLC). Elevated miR-199a-5p suppressed cell proliferation and arrested cell cycle in G1 phase. We found that MAP3K11 was negatively correlated with miR-199a-5p in NSCLC patient tissues and mouse xenograft tumors. Our results suggest that miR-199a-5p together with its target gene MAP3K11 is a key factor and constitutes a complicated regulation network in NSCLC.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Detao Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yang Shao
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanyun He
- Exprimental Center for Life Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Identifying a miRNA signature for predicting the stage of breast cancer. Sci Rep 2018; 8:16138. [PMID: 30382159 PMCID: PMC6208346 DOI: 10.1038/s41598-018-34604-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a heterogeneous disease and one of the most common cancers among women. Recently, microRNAs (miRNAs) have been used as biomarkers due to their effective role in cancer diagnosis. This study proposes a support vector machine (SVM)-based classifier SVM-BRC to categorize patients with breast cancer into early and advanced stages. SVM-BRC uses an optimal feature selection method, inheritable bi-objective combinatorial genetic algorithm, to identify a miRNA signature which is a small set of informative miRNAs while maximizing prediction accuracy. MiRNA expression profiles of a 386-patient cohort of breast cancer were retrieved from The Cancer Genome Atlas. SVM-BRC identified 34 of 503 miRNAs as a signature and achieved a 10-fold cross-validation mean accuracy, sensitivity, specificity, and Matthews correlation coefficient of 80.38%, 0.79, 0.81, and 0.60, respectively. Functional enrichment of the 10 highest ranked miRNAs was analysed in terms of Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations. Kaplan-Meier survival analysis of the highest ranked miRNAs revealed that four miRNAs, hsa-miR-503, hsa-miR-1307, hsa-miR-212 and hsa-miR-592, were significantly associated with the prognosis of patients with breast cancer.
Collapse
|
11
|
Sun Y, Li L, Xing S, Pan Y, Shi Y, Zhang L, Shen Q. miR-503-3p induces apoptosis of lung cancer cells by regulating p21 and CDK4 expression. Cancer Biomark 2018; 20:597-608. [PMID: 28800319 DOI: 10.3233/cbm-170585] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies have shown that microRNAs (miRNAs) can promote or suppress tumor growth and therefore act as targets for cancer therapy. Hsa-miR-503-5p, a mature miRNA derived from 5' ends of pre-miR-503, has been proved to regulate cell proliferation, transformation, migration and invasion. However, the biological function of miR-503-3p derived from 3' ends of pre-miR-503 has never been reported. In current study, we found that miR-503-3p inhibits lung cancer cell viability and induces cell apoptosis. To better understand the molecular mechanism underlying the miR-503-3p participating in this process, PCR array and RNA-sequencing (RNA-seq) were performed and some differential expression genes were discovered between NC and miR-503-3p treated groups. Biological interaction network showed that p21 and CDK4 are the most important proteins involving miR-503-3p signal pathway. Dual-luciferase assay results shown miR-503-3p directly regulates the expression of p21 by targeting 3'-UTR of its mRNA. These results shed light on the potential roles of miR-503-3p, indicating that it may act as an anti-oncogene factor to inhibit lung cancer cell viability.
