1
|
Qu J, Liu L, Zheng C, Guo Z, Sun D, Pan F, Lu J, Yin L. Plasmopara viticola Effector PvRXLR10 Targets a Host Phospholipase VvipPLA-IIδ2 to Suppress Plant Immunity in Grapevine. MOLECULAR PLANT PATHOLOGY 2025; 26:e70095. [PMID: 40375562 PMCID: PMC12081833 DOI: 10.1111/mpp.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025]
Abstract
Plasmopara viticola that causes grapevine downy mildew disease in viticulture regions is among the 10 most relevant pathogens worldwide. It secretes a large arsenal of effectors to facilitate colonisation by perturbing host immunity. However, the underlying mechanisms by which P. viticola effectors disturb grapevine defence are still largely unknown. In this study, we report that PvRXLR10, an RXLR effector with a WY domain, promotes P. viticola infection in grapevine and Phytophthora parasitica colonisation in Nicotiana benthamiana. PvRXLR10 interacts with a host patatin-like protein VvipPLA-IIδ2 with phospholipase A2 activity. The WY domain of PvRXLR10 is not responsible for cell death suppression in N. benthamiana but is necessary for PvRXLR10 interaction with VvipPLA-IIδ2. Overexpression and RNAi-mediated suppression of VvipPLA-IIδ2 expression in Vitis vinifera consistently showed that this protein positively regulates plant immunity in response to P. viticola infection. Interestingly, we found that VvipPLA-IIδ2 partially associates with PvRXLR10 at the endoplasmic reticulum (ER). Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the expression of VvipPLA-IIδ2 was suppressed by PvRXLR10 during P. viticola infection. The overexpression of VvipPLA-IIδ2 in V. vinifera induced higher expression of genes related to jasmonic acid (JA) biosynthesis, signalling pathways and defence response. The evidence indicates the important roles of VvipPLA-IIδ2 in grapevine immunity and P. viticola effector PvRXLR10 targets this protein to promote its infection.
Collapse
Affiliation(s)
- Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Key LabGuangxi Academy of Agricultural SciencesNanningChina
| | - Lulu Liu
- Guangxi Crop Genetic Improvement and Biotechnology Key LabGuangxi Academy of Agricultural SciencesNanningChina
| | - Chengxu Zheng
- Guangxi Crop Genetic Improvement and Biotechnology Key LabGuangxi Academy of Agricultural SciencesNanningChina
| | - Zexi Guo
- Guangxi Crop Genetic Improvement and Biotechnology Key LabGuangxi Academy of Agricultural SciencesNanningChina
| | - Dayun Sun
- Guangxi Crop Genetic Improvement and Biotechnology Key LabGuangxi Academy of Agricultural SciencesNanningChina
| | - Fengying Pan
- Guangxi Crop Genetic Improvement and Biotechnology Key LabGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Key LabGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
2
|
Xu L, Wang S, Wang W, Wang H, Welsh L, Boevink PC, Whisson SC, Birch PRJ. Proteolytic processing of both RXLR and EER motifs in oomycete effectors. THE NEW PHYTOLOGIST 2025; 245:1640-1654. [PMID: 39327921 PMCID: PMC11754927 DOI: 10.1111/nph.20130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Arg-any amino acid-Leu-Arg (RXLR) effectors are central oomycete virulence factors that suppress plant immunity. Relatively little is known about how they are processed post-translationally before delivery into host cells. A range of molecular, cell and biochemical processes were used to investigate proteolytic processing of RXLR and Glu-Glu-Arg (EER) motifs in Phytophthora infestans effectors. Proteolytic cleavage at the RXLR motif occurred before secretion in all effectors tested, suggesting it is a general rule. Cleavage occurred between the leucine and the second arginine. There was no cleavage of a naturally occurring second RXLR motif in a structured region of Pi21388/AvrBlb1, or one introduced at a similar position in effector Pi04314, in keeping with the motif being positionally constrained, potentially to disordered regions closely following the signal peptide. Remarkably, independent proteolytic cleavage of the EER motif, often found immediately after the RXLR, was also observed, occurring immediately after the arginine. Full-length effectors expressed in host plant Nicotiana benthamiana revealed that, although secreted, they were poorly processed, suggesting that RXLR and EER cleavage does not occur in all eukaryotic cells. We conclude that, whether possessing both RXLR and EER, or either motif alone, these effectors are likely generally proteolytically processed before secretion.
Collapse
Affiliation(s)
- Lin Xu
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee, at James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Shumei Wang
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee, at James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Wei Wang
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee, at James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Haixia Wang
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee, at James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest Agriculture & Forestry UniversityYanglingShanxi712100China
| | - Lydia Welsh
- Cell and Molecular Sciences, James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Petra C. Boevink
- Cell and Molecular Sciences, James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Stephen C. Whisson
- Cell and Molecular Sciences, James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee, at James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- Cell and Molecular Sciences, James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
3
|
Kim J, Kaleku J, Kim H, Kang M, Kang HJ, Woo J, Jin H, Jung S, Segonzac C, Park E, Choi D. An RXLR effector disrupts vesicle trafficking at ER-Golgi interface for Phytophthora capsici pathogenicity. Mol Cells 2024; 47:100158. [PMID: 39577746 DOI: 10.1016/j.mocell.2024.100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Phytophthora species, an oomycete plant pathogen, secrete effectors into plant cells throughout their life cycle for manipulating host immunity to achieve successful colonization. However, the molecular mechanisms underlying effector-triggered necrotic cell death remain elusive. In this study, we identified an RXLR (amino acid residue; Arginine-Any amino acid-Leucine-Arginine motif) effector (Pc12) from Phytophthora capsici, which contributes to virulence and induces necrosis by triggering a distinct endoplasmic reticulum (ER) stress response through its interaction with Rab13-2. The necrotic cell death induced by Pc12 did not exhibit conventional effector-triggered immunity-mediated hypersensitive cell death, including the involvement of nucleotide-binding site leucine-rich repeat downstream signaling components and transcriptional reprogramming of defense-related genes. Instead, it alters the localization of ER-resident proteins and confines secretory proteins within the ER. Pc12 directly interacts with Rab13-2, which is primarily localized to the ER and Golgi apparatus, resulting in a diminished Rab13-2 signal on the Golgi apparatus. Furthermore, Rab13-2 exhibits increased affinity for its interactor, Rab escort protein 1, in the presence of Pc12. Structural predictions revealed that a specific residue of Rab13-2 is crucial for binding to the C-terminus of Pc12. Substitution of this residue reduced its interaction with Pc12 and impaired P. capsici infection while maintaining its interaction with Rab escort protein 1 and prenylated Rab acceptor 1. These findings provide insight into how a pathogen effector induces a distinct form of necrotic cell death to facilitate colonization of the host plant by disrupting the recycling of Rab13-2, a protein involved in vesicle trafficking at the ER-Golgi interface.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jesse Kaleku
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA
| | - Haeun Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minji Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Jongchan Woo
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA
| | - Hongshi Jin
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA
| | - Seungmee Jung
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunsook Park
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA.
| | - Doil Choi
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Evangelisti E, Govers F. Roadmap to Success: How Oomycete Plant Pathogens Invade Tissues and Deliver Effectors. Annu Rev Microbiol 2024; 78:493-512. [PMID: 39227351 DOI: 10.1146/annurev-micro-032421-121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Filamentous plant pathogens threaten global food security and ecosystem resilience. In recent decades, significant strides have been made in deciphering the molecular basis of plant-pathogen interactions, especially the interplay between pathogens' molecular weaponry and hosts' defense machinery. Stemming from interdisciplinary investigations into the infection cell biology of filamentous plant pathogens, recent breakthrough discoveries have provided a new impetus to the field. These advances include the biophysical characterization of a novel invasion mechanism (i.e., naifu invasion) and the unraveling of novel effector secretion routes. On the plant side, progress includes the identification of components of cellular networks involved in the uptake of intracellular effectors. This exciting body of research underscores the pivotal role of logistics management by the pathogen throughout the infection cycle, encompassing the precolonization stages up to tissue invasion. More insight into these logistics opens new avenues for developing environmentally friendly crop protection strategies in an era marked by an imperative to reduce the use of agrochemicals.
Collapse
Affiliation(s)
- Edouard Evangelisti
- Current affiliation: Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France;
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
5
|
Paineau M, Minio A, Mestre P, Fabre F, Mazet ID, Couture C, Legeai F, Dumartinet T, Cantu D, Delmotte F. Multiple deletions of candidate effector genes lead to the breakdown of partial grapevine resistance to downy mildew. THE NEW PHYTOLOGIST 2024; 243:1490-1505. [PMID: 39021210 DOI: 10.1111/nph.19861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.
