1
|
Burin T, Grohar MC, Jakopic J, Veberic R, Stajner N, Cesar T, Kunej U, Hudina M. Changes in the anthocyanin pathway related to phenolic compounds and gene expression in skin and pulp of cv. 'Istrska belica' (Olea europaea L.) during ripening. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154364. [PMID: 39366099 DOI: 10.1016/j.jplph.2024.154364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
The purpose of research was to study in detail the dynamics of the anthocyanin pathway during the ripening of olives, comprising the relative gene expression of nine enzymes and the contents of twelve phenolic compounds. The analyses were conducted on cv. 'Istrska belica' at seven maturity stages, separately in the pulp and the skin. Most phenolic compounds showed a higher content in the skin than in the pulp. Results showed that the accumulation of dihidroquercetin and dihydromyricetin started at the latest maturity stages. The most abundant phenolics evaluated in the current study present in both tissues were cyanidin-3-O-rutinoside and delphinidin-3-O-glucoside, both presented at all maturity stages, even when colour was not yet visible in the skin or pulp. Gene expression of enzymes revealed tissue-specific regulation during ripening. Genes expressions for phenylalanine ammonia lyase, chalcone synthase, chalcone isomerase, flavonoid 3-hydroxylase and flavonoid 3'-hydroxylase showed higher levels in the skin than in the pulp, and an upregulation during ripening in both tissues. Anthocyanidin synthase was the only gene with the highest expression at the beginning of ripening, with extreme decrease between second and third maturity stage, which suggests that the enzyme is mainly synthesized at the beginning of ripening and that enzyme activation starts at latest maturity stages. Our research contributes to a better understanding of the dynamics of phenolic accumulation and the relative gene expression of enzymes involved in the anthocyanin pathway in reveals tissue-specific changes during olive fruit ripening. The previous results are also supported by physical changes, which are reflected in a statistical increase in fruit weight, a decrease in fruit firmness and also by changes in appearance observed during ripening. Understanding the accumulation of anthocyanins could, through further study, help to improve the quality of the fruit and therefore the quality of olive products.
Collapse
Affiliation(s)
- Tea Burin
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Mariana Cecilia Grohar
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Jerneja Jakopic
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Robert Veberic
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Natasa Stajner
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Tjasa Cesar
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Urban Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Metka Hudina
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Huang J, Qin Y, Xie Z, Wang P, Zhao Z, Huang X, Chen Q, Huang Z, Chen Y, Gao A. Combined transcriptome and metabolome analysis reveal that the white and yellow mango pulp colors are associated with carotenoid and flavonoid accumulation, and phytohormone signaling. Genomics 2023; 115:110675. [PMID: 37390936 DOI: 10.1016/j.ygeno.2023.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Mango (Mangifera indica L.) is a widely appreciated tropical fruit for its rich color and nutrition. However, knowledge on the molecular basis of color variation is limited. Here, we studied HY3 (yellowish-white pulp) and YX4 (yellow pulp), reaped with 24 h gap from the standard harvesting time. The carotenoids and total flavonoids increased with the advance of harvest time (YX4 > HY34). Transcriptome sequencing showed that higher expressions of the core carotenoid biosynthesis genes and flavonoid biosynthesis genes are correlated to their respective contents. The endogenous indole-3-acetic acid and jasmonic acid contents decreased but abscisic acid and ethylene contents increased with an increase in harvesting time (YX4 > HY34). Similar trends were observed for the corresponding genes. Our results indicate that the color differences are related to carotenoid and flavonoid contents, which in turn are influenced by phytohormone accumulation and signaling.