Collapse
Affiliation(s)
- Yi Sun
- Department of Chest Surgery, the Central Hospital of Linyi, Yishui, Shandong, China
| | - Li Li
- Department of Health, Linyi University Yishui, Yishui, Shandong, China
| | - Shigang Xing
- Department of Chest Surgery, the Central Hospital of Linyi, Yishui, Shandong, China
| | - Yinghua Pan
- Department of Radiotherapy, the Second Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunxiang Shi
- Department of Chest Surgery, the Central Hospital of Linyi, Yishui, Shandong, China
| | - Linghua Zhang
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, Shandong, China
| | - Qiang Shen
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, Shandong, China.,Department of Emergency Surgery, Qingdao Medical Center, Qingdao, Shandong, China
| |
Collapse
|
12
|
Chi Y, Ding F, Zhang W, Du L. microRNA-503 suppresses the migration, proliferation and colony formation of prostate cancer cells by targeting tumor protein D52 like 2. Exp Ther Med 2017; 15:473-478. [PMID: 29375699 DOI: 10.3892/etm.2017.5401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the expression of microRNA-503 (miR-503) and its effect and mechanism of action on prostate cancer. Tumor tissues and tumor-adjacent tissues were collected from 20 patients with prostate cancer. TargetScan was used to predict the miRNA molecule that interacts with tumor protein D52 like 2 (TPD52L2). DU145 cells were transfected with a negative control, miR-503 mimic or miR-503 inhibitor. DU145 cells that had not undergone transfection were used as a control. Levels of miR-503 and TPD52L2 mRNA were determined using reverse transcription-quantitative polymerase chain reaction and the expression of TPD52L2 protein was measured using western blot analysis. The migration ability of DU145 cells was evaluated using a Transwell assay and cell proliferation was examined using an MTT assay. A flat plate colony formation test was conducted to examine the colony formation rate of DU145 cells. The current study demonstrated that TPD52L2 expression is increased while miR-503 expression is decreased in prostate cancer tissues. Overexpression of miR-503 inhibited the transcription and translation of TPD52L2 in DU145 cells and reduced cell migration, proliferation and colony formation. By contrast, inhibition of miR-503 expression increased the expression of TPD52L2 in DU145 cells and increased cell migration, proliferation and colony formation. The present study demonstrated that miR-503 is an oncogene that regulates the migration, proliferation and colony formation of prostate cancer cells by targeting the TPD52L2 gene. Thus, miR-503 has the potential to become a target for the molecular treatment and prognosis of prostate cancer in the future.
Collapse
Affiliation(s)
- Yuhua Chi
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Feng Ding
- Department of Anesthesia Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Wenjie Zhang
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Lifa Du
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
13
|
Ma H, Lian R, Wu Z, Li X, Yu W, Shang Y, Guo X. MiR-503 enhances the radiosensitivity of laryngeal carcinoma cells via the inhibition of WEE1. Tumour Biol 2017; 39:1010428317706224. [PMID: 29019284 DOI: 10.1177/1010428317706224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Huimin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| | - Rong Lian
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| | - Zhiyan Wu
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| | - Xiao Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| | - Wenfa Yu
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| | - Yun Shang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| | - Xixia Guo
- The Third Department of Pediatric Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| |
Collapse
|
14
|
Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC, Mullen AC. Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs. Cell Rep 2017; 20:2262-2276. [PMID: 28854373 PMCID: PMC5705222 DOI: 10.1016/j.celrep.2017.08.027] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 06/21/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification of mRNAs and is implicated in all aspects of post-transcriptional RNA metabolism. However, little is known about m6A modifications to circular (circ) RNAs. We developed a computational pipeline (AutoCirc) that, together with depletion of ribosomal RNA and m6A immunoprecipitation, defined thousands of m6A circRNAs with cell-type-specific expression. The presence of m6A circRNAs is corroborated by interaction between circRNAs and YTHDF1/YTHDF2, proteins that read m6A sites in mRNAs, and by reduced m6A levels upon depletion of METTL3, the m6A writer. Despite sharing m6A readers and writers, m6A circRNAs are frequently derived from exons that are not methylated in mRNAs, whereas mRNAs that are methylated on the same exons that compose m6A circRNAs exhibit less stability in a process regulated by YTHDF2. These results expand our understanding of the breadth of m6A modifications and uncover regulation of circRNAs through m6A modification.
Collapse
Affiliation(s)
- Chan Zhou
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benoit Molinie
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kaveh Daneshvar
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua V Pondick
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jinkai Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas Van Wittenberghe
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yi Xing
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cosmas C Giallourakis
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Sharma A, Cinti C, Capobianco E. Multitype Network-Guided Target Controllability in Phenotypically Characterized Osteosarcoma: Role of Tumor Microenvironment. Front Immunol 2017; 8:918. [PMID: 28824643 PMCID: PMC5536125 DOI: 10.3389/fimmu.2017.00918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022] Open
Abstract
This study highlights the relevance of network-guided controllability analysis as a precision oncology tool. Target controllability through networks is potentially relevant to cancer research for the identification of therapeutic targets. With reference to a recent study on multiple phenotypes from 22 osteosarcoma (OS) cell lines characterized both in vitro and in vivo, we found that a variety of critical proteins in OS regulation circuits were in part phenotype specific and in part shared. To generalize our inference approach and match cancer phenotypic heterogeneity, we employed multitype networks and identified targets in correspondence with protein sub-complexes. Therefore, we established the relevance for diagnostic and therapeutic purposes of inspecting interactive targets, namely those enriched by significant connectivity patterns in protein sub-complexes. Emerging targets appeared with reference to the OS microenvironment, and relatively to small leucine-rich proteoglycan members and D-type cyclins, among other collagen, laminin, and keratin proteins. These described were evidences shared across all phenotypes; instead, specific evidences were provided by critical proteins including IGFBP7 and PDGFRA in the invasive phenotype, and FGFR3 and THBS1 in the colony forming phenotype.