Collapse
Affiliation(s)
- Manon Paineau
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Pere Mestre
- INRAE, Université de Strasbourg, SVQV, F-68125, Colmar, France
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Isabelle D Mazet
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Carole Couture
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Fabrice Legeai
- INRAE, IGEPP, F-35650, Le-Rheu, France
- INRIA, IRISA, GenOuest Core Facility, F-35000, Rennes, France
| | | | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
- Genome Center, University of California Davis, Davis, 95616, CA, USA
| | - François Delmotte
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| |
Collapse
|
6
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
7
|
Gouveia C, Santos RB, Paiva-Silva C, Buchholz G, Malhó R, Figueiredo A. The pathogenicity of Plasmopara viticola: a review of evolutionary dynamics, infection strategies and effector molecules. BMC PLANT BIOLOGY 2024; 24:327. [PMID: 38658826 PMCID: PMC11040782 DOI: 10.1186/s12870-024-05037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Oomycetes are filamentous organisms that resemble fungi in terms of morphology and life cycle, primarily due to convergent evolution. The success of pathogenic oomycetes lies in their ability to adapt and overcome host resistance, occasionally transitioning to new hosts. During plant infection, these organisms secrete effector proteins and other compounds during plant infection, as a molecular arsenal that contributes to their pathogenic success. Genomic sequencing, transcriptomic analysis, and proteomic studies have revealed highly diverse effector repertoires among different oomycete pathogens, highlighting their adaptability and evolution potential.The obligate biotrophic oomycete Plasmopara viticola affects grapevine plants (Vitis vinifera L.) causing the downy mildew disease, with significant economic impact. This disease is devastating in Europe, leading to substantial production losses. Even though Plasmopara viticola is a well-known pathogen, to date there are scarce reviews summarising pathogenicity, virulence, the genetics and molecular mechanisms of interaction with grapevine.This review aims to explore the current knowledge of the infection strategy, lifecycle, effector molecules, and pathogenicity of Plasmopara viticola. The recent sequencing of the Plasmopara viticola genome has provided new insights into understanding the infection strategies employed by this pathogen. Additionally, we will highlight the contributions of omics technologies in unravelling the ongoing evolution of this oomycete, including the first in-plant proteome analysis of the pathogen.
Collapse
Affiliation(s)
- Catarina Gouveia
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal
| | - Rita B Santos
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal
| | - Catarina Paiva-Silva
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal
| | - Günther Buchholz
- RLP AgroScience/AlPlanta-Institute for Plant Research, Neustadt an Der Weinstrasse, Germany
| | - Rui Malhó
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
8
|
Peng J, Wang X, Wang H, Li X, Zhang Q, Wang M, Yan J. Advances in understanding grapevine downy mildew: From pathogen infection to disease management. MOLECULAR PLANT PATHOLOGY 2024; 25:e13401. [PMID: 37991155 PMCID: PMC10788597 DOI: 10.1111/mpp.13401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023]
Abstract
Plasmopara viticola is geographically widespread in grapevine-growing regions. Grapevine downy mildew disease, caused by this biotrophic pathogen, leads to considerable yield losses in viticulture annually. Because of the great significance of grapevine production and wine quality, research on this disease has been widely performed since its emergence in the 19th century. Here, we review and discuss recent understanding of this pathogen from multiple aspects, including its infection cycle, disease symptoms, genome decoding, effector biology, and management and control strategies. We highlight the identification and characterization of effector proteins with their biological roles in host-pathogen interaction, with a focus on sustainable control methods against P. viticola, especially the use of biocontrol agents and environmentally friendly compounds.
Collapse
Affiliation(s)
- Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Qi Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Meng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
9
|
Nur M, Wood K, Michelmore R. EffectorO: Motif-Independent Prediction of Effectors in Oomycete Genomes Using Machine Learning and Lineage Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:397-410. [PMID: 36853198 DOI: 10.1094/mpmi-11-22-0236-ta] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Munir Nur
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Kelsey Wood
- The Genome Center, University of California, Davis, CA, U.S.A
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, CA, U.S.A
| | - Richard Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
10
|
Breeze E, Vale V, McLellan H, Pecrix Y, Godiard L, Grant M, Frigerio L. A tell tail sign: a conserved C-terminal tail-anchor domain targets a subset of pathogen effectors to the plant endoplasmic reticulum. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3188-3202. [PMID: 36860200 DOI: 10.1093/jxb/erad075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/27/2023] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) is the entry point to the secretory pathway and, as such, is critical for adaptive responses to biotic stress, when the demand for de novo synthesis of immunity-related proteins and signalling components increases significantly. Successful phytopathogens have evolved an arsenal of small effector proteins which collectively reconfigure multiple host components and signalling pathways to promote virulence; a small, but important, subset of which are targeted to the endomembrane system including the ER. We identified and validated a conserved C-terminal tail-anchor motif in a set of pathogen effectors known to localize to the ER from the oomycetes Hyaloperonospora arabidopsidis and Plasmopara halstedii (downy mildew of Arabidopsis and sunflower, respectively) and used this protein topology to develop a bioinformatic pipeline to identify putative ER-localized effectors within the effectorome of the related oomycete, Phytophthora infestans, the causal agent of potato late blight. Many of the identified P. infestans tail-anchor effectors converged on ER-localized NAC transcription factors, indicating that this family is a critical host target for multiple pathogens.
Collapse
Affiliation(s)
- Emily Breeze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Victoria Vale
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Hazel McLellan
- Division of Plant Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Yann Pecrix
- CIRAD, UMR PVBMT, Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR C53), Ligne Paradis, 97410 St Pierre, La Réunion, France
| | - Laurence Godiard
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Castanet-Tolosan, France
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Xing Q, Zhou X, Cao Y, Peng J, Zhang W, Wang X, Wu J, Li X, Yan J. The woody plant-degrading pathogen Lasiodiplodia theobromae effector LtCre1 targets the grapevine sugar-signaling protein VvRHIP1 to suppress host immunity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2768-2785. [PMID: 36788641 PMCID: PMC10112684 DOI: 10.1093/jxb/erad055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/14/2023] [Indexed: 06/06/2023]
Abstract
Lasiodiplodia theobromae is a causal agent of Botryosphaeria dieback, which seriously threatens grapevine production worldwide. Plant pathogens secrete diverse effectors to suppress host immune responses and promote the progression of infection, but the mechanisms underlying the manipulation of host immunity by L. theobromae effectors are poorly understood. In this study, we characterized LtCre1, which encodes a L. theobromae effector that suppresses BAX-triggered cell death in Nicotiana benthamiana. RNAi-silencing and overexpression of LtCre1 in L. theobromae showed impaired and increased virulence, respectively, and ectopic expression in N. benthamiana increased susceptibility. These results suggest that LtCre1 is as an essential virulence factor for L. theobromae. Protein-protein interaction studies revealed that LtCre1 interacts with grapevine RGS1-HXK1-interacting protein 1 (VvRHIP1). Ectopic overexpression of VvRHIP1 in N. benthamiana reduced infection, suggesting that VvRHIP1 enhances plant immunity against L. theobromae. LtCre1 was found to disrupt the formation of the VvRHIP1-VvRGS1 complex and to participate in regulating the plant sugar-signaling pathway. Thus, our results suggest that L. theobromae LtCre1 targets the grapevine VvRHIP1 protein to manipulate the sugar-signaling pathway by disrupting the association of the VvRHIP1-VvRGS1 complex.