Collapse
Affiliation(s)
- Jianfeng Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Danzhou 571737, Hainan, China
| | - Yuling Qin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Danzhou 571737, Hainan, China
| | - Ziliang Xie
- Wenzhou Vocational College of Science and Technology, 325006 Zhejiang, China
| | - Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Danzhou 571737, Hainan, China
| | - Zhichang Zhao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Danzhou 571737, Hainan, China
| | - Xiaolou Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Danzhou 571737, Hainan, China
| | - Qianfu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Danzhou 571737, Hainan, China
| | | | - Yeyuan Chen
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China.
| | - Aiping Gao
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Danzhou 571737, Hainan, China.
| |
Collapse
|
3
|
Sharma N, Shivran M, Singh N, Dubey AK, Singh SK, Sharma N, Gupta R, Vittal H, Singh BP, Sevanthi AM, Singh NK. Differential gene expression associated with flower development of mango (Mangifera indica L.) varieties with different shelf-life. Gene Expr Patterns 2023; 47:119301. [PMID: 36526239 DOI: 10.1016/j.gep.2022.119301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Mango (Mangifera indica L.) is one of the most important commercial fruit crop grown in many parts of the world. Major challenges affecting mango trade are short shelf-life, high susceptibility to chilling injury, post-harvest diseases and consumer demand for improved fruit quality. The objective of the present study was to reveal the key regulators present in bud and flower tissues during flower development stage, associated with fruit development and affect the shelf-life of the mango fruit. RNA-sequencing of contrasting genotypes having short and long shelf-life, was carried out. Comparative differential expression pathway studies of long shelf-life (Totapuri) and short shelf-life (Bombay Green) mango genotypes revealed a total of 177 highly differentially expressed genes. Out of 177 total genes, 101 genes from endoplasmic reticulum pathway and very few from gibberellins (3) and jasmonic acid (1) pathway were identified. Genes from endoplasmic reticulum pathway like hsp 90, SRC2, DFRA, CHS, BG3 and ASPG1 mainly up regulated in Bombay Green. Uniprotein B9R8D3 also shows up regulation in Bombay Green. Ethylene insensitive pathway gene EIL1 up regulated in Bombay Green. Gene CAD1 from phenylpropanoid pathway mainly up regulated in Bombay Green. A total of 4 SSRs and 227 SNPs were mined from these pathways specific to the shelf-life. Molecular studies of endoplasmic reticulum, phenylpropanoid, ethylene, polygalacturonase and hormone pathways at the time of bud and flower formation revealed key regulators that determine the shelf-life of mango fruit.
Collapse
Affiliation(s)
- Nimisha Sharma
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Mukesh Shivran
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Narendra Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Kumar Dubey
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neha Sharma
- IILM Academy of Higher Learning, College of Engineering and Technology Greater, Noida, Uttar Pradesh, 201310, India
| | - Ruchi Gupta
- NGB Diagnostics Private Limited, Noida, UP, 201301, India
| | - Hatkari Vittal
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | |
Collapse
|
4
|
Song M, Wang H, Fan Z, Huang H, Ma H. Advances in sequencing and key character analysis of mango ( Mangifera indica L.). HORTICULTURE RESEARCH 2023; 10:uhac259. [PMID: 37601702 PMCID: PMC10433700 DOI: 10.1093/hr/uhac259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/19/2022] [Indexed: 08/22/2023]
Abstract
Mango (Mangifera indica L.) is an important fruit crop in tropical and subtropical countries associated with many agronomic and horticultural problems, such as susceptibility to pathogens, including powdery mildew and anthracnose, poor yield and quality, and short shelf life. Conventional breeding techniques exhibit significant limitations in improving mango quality due to the characteristics of long ripening, self-incompatibility, and high genetic heterozygosity. In recent years, much emphasis has been placed on identification of key genes controlling a certain trait through genomic association analysis and directly breeding new varieties through transgene or genotype selection of offspring. This paper reviews the latest research progress on the genome and transcriptome sequencing of mango fruit. The rapid development of genome sequencing and bioinformatics provides effective strategies for identifying, labeling, cloning, and manipulating many genes related to economically important traits. Preliminary verification of the functions of mango genes has been conducted, including genes related to flowering regulation, fruit development, and polyphenol biosynthesis. Importantly, modern biotechnology can refine existing mango varieties to meet the market demand with high economic benefits.