Collapse
Affiliation(s)
- Ankush Sharma
- Experimental Oncology Unit, UOS - Institute of Clinical Physiology, CNR, Siena, Italy.,Center for Computational Science, University of Miami, Miami, FL, United States
| | - Caterina Cinti
- Experimental Oncology Unit, UOS - Institute of Clinical Physiology, CNR, Siena, Italy
| | - Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL, United States.,Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
16
|
Yan J, Xu Y, Wang H, Du T, Chen H. MicroRNA-503 inhibits the proliferation and invasion of breast cancer cells via targeting insulin-like growth factor 1 receptor. Mol Med Rep 2017; 16:1707-1714. [PMID: 28656281 PMCID: PMC5562074 DOI: 10.3892/mmr.2017.6816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/07/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs), a class of non-coding RNAs that are 18–25 nucleotides in length, serve as key regulators in the development and progression of human cancers. Previously, miR-503 has been implicated in breast cancer. However, the underlying mechanism of miR-503 in regulating the proliferation and invasion of breast cancer cells remains largely unknown. In the present study, reverse transcription-quantitative polymerase chain reaction analysis indicated that the expression of miR-503 was significantly reduced in breast cancer tissues compared with their matched adjacent normal tissues. Furthermore, miR-503 expression levels were markedly reduced in T2-T4 stage breast cancer, compared with T1 stage. Insulin-like growth factor 1 receptor (IGF-1R) was further identified as a novel target of miR-503. Overexpression of miR-503 significantly suppressed the protein expression levels of IGF-1R. Furthermore, it inhibited the proliferation and invasion of human breast cancer MCF-7 cells, as assessed by MTT and Transwell assays, respectively. However, restoration of IGF-1R expression markedly ameliorated the suppressive effects of miR-503 overexpression on MCF-7 cell proliferation and invasion, indicating that miR-503 inhibits breast cancer cell proliferation and invasion at least partially via directly targeting IGF-1R. Furthermore, the mRNA and protein expression levels of IGF-1R were demonstrated to be significantly increased in breast cancer tissues compared with their matched adjacent normal tissues. In addition, IGF-1R mRNA expression levels were reversely correlated with miR-503 expression levels in breast tumors, suggesting that the upregulation of IGF-1R may be due to downregulation of miR-503 in breast cancer. In conclusion, the present study expanded the understanding of the regulatory mechanism of miR-503 in breast cancer, and implicates the miR-503/IGF-1R axis as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jingwang Yan
- Department of General Surgery, Xinxiang Center Hospital, Xinxiang, Henan 453000, P.R. China
| | - Yonghuan Xu
- Department of Oncology, People's Hospital of Xixia County, Nanyang, Henan 474550, P.R. China
| | - Haipeng Wang
- Department of General Surgery, Xinxiang Center Hospital, Xinxiang, Henan 453000, P.R. China
| | - Taiping Du
- Department of General Surgery, Xinxiang Center Hospital, Xinxiang, Henan 453000, P.R. China
| | - Hao Chen
- Department of General Surgery, Xinxiang Center Hospital, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
17
|
Baran-Gale J, Purvis JE, Sethupathy P. An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response in MCF-7 breast cancer cells. RNA (NEW YORK, N.Y.) 2016; 22:1592-603. [PMID: 27539783 PMCID: PMC5029456 DOI: 10.1261/rna.056895.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/19/2016] [Indexed: 05/23/2023]
Abstract
Estrogen receptor α (ERα) is an important biomarker of breast cancer severity and a common therapeutic target. In response to estrogen, ERα stimulates a dynamic transcriptional program including both coding and noncoding RNAs. We generate a fine-scale map of expression dynamics by performing a temporal profiling of both messenger RNAs (mRNAs) and microRNAs (miRNAs) in MCF-7 cells (an ER+ model cell line for breast cancer) in response to estrogen stimulation. We identified three primary expression trends-transient, induced, and repressed-that were each enriched for genes with distinct cellular functions. Integrative analysis of mRNA and miRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen response, in part through suppression of ZNF217-an oncogene that is frequently amplified in cancer. We confirmed experimentally that miR-503 directly targets ZNF217 and that overexpression of miR-503 suppresses MCF-7 cell proliferation. Moreover, the levels of ZNF217 and miR-503 are associated with opposite outcomes in breast cancer patient cohorts, with high expression of ZNF217 associated with poor survival and high expression of miR-503 associated with improved survival. Overall, these data indicate that miR-503 acts as a potent estrogen-induced candidate tumor suppressor miRNA that opposes cellular proliferation and has promise as a novel therapeutic for breast cancer. More generally, our work provides a systems-level framework for identifying functional interactions that shape the temporal dynamics of gene expression.