Collapse
Affiliation(s)
| | | | - Yang Cao
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiahong Wu
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | |
Collapse
|
12
|
Wang H, Han Y, Wu C, Zhang B, Zhao Y, Zhu J, Han Y, Wang J. Comparative transcriptome profiling of resistant and susceptible foxtail millet responses to Sclerospora graminicola infection. BMC PLANT BIOLOGY 2022; 22:567. [PMID: 36471245 PMCID: PMC9724433 DOI: 10.1186/s12870-022-03963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Downy mildew of foxtail millet, which is caused by the biotrophic oomycete Sclerospora graminicola (Sacc.) Schroeter, is one of the most disruptive diseases. The foxtail millet-S. graminicola interaction is largely unexplored. Transcriptome sequencing technology can help to reveal the interaction mechanism between foxtail millet and its pathogens. RESULTS Transmission electron microscopy observations of leaves infected with S. graminicola showed that the structures of organelles in the host cells gradually became deformed and damaged, or even disappeared from the 3- to 7-leaf stages. However, organelles in the leaves of resistant variety were rarely damaged. Moreover, the activities of seven cell wall degrading enzymes in resistant and susceptible varieties were also quite different after pathogen induction and most of enzymes activities were significantly higher in the susceptible variety JG21 than in the resistant variety G1 at all stages. Subsequently, we compared the transcriptional profiles between the G1 and JG21 in response to S. graminicola infection at 3-, 5-, and 7-leaf stages using RNA-Seq technology. A total of 473 and 1433 differentially expressed genes (DEGs) were identified in the resistant and susceptible varieties, respectively. The pathway analysis of the DEGs showed that the highly enriched categories were related to glutathione metabolism, plant hormone signalling, phenylalanine metabolism, and cutin, suberin and wax biosynthesis. Some defence-related genes were also revealed in the DEGs, including leucine-rich protein kinase, Ser/Thr protein kinase, peroxidase, cell wall degrading enzymes, laccases and auxin response genes. Our results also confirmed the linkage of transcriptomic data with qRT-PCR data. In particular, LRR protein kinase encoded by Seita.8G131800, Ser/Thr protein kinase encoded by Seita.2G024900 and Seita. 2G024800, which have played an essential resistant role during the infection by S. graminicola. CONCLUSIONS Transcriptome sequencing revealed that host resistance to S. graminicola was likely due to the activation of defence-related genes, such as leucine-rich protein kinase and Ser/Thr protein kinase. Our study identified pathways and genes that contribute to the understanding of the interaction between foxtail millet and S. graminicola at the transcriptomic level. The results will help us better understand the resistance mechanism of foxtail millet against S. graminicola.
Collapse
Affiliation(s)
- He Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanqing Han
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Caijuan Wu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yaofei Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiao Zhu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taiyuan, 030031, China.
| | - Jianming Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
13
|
Combier M, Evangelisti E, Piron MC, Schornack S, Mestre P. Candidate effector proteins from the oomycetes Plasmopara viticola and Phytophthora parasitica share similar predicted structures and induce cell death in Nicotiana species. PLoS One 2022; 17:e0278778. [PMID: 36459530 PMCID: PMC9718384 DOI: 10.1371/journal.pone.0278778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Effector proteins secreted by plant pathogens are essential for infection. Cytoplasmic RXLR effectors from oomycetes are characterized by the presence of RXLR and EER motifs that are frequently linked to WY- and/or LWY-domains, folds that are exclusive to this effector family. A related family of secreted candidate effector proteins, carrying WY-domains and the EER motif but lacking the canonical RXLR motif, has recently been described in oomycetes and is mainly found in downy mildew pathogens. Plasmopara viticola is an obligate biotrophic oomycete causing grapevine downy mildew. Here we describe a conserved Pl. viticola secreted candidate non-RXLR effector protein with cell death-inducing activity in Nicotiana species. A similar RXLR effector candidate from the broad host range oomycete pathogen Phytophthora parasitica also induces cell death in Nicotiana. Through comparative tertiary structure modelling, we reveal that both proteins are predicted to carry WY- and LWY-domains. Our work supports the presence of LWY-domains in non-RXLR effectors and suggests that effector candidates with similar domain architecture may exert similar activities.
Collapse
Affiliation(s)
- Maud Combier
- SVQV, UMR-A 1131, Université de Strasbourg, INRAE, Colmar, France
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | | | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Pere Mestre
- SVQV, UMR-A 1131, Université de Strasbourg, INRAE, Colmar, France
- * E-mail:
| |
Collapse
|
14
|
Elameen A, de Labrouhe DT, Bret-Mestries E, Delmotte F. Spatial Genetic Structure and Pathogenic Race Composition at the Field Scale in the Sunflower Downy Mildew Pathogen, Plasmopara halstedii. J Fungi (Basel) 2022; 8:1084. [PMID: 36294648 PMCID: PMC9605284 DOI: 10.3390/jof8101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Yield losses in sunflower crops caused by Plasmopara halstedii can be up to 100%, depending on the cultivar susceptibility, environmental conditions, and virulence of the pathogen population. The aim of this study was to investigate the genetic and phenotypic structure of a sunflower downy mildew agent at the field scale. The genetic diversity of 250 P. halstedii isolates collected from one field in southern France was assessed using single-nucleotide polymorphisms (SNPs) and single sequence repeats (SSR). A total of 109 multilocus genotypes (MLG) were identified among the 250 isolates collected in the field. Four genotypes were repeated more than 20 times and spatially spread over the field. Estimates of genetic relationships among P. halstedii isolates using principal component analysis and a Bayesian clustering approach demonstrated that the isolates are grouped into two main genetic clusters. A high level of genetic differentiation among clusters was detected (FST = 0.35), indicating overall limited exchange between them, but our results also suggest that recombination between individuals of these groups is not rare. Genetic clusters were highly related to pathotypes, as previously described for this pathogen species. Eight different races were identified (100, 300, 304, 307, 703, 704, 707, and 714), with race 304 being predominant and present at most of the sites. The co-existence of multiple races at the field level is a new finding that could have important implications for the management of sunflower downy mildew. These data provide the first population-wide picture of the genetic structure of P. halstedii at a fine spatial scale.
Collapse
Affiliation(s)
- Abdelhameed Elameen
- NIBIO, Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, N-1431 Ås, Norway
| | | | | | - Francois Delmotte
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave d’Ornon, France
| |
Collapse
|
15
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Koledenkova K, Esmaeel Q, Jacquard C, Nowak J, Clément C, Ait Barka E. Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Front Microbiol 2022; 13:889472. [PMID: 35633680 PMCID: PMC9130769 DOI: 10.3389/fmicb.2022.889472] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni) causing grapevine downy mildew is one of the most damaging pathogens to viticulture worldwide. Since its recognition in the middle of nineteenth century, this disease has spread from America to Europe and then to all grapevine-growing countries, leading to significant economic losses due to the lack of efficient disease control. In 1885 copper was found to suppress many pathogens, and is still the most effective way to control downy mildews. During the twentieth century, contact and penetrating single-site fungicides have been developed for use against plant pathogens including downy mildews, but wide application has led to the appearance of pathogenic strains resistant to these treatments. Additionally, due to the negative environmental impact of chemical pesticides, the European Union restricted their use, triggering a rush to develop alternative tools such as resistant cultivars breeding, creation of new active ingredients, search for natural products and biocontrol agents that can be applied alone or in combination to kill the pathogen or mitigate its effect. This review summarizes data about the history, distribution, epidemiology, taxonomy, morphology, reproduction and infection mechanisms, symptoms, host-pathogen interactions, host resistance and control of the P. viticola, with a focus on sustainable methods, especially the use of biocontrol agents.
Collapse
Affiliation(s)
- Kseniia Koledenkova
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Jerzy Nowak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Saunders Hall, Blacksburg, VA, United States
| | - Christophe Clément
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
17
|
Sun F, Sun S, Ye W, Duan C, Li B, Shan W, Zhu Z. Genome Sequence Data of Three Formae Speciales of Phytophthora vignae Causing Phytophthora Stem Rot on Different Vigna Species. PLANT DISEASE 2021; 105:3732-3735. [PMID: 34003033 DOI: 10.1094/pdis-11-20-2546-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytophthora vignae is an important oomycete pathogen causing Phytophthora stem rot on some Vigna spp. Three P. vignae isolates obtained from mung bean, adzuki bean, and cowpea exhibited high similarities in morphology and physiology but are specialized to infect different hosts. Here, we report the first de novo assembly of the draft genomes of three P. vignae isolates, which were performed using the PacBio SMRT Sequel platform. This study will extend the genomic resource available for the Phytophthora genus and provide a good foundation for further research on comparative genomics of Phytophthora spp. and interaction mechanism between hosts and pathogens.