Collapse
Affiliation(s)
- Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haomiao Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Qian M, Wu H, Yang C, Zhu W, Shi B, Zheng B, Wang S, Zhou K, Gao A. RNA-Seq reveals the key pathways and genes involved in the light-regulated flavonoids biosynthesis in mango ( Mangifera indica L.) peel. FRONTIERS IN PLANT SCIENCE 2023; 13:1119384. [PMID: 36743534 PMCID: PMC9890063 DOI: 10.3389/fpls.2022.1119384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 05/20/2023]
Abstract
Introduction Flavonoids are important water soluble secondary metabolites in plants, and light is one of the most essential environmental factors regulating flavonoids biosynthesis. In the previous study, we found bagging treatment significantly inhibited the accumulation of flavonols and anthocyanins but promoted the proanthocyanidins accumulation in the fruit peel of mango (Mangifera indica L.) cultivar 'Sensation', while the relevant molecular mechanism is still unknown. Methods In this study, RNA-seq was conducted to identify the key pathways and genes involved in the light-regulated flavonoids biosynthesis in mango peel. Results By weighted gene co-expression network analysis (WGCNA), 16 flavonoids biosynthetic genes were crucial for different flavonoids compositions biosynthesis under bagging treatment in mango. The higher expression level of LAR (mango026327) in bagged samples might be the reason why light inhibits proanthocyanidins accumulation in mango peel. The reported MYB positively regulating anthocyanins biosynthesis in mango, MiMYB1, has also been identified by WGCNA in this study. Apart from MYB and bHLH, ERF, WRKY and bZIP were the three most important transcription factors (TFs) involved in the light-regulated flavonoids biosynthesis in mango, with both activators and repressors. Surprisingly, two HY5 transcripts, which are usually induced by light, showed higher expression level in bagged samples. Discussion Our results provide new insights of the regulatory effect of light on the flavonoids biosynthesis in mango fruit peel.
Collapse
Affiliation(s)
- Minjie Qian
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Hongxia Wu
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chengkun Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Wencan Zhu
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Bin Shi
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Bin Zheng
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Songbiao Wang
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Aiping Gao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Haikou, China
| |
Collapse
|
6
|
Romero-Rincón A, Martínez ST, Higuera BL, Coy-Barrera E, Ardila HD. Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. PHYTOCHEMISTRY 2021; 192:112933. [PMID: 34482105 DOI: 10.1016/j.phytochem.2021.112933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Rooted cuttings from two carnation (Dianthus caryophyllus L.) cultivars showing contrasting responses to the vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod) were inoculated with this phytopathogen, and some of the biochemical responses associated with flavonoid biosynthesis were investigated in the roots. The resistant cultivar ('Golem') showed a significant increase in the levels of phenolic and flavonoid compounds at 48-96 h post-inoculation (hpi) (α = 0.05). LC-MS-based analysis indicated that the flavonoids mainly included flavanol-type glycosides, especially quercetin and kaempferol aglycones. Quantification of the mRNA levels of genes encoding CHS (Chalcone Synthase), CHI (Chalcone Isomerase), FLS (Flavonol Synthase), and the transcription factor MYB11 by using reverse transcription quantitative polymerase chain reaction (RT-qPCR) indicated that the resistant cultivar exhibited higher expression levels of these genes and, therefore, showed more flavonoid accumulation at 96 hpi. The differences in the temporal regulation of the assessed variables during infection support the idea that the early expression of enzymes of the flavonoid biosynthesis pathway in carnation roots is linked to a resistance response to the hemibiotrophic pathogen Fod race 2. The present experimental approach is the first report describing the molecular mechanisms underlying flavonoid biosynthesis in carnation roots during their interaction with Fod.