Collapse
Affiliation(s)
- Jeanette Baran-Gale
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeremy E Purvis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Praveen Sethupathy
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
18
|
Zhao K, Chen BJ, Chen ZG, Zhang YJ, Xu D, Liu Q. Effect of miR-503 Down-Regulation on Growth and Invasion of Esophagus Carcinoma and Related Immune Function. Med Sci Monit 2015; 21:3564-9. [PMID: 26580839 PMCID: PMC4655614 DOI: 10.12659/msm.895518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNA (miR) has been proved to be an important biomarker for tumors because it can regulate occurrence, progression, invasion, and metastasis of cancer. A previous study has shown the involvement of miR-503 in multiple gastrointestinal tumors. Its detailed role and immune regulatory function in esophagus carcinoma, however, remains unknown. This study thus investigated the effect of miR-503 in regulating growth, proliferation, and invasion of esophagus cancer and its influence on cytokine secretion. Material/Methods Esophagus carcinoma cell line EC9706 and normal esophageal epithelial cell line HEEC were transfected with miR-503 inhibitor. MTT assay was used to quantify the cell proliferation, and a Transwell chamber was used to evaluate cell invasion. Release of cytokines, including interleukin-2 (IL-2), IL-4, IL-10, and interferon-γ (IFN-γ), was measured by enzyme-linked immunosorbent assay (ELISA). Results MiR-503 expression was significantly elevated in esophagus carcinoma cells (p<0.05). The specific inhibition of miR-503 expression remarkably suppressed proliferation and invasion of tumor cells. It can also down-regulated IL-2 and IFN-γ expression and facilitate secretion of IL-4 and IL-10 when compared to the control group (p<0.05 in all ceases). Conclusions The inhibition of miR-503 can effectively inhibit tumor progression and improve immune function, suggesting its potency as a novel drug target for esophagus cancer treatment.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Bao-Jun Chen
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Zhi-Guo Chen
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Yong-Jian Zhang
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Di Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Qi Liu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| |
Collapse
|
19
|
Guo J, Liu X, Wang M. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer. Biochem Biophys Res Commun 2015; 464:1302-1308. [PMID: 26231797 DOI: 10.1016/j.bbrc.2015.07.127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/25/2015] [Indexed: 01/08/2023]
Abstract
Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Jia Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China.
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| |
Collapse
|
20
|
Long J, Ou C, Xia H, Zhu Y, Liu D. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol 2015; 36:8697-702. [PMID: 26047605 DOI: 10.1007/s13277-015-3623-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/27/2015] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is one of the most common malignancies and a major cause of cancer-related mortality all over the world. A growing body of reports revealed that microRNAs play essential roles in the progression of cancers. Aberrant expression of miR-503 has been reported in several kinds of cancer. The aim of the current study was to elucidate the role of miR-503 in the pathogenesis of breast cancer. In the present study, our results suggested that miR-503 expression was markedly downregulated in breast cancer tissues and cells. Overexpression of miR-503 in breast cancer cell lines reduced cell proliferation through inducing G0/G1 cell cycle arrest by targeting CCND1. Together, our findings provide new knowledge regarding the role of miR-503 in the progression of breast cancer and indicate the role of miR-503 as a tumor suppressor microRNA (miRNA) in breast cancer.
Collapse
Affiliation(s)
- Jianting Long
- Department of Medicinal Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Caiwen Ou
- Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haoming Xia
- Breast Disease Center, Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yifan Zhu
- Breast Disease Center, Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Dayue Liu
- Breast Disease Center, Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|