Collapse
Affiliation(s)
- Feifei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- College of Agronomy of Northwest Agriculture & Forestry University, Yangling, 712100, P. R. China
| | - Suli Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Canxing Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Benjin Li
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P. R. China
| | - Weixing Shan
- College of Agronomy of Northwest Agriculture & Forestry University, Yangling, 712100, P. R. China
| | - Zhendong Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| |
Collapse
|
18
|
Bello JC, Hausbeck MK, Sakalidis ML. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli in Michigan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1103-1118. [PMID: 34227836 DOI: 10.1094/mpmi-11-20-0329-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological advances in genome sequencing have improved our ability to catalog genomic variation and have led to an expansion of the scope and scale of genetic studies over the past decade. Yet, for agronomically important plant pathogens such as the downy mildews (Peronosporaceae), the scale of genetic studies remains limited. This is, in part, due to the difficulties associated with maintaining obligate pathogens and the logistical constraints involved in the genotyping of these species (e.g., obtaining DNA of sufficient quantity and quality). To gain an evolutionary and ecological perspective of downy mildews, adaptable methods for the genotyping of their populations are required. Here, we describe a targeted enrichment (TE) protocol to genotype isolates from two Pseudoperonospora species (P. cubensis and P. humuli), using less than 50 ng of mixed pathogen and plant DNA for library preparation. We were able to enrich 830 target genes across 128 samples and identified 2,514 high-quality single nucleotide polymorphism (SNP) variants. Using these SNPs, we detected significant genetic differentiation (analysis of molecular variance [AMOVA], P = 0.01) between P. cubensis subpopulations from Cucurbita moschata (clade I) and Cucumis sativus (clade II) in the state of Michigan. No evidence of location-based differentiation was detected within the P. cubensis (clade II) subpopulation in Michigan. However, a significant effect of location on the genetic variation of the P. humuli subpopulation was detected in the state (AMOVA, P = 0.01). Mantel tests found evidence that the genetic distance among P. humuli samples was associated with the physical distance of the hop yards from which the samples were collected (P = 0.005). The differences in the distribution of genetic variation of the Michigan P. humuli and P. cubensis subpopulations suggest differences in the dispersal of these two species. The TE protocol described here provides an additional tool for genotyping obligate biotrophic plant pathogens and the execution of new genetic studies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julian C Bello
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
19
|
Purayannur S, Gent DH, Miles TD, Radišek S, Quesada‐Ocampo LM. The hop downy mildew pathogen Pseudoperonospora humuli. MOLECULAR PLANT PATHOLOGY 2021; 22:755-768. [PMID: 33942461 PMCID: PMC8232024 DOI: 10.1111/mpp.13063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy mildew, one of the most devastating diseases of cultivated hop, Humulus lupulus. Downy mildew occurs in all production areas of the crop in the Northern Hemisphere and Argentina. The pathogen overwinters in hop crowns and roots, and causes considerable crop loss. Downy mildew is managed by sanitation practices, planting of resistant cultivars, and fungicide applications. However, the scarcity of sources of host resistance and fungicide resistance in pathogen populations complicates disease management. This review summarizes the current knowledge on the symptoms of the disease, life cycle, virulence factors, and management of hop downy mildew, including various forecasting systems available in the world. Additionally, recent developments in genomics and effector discovery, and the future prospects of using such resources in successful disease management are also discussed. TAXONOMY Class: Oomycota; Order: Peronosporales; Family: Peronosporaceae; Genus: Pseudoperonospora; Species: Pseudoperonospora humuli. DISEASE SYMPTOMS The disease is characterized by systemically infected chlorotic shoots called "spikes". Leaf symptoms and signs include angular chlorotic lesions and profuse sporulation on the abaxial side of the leaf. Under severe disease pressure, dark brown discolouration or lesions are observed on cones. Infected crowns have brown to black streaks when cut open. Cultivars highly susceptible to crown rot may die at this phase of the disease cycle without producing shoots. However, foliar symptoms may not be present on plants with systemically infected root systems. INFECTION PROCESS Pathogen mycelium overwinters in buds and crowns, and emerges on infected shoots in spring. Profuse sporulation occurs on infected tissues and sporangia are released and dispersed by air currents. Under favourable conditions, sporangia germinate and produce biflagellate zoospores that infect healthy tissue, thus perpetuating the infection cycle. Though oospores are produced in infected tissues, their role in the infection cycle is not defined. CONTROL Downy mildew on hop is managed by a combination of sanitation practices and timely fungicide applications. Forecasting systems are used to time fungicide applications for successful management of the disease. USEFUL WEBSITES: https://content.ces.ncsu.edu/hop-downy-mildew (North Carolina State University disease factsheet), https://www.canr.msu.edu/resources/michigan-hop-management-guide (Michigan Hop Management Guide), http://uspest.org/risk/models (Oregon State University Integrated Plant Protection Center degree-day model for hop downy mildew), https://www.usahops.org/cabinet/data/Field-Guide.pdf (Field Guide for Integrated Pest Management in Hops).
Collapse
Affiliation(s)
- Savithri Purayannur
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - David H. Gent
- US Department of Agriculture‐Agricultural Research Service, Forage Seed and Cereal Research Unit, and Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
| | - Timothy D. Miles
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Sebastjan Radišek
- Plant Protection DepartmentDiagnostics LaboratorySlovenian Institute for Hop Research and BrewingŽalecSlovenia
| | - Lina M. Quesada‐Ocampo
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
20
|
de Vries S, de Vries J, Archibald JM, Slamovits CH. Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression. FEMS Microbiol Ecol 2021; 96:5904760. [PMID: 32918444 PMCID: PMC7585586 DOI: 10.1093/femsec/fiaa184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them with (i) 22 oomycete genomes and (ii) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions. We obtained a global perspective on gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use similar molecular mechanisms for colonization but exhibit distinct expression patterns. We identify a S. sapeloensis-specific array and expression of carbohydrate-active enzymes and putative regulatory differences, highlighted by distinct expression levels of transcription factors. Salisapilia sapeloensis expresses only a small repertoire of candidates for virulence-associated genes. Our analyses suggest lifestyle-specific gene regulatory signatures and that, in addition to variation in gene content, shifts in gene regulatory networks underpin the evolution of oomycete lifestyles.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada.,Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.,Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany.,Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
21
|
Xiang G, Yin X, Niu W, Chen T, Liu R, Shang B, Fu Q, Liu G, Ma H, Xu Y. Characterization of CRN-Like Genes From Plasmopara viticola: Searching for the Most Virulent Ones. Front Microbiol 2021; 12:632047. [PMID: 33868192 PMCID: PMC8044898 DOI: 10.3389/fmicb.2021.632047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Grapevine downy mildew is an insurmountable disease that endangers grapevine production and the wine industry worldwide. The causal agent of the disease is the obligate biotrophic oomycete Plasmopara viticola, for which the pathogenic mechanism remains largely unknown. Crinkling and necrosis proteins (CRN) are an ancient class of effectors utilized by pathogens, including oomycetes, that interfere with host plant defense reactions. In this study, 27 CRN-like genes were cloned from the P. viticola isolate YL genome, hereafter referred to as PvCRN genes, and characterized in silico and in planta. PvCRN genes in ‘YL’ share high sequence identities with their ortholog genes in the other three previously sequenced P. viticola isolates. Sequence divergence among the genes in the PvCRN family indicates that different PvCRN genes have different roles. Phylogenetic analysis of the PvCRN and the CRN proteins encoded by genes in the P. halstedii genome suggests that various functions might have been acquired by the CRN superfamily through independent evolution of Plasmopara species. When transiently expressed in plant cells, the PvCRN protein family shows multiple subcellular localizations. None of the cloned PvCRN proteins induced hypersensitive response (HR)-like cell death on the downy mildew-resistant grapevine Vitis riparia. This was in accordance with the result that most PvCRN proteins, except PvCRN11, failed to induce necrosis in Nicotiana benthamiana. Pattern-triggered immunity (PTI) induced by INF1 was hampered by several PvCRN proteins. In addition, 15 PvCRN proteins prevented Bax-induced plant programmed cell death. Among the cell death-suppressing members, PvCRN17, PvCRN20, and PvCRN23 were found to promote the susceptibility of N. benthamiana to Phytophthora capsici, which is a semi-biotrophic oomycete. Moreover, the nucleus-targeting member, PvCRN19, promoted the susceptibility of N. benthamiana to P. capsici. Therefore, these PvCRN proteins were estimated to be virulent effectors involved in the pathogenicity of P. viticola YL. Collectively, this study provides comprehensive insight into the CRN effector repertoire of P. viticola YL, which will help further elucidate the molecular mechanisms of the pathogenesis of grapevine downy mildew.
Collapse
Affiliation(s)
- Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Weili Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Hui Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
22
|
Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics. PLANTS 2021; 10:plants10030435. [PMID: 33668762 PMCID: PMC7996204 DOI: 10.3390/plants10030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Downy mildews affect important crops and cause severe losses in production worldwide. Accurate identification and monitoring of these plant pathogens, especially at early stages of the disease, is fundamental in achieving effective disease control. The rapid development of molecular methods for diagnosis has provided more specific, fast, reliable, sensitive, and portable alternatives for plant pathogen detection and quantification than traditional approaches. In this review, we provide information on the use of molecular markers, serological techniques, and nucleic acid amplification technologies for downy mildew diagnosis, highlighting the benefits and disadvantages of the technologies and target selection. We emphasize the importance of incorporating information on pathogen variability in virulence and fungicide resistance for disease management and how the development and application of diagnostic assays based on standard and promising technologies, including high-throughput sequencing and genomics, are revolutionizing the development of species-specific assays suitable for in-field diagnosis. Our review provides an overview of molecular detection technologies and a practical guide for selecting the best approaches for diagnosis.