Collapse
Affiliation(s)
- Ana Romero-Rincón
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia; Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Sixta Tulia Martínez
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia
| | - Blanca Ligia Higuera
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Harold Duban Ardila
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia.
| |
Collapse
|
7
|
Fialova L, Romanovska D, Marova I. A Comparative Study of Some Procedures for Isolation of Fruit DNA of Sufficient Quality for PCR-Based Assays. Molecules 2020; 25:molecules25184317. [PMID: 32962310 PMCID: PMC7570663 DOI: 10.3390/molecules25184317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022] Open
Abstract
Food fraud has been and still is a problem in the food industry. It is detectable by several approaches, such as high performance liquid chromatography (HPLC), chemometric assays, or DNA-based techniques, each with its own drawbacks. This work addresses one major drawback of DNA-based methods, in particular their sensitivity to inhibitors contained in particular matrices from which DNA is isolated. We tested five commercial kits and one in-house method characterized by different ways of sample homogenization and DNA capture and purification. Using these methods, DNA was isolated from 10 different fruit species commonly used in plant-based foodstuffs. The quality of the DNA was evaluated by UV-VIS spectrophotometry. Two types of qPCR assays were used for DNA quality testing: (i) Method specific for plant ITS2 region, (ii) methods specific for individual fruit species. Based mainly on the results of real-time PCR assays, we were able to find two column-based kits and one magnetic carrier-based kit, which consistently provided fruit DNA isolates of sufficient quality for PCR-based assays useful for routine analysis and identification of individual fruit species in food products.
Collapse
|
8
|
Discovery of Functional SNPs via Genome-Wide Exploration of Malaysian Pigmented Rice Varieties. Int J Genomics 2019; 2019:4168045. [PMID: 31687375 PMCID: PMC6811786 DOI: 10.1155/2019/4168045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 01/30/2023] Open
Abstract
Recently, rice breeding program has shown increased interests on the pigmented rice varieties due to their benefits to human health. However, the genetic variation of pigmented rice varieties is still scarce and remains unexplored. Hence, we performed genome-wide SNP analysis from the genome resequencing of four Malaysian pigmented rice varieties, representing two black and two red rice varieties. The genome of four pigmented varieties was mapped against Nipponbare reference genome sequences, and 1.9 million SNPs were discovered. Of these, 622 SNPs with polymorphic sites were identified in 258 protein-coding genes related to metabolism, stress response, and transporter. Comparative analysis of 622 SNPs with polymorphic sites against six rice SNP datasets from the Ensembl Plants variation database was performed, and 70 SNPs were identified as novel SNPs. Analysis of SNPs in the flavonoid biosynthetic genes revealed 40 nonsynonymous SNPs, which has potential as molecular markers for rice seed colour identification. The highlighted SNPs in this study show effort in producing valuable genomic resources for application in the rice breeding program, towards the genetic improvement of new and improved pigmented rice varieties.
Collapse
|
9
|
Lu Y, Chang X, Guo X. Dynamic Changes of Ascorbic Acid, Phenolics Biosynthesis and Antioxidant Activities in Mung Beans ( Vigna radiata) until Maturation. PLANTS (BASEL, SWITZERLAND) 2019; 8:E75. [PMID: 30934563 PMCID: PMC6473823 DOI: 10.3390/plants8030075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/17/2022]
Abstract
To better understand the regulatory mechanism of phenolics and ascorbic acid accumulation as well as antioxidant activities in mung beans during legume development, the gene expression profiles of 25 key-coding genes in ascorbic acid and phenolics metabolic pathways were analyzed. As well as the dynamitic changes of ascorbic acid, phenolic profiles and antioxidant activities with legume development were studied. The results indicated that gene expression profiles were closely related to the ascorbic acid and phenolics accumulation regularity during legume development. VrVTC2 and VrGME played important roles for ascorbic acid accumulation from 8 to 17 days after flowering (DAF). VrPAL and VrCHS exhibited positive correlations with daidzein and glycitin accumulation, and VrIFS had a strong positive correlation with glycitin biosynthesis. Antioxidant activities dramatically increased during mung bean maturing, which were significantly related to ascorbic acid and phenolics accumulation. Eight days after flowering was the essential stage for ascorbic acid and phenolics biosynthesis in mung beans.