Collapse
|
23
|
Abstract
AbstractPeronospora belbahrii is one of the most destructive downy mildew diseases that has emerged throughout the past two decades. Due to the lack of quarantine regulations and its possible seed-borne nature, it has spread globally and is now present in most areas in which basil is produced. While most obligate biotrophic, plant parasitic oomycetes are highly host-specific, there are a few that have a wider host range, e.g. Albugo candida, Bremia tulasnei, and Pseudoperonospora cubensis. Recently, it was shown that Peronospora belbahrii is able to infect Rosmarinus, Nepetia, and Micromeria in Israel in cross-infection trials, hinting an extended host range for also this pathogen. In this study, a newly occurring downy mildew pathogen on lavender was investigated with respect to its morphology and phylogeny, and it is shown that it belongs to Peronospora belbahrii as well. Thus, it seems that Peronospora belbahrii is currently extending its host range to additional members of the tribe Mentheae and Ocimeae. Therefore, it seems advisable to scrutinise all commonly used members of these tribes in order to avoid further spread of virulent genotypes.
Collapse
|
24
|
Stasko AK, Batnini A, Bolanos-Carriel C, Lin JE, Lin Y, Blakeslee JJ, Dorrance AE. Auxin Profiling and GmPIN Expression in Phytophthora sojae-Soybean Root Interactions. PHYTOPATHOLOGY 2020; 110:1988-2002. [PMID: 32602813 DOI: 10.1094/phyto-02-20-0046-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Auxin (indole-3-acetic acid, IAA) has been implicated as a susceptibility factor in both beneficial and pathogenic molecular plant-microbe interactions. Previous studies have identified a large number of auxin-related genes underlying quantitative disease resistance loci (QDRLs) for Phytophthora sojae. Thus, we hypothesized that auxin may be involved the P. sojae-soybean interaction. The levels of IAA and related metabolites were measured in mycelia and media supernatant as well as in mock and inoculated soybean roots in a time course assay. The expression of 11 soybean Pin-formed (GmPIN) auxin efflux transporter genes was also examined. Tryptophan, an auxin precursor, was detected in the P. sojae mycelia and media supernatant. During colonization of roots, levels of IAA and related metabolites were significantly higher in both moderately resistant Conrad and moderately susceptible Sloan inoculated roots compared with mock controls at 48 h postinoculation (hpi) in one experiment and at 72 hpi in a second, with Sloan accumulating higher levels of the auxin catabolite IAA-Ala than Conrad. Additionally, one GmPIN at 24 hpi, one at 48 hpi, and three at 72 hpi had higher expression in inoculated compared with the mock control roots in Conrad. The ability of resistant cultivars to cope with auxin accumulation may play an important role in quantitative disease resistance. Levels of jasmonic acid (JA), another plant hormone associated with defense responses, were also higher in inoculated roots at these same time points, suggesting that JA also plays a role during the later stages of infection.
Collapse
Affiliation(s)
- Anna K Stasko
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Amine Batnini
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Carlos Bolanos-Carriel
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Jinshan Ella Lin
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| | - Yun Lin
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
25
|
Wood KJ, Nur M, Gil J, Fletcher K, Lakeman K, Gann D, Gothberg A, Khuu T, Kopetzky J, Naqvi S, Pandya A, Zhang C, Maisonneuve B, Pel M, Michelmore R. Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLoS Pathog 2020; 16:e1009012. [PMID: 33104763 PMCID: PMC7644090 DOI: 10.1371/journal.ppat.1009012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/05/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogens that infect plants and animals use a diverse arsenal of effector proteins to suppress the host immune system and promote infection. Identification of effectors in pathogen genomes is foundational to understanding mechanisms of pathogenesis, for monitoring field pathogen populations, and for breeding disease resistance. We identified candidate effectors from the lettuce downy mildew pathogen Bremia lactucae by searching the predicted proteome for the WY domain, a structural fold found in effectors that has been implicated in immune suppression as well as effector recognition by host resistance proteins. We predicted 55 WY domain containing proteins in the genome of B. lactucae and found substantial variation in both sequence and domain architecture. These candidate effectors exhibit several characteristics of pathogen effectors, including an N-terminal signal peptide, lineage specificity, and expression during infection. Unexpectedly, only a minority of B. lactucae WY effectors contain the canonical N-terminal RXLR motif, which is a conserved feature in the majority of cytoplasmic effectors reported in Phytophthora spp. Functional analysis of 21 effectors containing WY domains revealed 11 that elicited cell death on wild accessions and domesticated lettuce lines containing resistance genes, indicative of recognition of these effectors by the host immune system. Only two of the 11 recognized effectors contained the canonical RXLR motif, suggesting that there has been an evolutionary divergence in sequence motifs between genera; this has major consequences for robust effector prediction in oomycete pathogens.
Collapse
Affiliation(s)
- Kelsey J. Wood
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Munir Nur
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Juliana Gil
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Plant Pathology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Kyle Fletcher
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | - Dasan Gann
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Ayumi Gothberg
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Tina Khuu
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Jennifer Kopetzky
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Sanye Naqvi
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Archana Pandya
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Chi Zhang
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | | | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
26
|
Penouilh-Suzette C, Fourré S, Besnard G, Godiard L, Pecrix Y. A simple method for high molecular-weight genomic DNA extraction suitable for long-read sequencing from spores of an obligate biotroph oomycete. J Microbiol Methods 2020; 178:106054. [PMID: 32926900 DOI: 10.1016/j.mimet.2020.106054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Long-read sequencing technologies are having a major impact on our approaches to studying non-model organisms and microbial communities. By significantly reducing the cost and facilitating the genome assembly pipelines, any laboratory can now develop its own genomics program regardless of the complexity of the genome studied. The most crucial current challenge is to develop efficient protocols for extracting genomic DNA (gDNA) with high quality and integrity adapted to the organism of interest. This can be particularly complex for obligate pathogens that must maintain intimate interactions inside infected host tissues. Here we propose a simple and cost-effective method for high molecular weight gDNA extraction from spores of Plasmopara halstedii, an obligate biotroph oomycete pathogen responsible for downy mildew in sunflower. We optimized the yield, the quality and the integrity of the extracted gDNA by fine-tuning three critical parameters, the grinding, the lysis temperature and the lysis duration. We obtained gDNA with a fragment size distribution reaching a peak ranging from 79 to 145 kb. More than half of the extracted gDNA consisted of DNA fragments larger than 42 kb, with 23% of fragments larger than 100 kb. We then demonstrated the relevance of this protocol for long-read sequencing using PacBio RSII technology. With this protocol, we were able to obtain a mean read length of 9.3 kb, a max read length of 71 kb and an N50 of 13.3 kb. The development of such DNA extraction protocols is an essential prerequisite for fully exploiting technologies requiring high molecular weight gDNA (e.g. long-read sequencing or optical mapping). These technological advances will help generate data to answer questions such as the role of newly duplicated gene clusters, repeated regions, genomic structural variations or to define number of chromosomes that still remains undefined in many species of pathogenic fungi and oomycetes.
Collapse
Affiliation(s)
- Charlotte Penouilh-Suzette
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Sandra Fourré
- GeT-PlaGe, INRAE Auzeville, US 1426, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Guillaume Besnard
- CNRS, Université Paul Sabatier, IRD, UMR 5174 EDB (Laboratoire Évolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France.
| | - Laurence Godiard
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Yann Pecrix
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France; CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Pole de Protection des Plantes, 7 chemin de l'IRAT, F-97410 Saint Pierre, Réunion, France.
| |
Collapse
|
27
|
Purayannur S, Cano LM, Bowman MJ, Childs KL, Gent DH, Quesada-Ocampo LM. The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Front Genet 2020; 11:910. [PMID: 32849854 PMCID: PMC7432248 DOI: 10.3389/fgene.2020.00910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023] Open
Abstract
Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy mildew (DM), one of the most destructive diseases of cultivated hop that can lead to 100% crop loss in susceptible cultivars. We used the published genome of P. humuli to predict the secretome and effectorome and analyze the transcriptome variation among diverse isolates and during infection of hop leaves. Mining the predicted coding genes of the sequenced isolate OR502AA of P. humuli revealed a secretome of 1,250 genes. We identified 296 RXLR and RXLR-like effector-encoding genes in the secretome. Among the predicted RXLRs, there were several WY-motif-containing effectors that lacked canonical RXLR domains. Transcriptome analysis of sporangia from 12 different isolates collected from various hop cultivars revealed 754 secreted proteins and 201 RXLR effectors that showed transcript evidence across all isolates with reads per kilobase million (RPKM) values > 0. RNA-seq analysis of OR502AA-infected hop leaf samples at different time points after infection revealed highly expressed effectors that may play a relevant role in pathogenicity. Quantitative RT-PCR analysis confirmed the differential expression of selected effectors. We identified a set of P. humuli core effectors that showed transcript evidence in all tested isolates and elevated expression during infection. These effectors are ideal candidates for functional analysis and effector-assisted breeding to develop DM resistant hop cultivars.
Collapse
Affiliation(s)
- Savithri Purayannur
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Liliana M. Cano
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Megan J. Bowman
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Ball Horticultural Company, West Chicago, IL, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - David H. Gent
- United States Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, OR, United States
| | - Lina M. Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
28
|
de Vries S, de Vries J. A Global Survey of Carbohydrate Esterase Families 1 and 10 in Oomycetes. Front Genet 2020; 11:756. [PMID: 32849784 PMCID: PMC7427535 DOI: 10.3389/fgene.2020.00756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are a cornerstone in the phytopathogenicity of filamentous microbes. CAZymes are required for every step of a successful infection cycle-from penetration, to nutrient acquisition (during colonization), to exit and dispersal. Yet, CAZymes are not a unique feature of filamentous pathogens. They are found across eukaryotic genomes and including, for example, saprotrophic relatives of major pathogens. Comparative genomics and functional analyses revealed that CAZyme content is shaped by a multitude of factors, including utilized substrate, lifestyle, and host preference. Yet, family size alone says little about usage. Indeed, in a previous study, we found that genes putatively coding for the CAZyme families of carbohydrate esterase (CE)1 and CE10, while not specifically enriched in number, were suggested to have lifestyle-specific gene expression patterns. Here, we used comparative genomics and a clustering approach to understand how the repertoire of the CE1- and CE10-encoding gene families is shaped across oomycete evolution. These data are combined with comparative transcriptomic analyses across homologous clusters within the gene families. We find that CE1 and CE10 have been reduced in number in biotrophic oomycetes independent of the phylogenetic relationship of the biotrophs to each other. The reduction in CE1 is different from that observed for CE10: While in CE10 specific clusters of homologous sequences show convergent reduction, CE1 reduction is caused by species-specific losses. Comparative transcriptomics revealed that some clusters of CE1 or CE10 sequences have a higher expression than others, independent of the species composition within them. Further, we find that CE1- and CE10-encoding genes are mainly induced in plant pathogens and that some homologous genes show lifestyle-specific gene expression levels during infection, with hemibiotrophs showing the highest expression levels.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göettingen, Göettingen, Germany
- Göettingen Center for Molecular Biosciences (GZMB), University of Göettingen, Göettingen, Germany
- Campus Institute Data Science, University of Göettingen, Göettingen, Germany
| |
Collapse
|
29
|
Yang LN, Liu H, Duan GH, Huang YM, Liu S, Fang ZG, Wu EJ, Shang L, Zhan J. The Phytophthora infestans AVR2 Effector Escapes R2 Recognition Through Effector Disordering. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:921-931. [PMID: 32212906 DOI: 10.1094/mpmi-07-19-0179-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intrinsic disorder is a common structural characteristic of proteins and a central player in the biochemical processes of species. However, the role of intrinsic disorder in the evolution of plant-pathogen interactions is rarely investigated. Here, we explored the role of intrinsic disorder in the development of the pathogenicity in the RXLR AVR2 effector of Phytophthora infestans. We found AVR2 exhibited high nucleotide diversity generated by point mutation, early-termination, altered start codon, deletion/insertion, and intragenic recombination and is predicted to be an intrinsically disordered protein. AVR2 amino acid sequences conferring a virulent phenotype had a higher disorder tendency in both the N- and C-terminal regions compared with sequences conferring an avirulent phenotype. In addition, we also found virulent AVR2 mutants gained one or two short linear interaction motifs, the critical components of disordered proteins required for protein-protein interactions. Furthermore, virulent AVR2 mutants were predicted to be unstable and have a short protein half-life. Taken together, these results support the notion that intrinsic disorder is important for the effector function of pathogens and demonstrate that SLiM-mediated protein-protein interaction in the C-terminal effector domain might contribute greatly to the evasion of resistance-protein detection in P. infestans.
Collapse
Affiliation(s)
- Li-Na Yang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Hao Liu
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Guo-Hua Duan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Yan-Mei Huang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Shiting Liu
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhi-Guo Fang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - E-Jiao Wu
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Liping Shang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiasui Zhan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
30
|
Klein J, Neilen M, van Verk M, Dutilh BE, Van den Ackerveken G. Genome reconstruction of the non-culturable spinach downy mildew Peronospora effusa by metagenome filtering. PLoS One 2020; 15:e0225808. [PMID: 32396560 PMCID: PMC7217449 DOI: 10.1371/journal.pone.0225808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Peronospora effusa (previously known as P. farinosa f. sp. spinaciae, and here referred to as Pfs) is an obligate biotrophic oomycete that causes downy mildew on spinach (Spinacia oleracea). To combat this destructive many disease resistant cultivars have been bred and used. However, new Pfs races rapidly break the employed resistance genes. To get insight into the gene repertoire of Pfs and identify infection-related genes, the genome of the first reference race, Pfs1, was sequenced, assembled, and annotated. Due to the obligate biotrophic nature of this pathogen, material for DNA isolation can only be collected from infected spinach leaves that, however, also contain many other microorganisms. The obtained sequences can, therefore, be considered a metagenome. To filter and obtain Pfs sequences we utilized the CAT tool to taxonomically annotate ORFs residing on long sequences of a genome pre-assembly. This study is the first to show that CAT filtering performs well on eukaryotic contigs. Based on the taxonomy, determined on multiple ORFs, contaminating long sequences and corresponding reads were removed from the metagenome. Filtered reads were re-assembled to provide a clean and improved Pfs genome sequence of 32.4 Mbp consisting of 8,635 scaffolds. Transcript sequencing of a range of infection time points aided the prediction of a total of 13,277 gene models, including 99 RxLR(-like) effector, and 14 putative Crinkler genes. Comparative analysis identified common features in the predicted secretomes of different obligate biotrophic oomycetes, regardless of their phylogenetic distance. Their secretomes are generally smaller, compared to hemi-biotrophic and necrotrophic oomycete species. We observe a reduction in proteins involved in cell wall degradation, in Nep1-like proteins (NLPs), proteins with PAN/apple domains, and host translocated effectors. The genome of Pfs1 will be instrumental in studying downy mildew virulence and for understanding the molecular adaptations by which new isolates break spinach resistance.
Collapse
Affiliation(s)
- Joël Klein
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Manon Neilen
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Marcel van Verk
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- Crop Data Science, KeyGene, Wageningen, The Netherlands
| | - Bas E. Dutilh
- Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Guido Van den Ackerveken
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Natesan K, Park JY, Kim CW, Park DS, Kwon YS, Back CG, Cho H. High-Quality Genome Assembly of Peronospora destructor, the Causal Agent of Onion Downy Mildew. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:718-720. [PMID: 32237963 DOI: 10.1094/mpmi-10-19-0280-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peronospora destructor is an obligate biotrophic oomycete that causes downy mildew on onion (Allium cepa). Onion is an important crop worldwide, but its production is affected by this pathogen. We sequenced the genome of P. destructor using the PacBio sequencing platform, and de novo assembly resulted in 74 contigs with a total contig size of 29.3 Mb and 48.48% GC content. Here, we report the first high-quality genome sequence of P. destructor and its comparison with the genome assemblies of other oomycetes. The genome is a very useful resource to serve as a reference for analysis of P. destructor isolates and for comparative genomic studies of the biotrophic oomycetes.
Collapse
Affiliation(s)
- Karthi Natesan
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Ji Yeon Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Cheol-Woo Kim
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong Suk Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Seok Kwon
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Chang-Gi Back
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Heejung Cho
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
32
|
Thines M, Sharma R, Rodenburg SYA, Gogleva A, Judelson HS, Xia X, van den Hoogen J, Kitner M, Klein J, Neilen M, de Ridder D, Seidl MF, van den Ackerveken G, Govers F, Schornack S, Studholme DJ. The Genome of Peronospora belbahrii Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:742-753. [PMID: 32237964 DOI: 10.1094/mpmi-07-19-0211-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.