Collapse
Affiliation(s)
- Yanyan Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| | - Xiaoxiao Chang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Key laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangzhou 510640, China.
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
10
|
Bajpai A, Khan K, Muthukumar M, Rajan S, Singh NK. Molecular analysis of anthocyanin biosynthesis pathway genes and their differential expression in mango peel. Genome 2018; 61:157-166. [PMID: 29338343 DOI: 10.1139/gen-2017-0205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mango fruit is cherished by masses for its taste and nutrition, contributed by color, flavor, and aroma. Among these, peel color is an important trait contributing to fruit quality and market value. We attempted to elucidate the role of key genes of the anthocyanin biosynthesis pathway related to fruit peel color from the leaf transcriptome of mango cultivar Amrapali. A total of 108 mined transcript sequences were assigned to the phenylpropanoid-flavonoid pathway from which 15 contigs representing anthocyanin biosynthesis genes were annotated. Alternate splice variants were identified by mapping against genes of Citrus clementina and Vitis vinifera (closest relatives) and protein subcellular localization was determined. Phylogenetic analysis of these pathway genes clustered them into distinct groups aligning with homologous genes of Magnifera indica, C. clementina, and V. vinifera. Expression profiling revealed higher relative fold expressions in mature fruit peel of red-colored varieties (Arunika, Ambika, and Tommy Atkins) in comparison with the green-peeled Amrapali. MiCHS, MiCHI, and MiF3H alternate splice variants revealed differential gene expression. Functionally divergent variants indicate availability of an allelic pool programmed to play critical roles in peel color. This study provides insight into the molecular genetic basis of peel color and offers scope for development of biomarkers in varietal improvement programs.
Collapse
Affiliation(s)
- Anju Bajpai
- a ICAR-Central Institute for Subtropical Horticulture, Lucknow-226101, India
| | - Kasim Khan
- a ICAR-Central Institute for Subtropical Horticulture, Lucknow-226101, India
| | - M Muthukumar
- a ICAR-Central Institute for Subtropical Horticulture, Lucknow-226101, India
| | - S Rajan
- a ICAR-Central Institute for Subtropical Horticulture, Lucknow-226101, India
| | - N K Singh
- b ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| |
Collapse
|
11
|
Okada T, Ihara H, Ito R, Ikeda Y. Molecular cloning and functional expression of Lewis type α1,3/α1,4-fucosyltransferase cDNAs from Mangifera indica L. PHYTOCHEMISTRY 2017; 144:98-105. [PMID: 28910607 DOI: 10.1016/j.phytochem.2017.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 05/18/2023]
Abstract
In higher plants, complex type N-glycans contain characteristic carbohydrate moieties that are not found in mammals. In particular, the attachment of the Lewis a (Lea) epitope is currently the only known outer chain elongation that is present in plant N-glycans. Such a modification is of great interest in terms of the biological function of complex type N-glycans in plant species. However, little is known regarding the exact molecular basis underlying their Lea expression. In the present study, we cloned two novel Lewis type fucosyltransferases (MiFUT13) from mango fruit, Mangifera indica L., heterologously expressed the proteins and structurally and functionally characterized them. Using an HPLC-based assay, we demonstrated that the recombinant MiFUT13 proteins mediate the α1,4-fucosylation of acceptor tetrasaccharides with a strict preference for type I-based structure to type II. The results and other findings suggest that MiFUT13s are involved in the biosynthesis of Lea containing glycoconjugates in mango fruits.