Collapse
Affiliation(s)
- Marco Thines
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
- Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany
| | - Rahul Sharma
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
- Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany
| | - Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Anna Gogleva
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521 U.S.A
| | - Xiaojuan Xia
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Johan van den Hoogen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Joël Klein
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Manon Neilen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guido van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| |
Collapse
|
33
|
McGowan J, O’Hanlon R, Owens RA, Fitzpatrick DA. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms 2020; 8:E653. [PMID: 32365808 PMCID: PMC7285336 DOI: 10.3390/microorganisms8050653] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The Phytophthora genus includes some of the most devastating plant pathogens. Here we report draft genome sequences for three ubiquitous Phytophthora species-Phytophthora chlamydospora, Phytophthora gonapodyides, and Phytophthora pseudosyringae. Phytophthora pseudosyringae is an important forest pathogen that is abundant in Europe and North America. Phytophthora chlamydospora and Ph. gonapodyides are globally widespread species often associated with aquatic habitats. They are both regarded as opportunistic plant pathogens. The three sequenced genomes range in size from 45 Mb to 61 Mb. Similar to other oomycete species, tandem gene duplication appears to have played an important role in the expansion of effector arsenals. Comparative analysis of carbohydrate-active enzymes (CAZymes) across 44 oomycete genomes indicates that oomycete lifestyles may be linked to CAZyme repertoires. The mitochondrial genome sequence of each species was also determined, and their gene content and genome structure were compared. Using mass spectrometry, we characterised the extracellular proteome of each species and identified large numbers of proteins putatively involved in pathogenicity and osmotrophy. The mycelial proteome of each species was also characterised using mass spectrometry. In total, the expression of approximately 3000 genes per species was validated at the protein level. These genome resources will be valuable for future studies to understand the behaviour of these three widespread Phytophthora species.
Collapse
Affiliation(s)
- Jamie McGowan
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | | | - Rebecca A. Owens
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | - David A. Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| |
Collapse
|
34
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
35
|
Schumacher S, Grosser K, Voegele RT, Kassemeyer HH, Fuchs R. Identification and Characterization of Nep1-Like Proteins From the Grapevine Downy Mildew Pathogen Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2020; 11:65. [PMID: 32117400 PMCID: PMC7031652 DOI: 10.3389/fpls.2020.00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The obligate biotrophic oomycete Plasmopara viticola causes tremendous problems in viticulture by evoking grapevine downy mildew. P. viticola, like other plant pathogens, achieves infection by suppression of plant innate immunity by secretion of effector molecules into its host plant. An ever-expanding family of proteins with effector-like characteristics is formed by the "Necrosis and Ethylene inducing peptide 1 (Nep1)-like proteins" (NLPs). NLPs can be divided into two groups by their ability to induce necrosis. While cytotoxic NLPs may act as virulence factors for a necrotrophic or hemibiotrophic plant pathogen, the role of non-cytotoxic NLPs is so far unknown. In this study, we identified eight independent NLPs in P. viticola and selected three for functional analysis. While one was identified as a putative pseudo gene, two contain all so far described critical key elements for necrosis formation except for an N-terminal signal peptide. Further characterization revealed that none of the putative necrosis elicitors was able to actually induce necrosis, neither in several susceptible or resistant Vitis species nor in the dicot model plant Nicotiana benthamiana. This inability exists independently of the presence or absence of a signal peptide. However, any possible mechanism for the suppression of the ability to induce necrosis in planta was not detected. Interestingly, expression analysis of the presumed pseudo gene revealed remarkable differences between pure sporangia solution and sporangia in the presence of leaf material. To our knowledge, this is the first report of this kind of regulation that suggests an important function of so far nonfunctional "pseudo" NLP genes during the first hours of infection.
Collapse
Affiliation(s)
- Stefan Schumacher
- Section of Phytopathology and Diagnosis, Department of Biology, State Institute for Viticulture and Enology, Freiburg, Germany
| | - Katrin Grosser
- Section of Phytopathology and Diagnosis, Department of Biology, State Institute for Viticulture and Enology, Freiburg, Germany
| | - Ralf Thomas Voegele
- Department of Phytopathology, Institute of Phytomedicine (360), Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany
| | - Hanns-Heinz Kassemeyer
- Section of Phytopathology and Diagnosis, Department of Biology, State Institute for Viticulture and Enology, Freiburg, Germany
| | - René Fuchs
- Section of Phytopathology and Diagnosis, Department of Biology, State Institute for Viticulture and Enology, Freiburg, Germany
| |
Collapse
|
36
|
Lei X, Lan X, Ye W, Liu Y, Song S, Lu J. Plasmopara viticola effector PvRXLR159 suppresses immune responses in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2019; 14:1682220. [PMID: 31647363 PMCID: PMC6866704 DOI: 10.1080/15592324.2019.1682220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 05/11/2023]
Abstract
Plasmopara viticola, the causal oomycete of grapevine downy mildew disease, secrets a series of RXLR effectors to manipulate host immunity. In this study, we characterized the role of a RXLR effector of P. viticola, PvRXLR159, in plant-microbe interaction. Transcription of PvRXLR159 in P. viticola was induced in the early stage of infection in grapevine (Vitis vinifera 'Thomson Seedless'). Further results revealed that PvRXLR159 contains a functional signal peptide and its C terminus was essential to inhibit cell death by elicitors, INF1 and BAX, in Nicotiana benthamiana. Transient expression of PvRXLR159 suppressed N. benthamiana resistance to a pathogenic oomycete, Phytophthora capsici. Taken together, we propose that PvRXLR159 is induced and secreted by P. viticola to suppress host resistance.
Collapse
Affiliation(s)
- Xuejiao Lei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Lan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yunxiao Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Cohen Y, Rubin AE, Galperin M. Novel synergistic fungicidal mixtures of oxathiapiprolin protect sunflower seeds from downy mildew caused by Plasmopara halstedii. PLoS One 2019; 14:e0222827. [PMID: 31545821 PMCID: PMC6756549 DOI: 10.1371/journal.pone.0222827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/09/2019] [Indexed: 01/11/2023] Open
Abstract
Plenaris (oxathiapiprolin) applied to sunflower seedlings was highly effective in controlling downy mildew incited by the oomycete Plasmopara halstedii. In vitro assays revealed strong suppression of zoospore release and cystospore germination of P.halstedii by Plenaris. Bion (acibenzolar-S-methyl) and Apron (mefenoxam) were partially effective when used singly, but performed synergistically when mixed with Plenaris. Seed treatment (coating) with Plenaris provided dose-dependent control of the disease whereas Bion and Apron provided partial or poor control. However, seeds treated with mixtures containing reduced rates of Plenaris and full rates of Bion and/or Apron provided complete control of the disease due to the synergistic interaction between these components. Such mixtures should be used for seed treatment in the field to minimize selection pressure imposed on the pathogen.
Collapse
Affiliation(s)
- Yigal Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: ,
| | - Avia E. Rubin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Mariana Galperin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
38
|
Rahman A, Góngora-Castillo E, Bowman MJ, Childs KL, Gent DH, Martin FN, Quesada-Ocampo LM. Genome Sequencing and Transcriptome Analysis of the Hop Downy Mildew Pathogen Pseudoperonospora humuli Reveal Species-Specific Genes for Molecular Detection. PHYTOPATHOLOGY 2019; 109:1354-1366. [PMID: 30939079 DOI: 10.1094/phyto-11-18-0431-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudoperonospora humuli is an obligate oomycete pathogen of hop (Humulus lupulus) that causes downy mildew, an important disease in most production regions in the Northern Hemisphere. The pathogen can cause a systemic infection in hop, overwinter in the root system, and infect propagation material. Substantial yield loss may occur owing to P. humuli infection of strobiles (seed cones), shoots, and cone-bearing branches. Fungicide application and cultural practices are the primary methods to manage hop downy mildew. However, effective, sustainable, and cost-effective management of downy mildew can be improved by developing early detection systems to inform on disease risk and timely fungicide application. However, no species-specific diagnostic assays or genomic resources are available for P. humuli. The genome of the P. humuli OR502AA isolate was partially sequenced using Illumina technology and assembled with ABySS. The assembly had a minimum scaffold length of 500 bp and an N50 (median scaffold length of the assembled genome) of 19.2 kbp. A total number of 18,656 genes were identified using MAKER standard gene predictions. Additionally, transcriptome assemblies were generated using RNA-seq and Trinity for seven additional P. humuli isolates. Bioinformatics analyses of next generation sequencing reads of P. humuli and P. cubensis (a closely related sister species) identified 242 candidate species-specific P. humuli genes that could be used as diagnostic molecular markers. These candidate genes were validated using polymerase chain reaction against a diverse collection of isolates from P. humuli, P. cubensis, and other oomycetes. Overall, four diagnostic markers were found to be uniquely present in P. humuli. These candidate markers identified through comparative genomics can be used for pathogen diagnostics in propagation material, such as rhizomes and vegetative cuttings, or adapted for biosurveillance of airborne sporangia, an important source of inoculum in hop downy mildew epidemics.