Collapse
Affiliation(s)
- Takahiro Okada
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University, Faculty of Medicine, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Hideyuki Ihara
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University, Faculty of Medicine, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Ritsu Ito
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University, Faculty of Medicine, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University, Faculty of Medicine, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
12
|
A Study on the Expression of Genes Involved in Carotenoids and Anthocyanins During Ripening in Fruit Peel of Green, Yellow, and Red Colored Mango Cultivars. Appl Biochem Biotechnol 2017. [PMID: 28643121 DOI: 10.1007/s12010-017-2529-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mango (Mangiferaindica L.) fruits are generally classified based on peel color into green, yellow, and red types. Mango peel turns from green to yellow or red or retain green colors during ripening. The carotenoids and anthocyanins are the important pigments responsible for the colors of fruits. In the present study, peels of different colored cultivars at three ripening stages were characterized for pigments, colors, and gene expression analysis. The yellow colored cultivar "Arka Anmol" showed higher carotenoid content, wherein β-carotene followed by violaxanthin were the major carotenoid compounds that increased during ripening. The red colored cultivars were characterized with higher anthocyanins with cyanidin-3-O-monoglucosides and peonidin-3-O-glucosides as the major anthocyanins. The gene expression analysis by qRT-PCR showed the higher expression of carotenoid biosynthetic genes viz. lycopene-β-cyclase and violaxanthin-de-epoxidase in yellow colored cv. Arka Anmol, and the expression was found to increase during ripening. However, in red colored cv. "Janardhan Pasand," there is increased regulation of all anthocyanin biosynthetic genes including transcription factors MYB and basic helix loop. This indicated the regulation of the anthocyanins by these genes in red mango peel. The results showed that the accumulation pattern of particular pigments and higher expression of specific biosynthetic genes in mango peel impart different colors.
Collapse
|
13
|
Kuhn DN, Bally ISE, Dillon NL, Innes D, Groh AM, Rahaman J, Ophir R, Cohen Y, Sherman A. Genetic Map of Mango: A Tool for Mango Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:577. [PMID: 28473837 PMCID: PMC5397511 DOI: 10.3389/fpls.2017.00577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/30/2017] [Indexed: 05/27/2023]
Abstract
Mango (Mangifera indica) is an economically and nutritionally important tropical/subtropical tree fruit crop. Most of the current commercial cultivars are selections rather than the products of breeding programs. To improve the efficiency of mango breeding, molecular markers have been used to create a consensus genetic map that identifies all 20 linkage groups in seven mapping populations. Polyembryony is an important mango trait, used for clonal propagation of cultivars and rootstocks. In polyembryonic mango cultivars, in addition to a zygotic embryo, several apomictic embryos develop from maternal tissue surrounding the fertilized egg cell. This trait has been associated with linkage group 8 in our consensus genetic map and has been validated in two of the seven mapping populations. In addition, we have observed a significant association between trait and single nucleotide polymorphism (SNP) markers for the vegetative trait of branch habit and the fruit traits of bloom, ground skin color, blush intensity, beak shape, and pulp color.
Collapse
Affiliation(s)
- David N. Kuhn
- Subtropical Horticulture Research Station, United States Department of Agriculture—Agriculture Research ServiceMiami, FL, USA
| | - Ian S. E. Bally
- Department of Agriculture and Fisheries, Centre for Tropical Agriculture, Horticulture and Forestry ScienceBrisbane, QLD, Australia
| | - Natalie L. Dillon
- Department of Agriculture and Fisheries, Centre for Tropical Agriculture, Horticulture and Forestry ScienceBrisbane, QLD, Australia
| | - David Innes
- Department of Agriculture and Fisheries, Centre for Tropical Agriculture, Horticulture and Forestry ScienceBrisbane, QLD, Australia
| | - Amy M. Groh
- International Center for Tropical Botany, Florida International UniversityMiami, FL, USA
| | - Jordon Rahaman
- International Center for Tropical Botany, Florida International UniversityMiami, FL, USA
| | - Ron Ophir
- Department of Fruit Tree Sciences, Plant Sciences Institute, Agriculture Research OrganizationRishon Letzion, Israel
| | - Yuval Cohen
- Department of Fruit Tree Sciences, Plant Sciences Institute, Agriculture Research OrganizationRishon Letzion, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, Plant Sciences Institute, Agriculture Research OrganizationRishon Letzion, Israel
| |
Collapse
|