Collapse
Affiliation(s)
- A Rahman
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - E Góngora-Castillo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- 2Department of Biotechnology, Yucatan Center for Scientific Research, 97205 Mérida, Yucatán, México
| | - M J Bowman
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - K L Childs
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - D H Gent
- 4Forage Seed and Cereal Research Unit, U.S. Department of Agriculture-Agricultural Research Service and Oregon State University, Corvallis 97331, OR, U.S.A
| | - F N Martin
- 5Crop Improvement and Protection Research Station, U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - L M Quesada-Ocampo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
39
|
Combier M, Evangelisti E, Piron MC, Rengel D, Legrand L, Shenhav L, Bouchez O, Schornack S, Mestre P. A secreted WY-domain-containing protein present in European isolates of the oomycete Plasmopara viticola induces cell death in grapevine and tobacco species. PLoS One 2019; 14:e0220184. [PMID: 31356604 PMCID: PMC6663016 DOI: 10.1371/journal.pone.0220184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
Plasmopara viticola is a biotrophic oomycete pathogen causing grapevine downy mildew. We characterized the repertoire of P. viticola effector proteins which may be translocated into plants to support the disease. We found several secreted proteins that contain canonical dEER motifs and conserved WY-domains but lack the characteristic RXLR motif reported previously from oomycete effectors. We cloned four candidates and showed that one of them, Pv33, induces plant cell death in grapevine and Nicotiana species. This activity is dependent on the nuclear localization of the protein. Sequence similar effectors were present in seven European, but in none of the tested American isolates. Together our work contributes a new type of conserved P. viticola effector candidates.
Collapse
Affiliation(s)
- Maud Combier
- SVQV, Université de Strasbourg, INRA, Colmar, France
| | - Edouard Evangelisti
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | | | - David Rengel
- LIPM Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Ludovic Legrand
- LIPM Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Liron Shenhav
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | | | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | - Pere Mestre
- SVQV, Université de Strasbourg, INRA, Colmar, France
| |
Collapse
|
40
|
Yin X, Shang B, Dou M, Liu R, Chen T, Xiang G, Li Y, Liu G, Xu Y. The Nuclear-Localized RxLR Effector PvAvh74 From Plasmopara viticola Induces Cell Death and Immunity Responses in Nicotiana benthamiana. Front Microbiol 2019; 10:1531. [PMID: 31354650 PMCID: PMC6636413 DOI: 10.3389/fmicb.2019.01531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Downy mildew is one of the most serious diseases of grapevine (Vitis spp). The causal agent of grapevine downy mildew, Plasmopara viticola, is an obligate biotrophic oomycete. Although oomycete pathogens such as P. viticola are known to secrete RxLR effectors to manipulate host immunity, there have been few studies of the associated mechanisms by which these may act. Here, we show that a candidate P. viticola RxLR effector, PvAvh74, induces cell death in Nicotiana benthamiana leaves. Using agroinfiltration, we found that nuclear localization, two putative N-glycosylation sites, and 427 amino acids of the PvAvh74 carboxyl terminus were necessary for cell-death-inducing activity. Using virus-induced gene silencing (VIGS), we found that PvAvh74-induced cell death in N. benthamiana requires EDS1, NDR1, SGT1, RAR1, and HSP90, but not BAK1. The MAPK cascade components MEK2, WIPK, and SIPK were also involved in PvAvh74-induced cell death in N. benthamiana. Transient expression of PvAvh74 could suppress Phytophthora capsici colonization of N. benthamiana, which suggests that PvAvh74 elicits plant immune responses. Suppression of P. capsici colonization also was dependent on nuclear localization of PvAvh74. Additionally, PvAvh74-triggered cell death could be suppressed by another effector, PvAvh8, from the same isolate. This work provides a framework to further investigate the interactions of PvAvh74 and other RxLR effectors with host immunity.
Collapse
Affiliation(s)
- Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yanzhuo Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
41
|
Dussert Y, Mazet ID, Couture C, Gouzy J, Piron MC, Kuchly C, Bouchez O, Rispe C, Mestre P, Delmotte F. A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes. Genome Biol Evol 2019; 11:954-969. [PMID: 30847481 PMCID: PMC6660063 DOI: 10.1093/gbe/evz048] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.
Collapse
Affiliation(s)
- Yann Dussert
- SAVE, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | | | - Carole Couture
- SAVE, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Jérôme Gouzy
- LIPM, INRA, Université de Toulouse, CNRS, Castanet-Tolosan, France
| | | | - Claire Kuchly
- US 1426 GeT-PlaGe, Genotoul, INRA, Castanet-Tolosan, France
| | | | | | - Pere Mestre
- SVQV, INRA, Université de Strasbourg, Colmar, France
| | | |
Collapse
|
42
|
Judelson HS, Ah-Fong AMV. Exchanges at the Plant-Oomycete Interface That Influence Disease. PLANT PHYSIOLOGY 2019; 179:1198-1211. [PMID: 30538168 PMCID: PMC6446794 DOI: 10.1104/pp.18.00979] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Molecular exchanges between plants and biotrophic, hemibiotrophic, and necrotrophic oomycetes affect disease progression.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521
| |
Collapse
|
43
|
Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové X, Sebé-Pedrós A, Stajich JE, Paszkiewicz K, Brown MW, Hall N, Wickstead B, Richards TA. Comparative genomic analysis of the 'pseudofungus' Hyphochytrium catenoides. Open Biol 2019; 8:rsob.170184. [PMID: 29321239 PMCID: PMC5795050 DOI: 10.1098/rsob.170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups.
Collapse
Affiliation(s)
- Guy Leonard
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Aurélie Labarre
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Adam Monier
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Darren Soanes
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy G Wideman
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Finlay Maguire
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sam Stevens
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Divya Sain
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Xavier Grau-Bové
- Institute of Evolutionary Biology, CSIC-UPF, Barcelona, Catalonia, Spain
| | | | - Jason E Stajich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Konrad Paszkiewicz
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Neil Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas A Richards
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
44
|
Dussert Y, Mazet ID, Couture C, Gouzy J, Piron MC, Kuchly C, Bouchez O, Rispe C, Mestre P, Delmotte F. A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes. Genome Biol Evol 2019. [PMID: 30847481 DOI: 10.1101/350041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant-pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.
Collapse
Affiliation(s)
- Yann Dussert
- SAVE, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | | | - Carole Couture
- SAVE, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Jérôme Gouzy
- LIPM, INRA, Université de Toulouse, CNRS, Castanet-Tolosan, France
| | | | - Claire Kuchly
- US 1426 GeT-PlaGe, Genotoul, INRA, Castanet-Tolosan, France
| | | | | | - Pere Mestre
- SVQV, INRA, Université de Strasbourg, Colmar, France
| | | |
Collapse
|
45
|
Meijer HJG, Schoina C, Wang S, Bouwmeester K, Hua C, Govers F. Phytophthora infestans small phospholipase D-like proteins elicit plant cell death and promote virulence. MOLECULAR PLANT PATHOLOGY 2019; 20:180-193. [PMID: 30171659 PMCID: PMC6637911 DOI: 10.1111/mpp.12746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The successful invasion of host tissue by (hemi-)biotrophic plant pathogens is dependent on modifications of the host plasma membrane to facilitate the two-way transfer of proteins and other compounds. Haustorium formation and the establishment of extrahaustorial membranes are probably dependent on a variety of enzymes that modify membranes in a coordinated fashion. Phospholipases, enzymes that hydrolyse phospholipids, have been implicated as virulence factors in several pathogens. The oomycete Phytophthora infestans is a hemibiotrophic pathogen that causes potato late blight. It possesses different classes of phospholipase D (PLD) proteins, including small PLD-like proteins with and without signal peptide (sPLD-likes and PLD-likes, respectively). Here, we studied the role of sPLD-like-1, sPLD-like-12 and PLD-like-1 in the infection process. They are expressed in expanding lesions on potato leaves and during in vitro growth, with the highest transcript levels in germinating cysts. When expressed in planta in the presence of the silencing suppressor P19, all three elicited a local cell death response that was visible at the microscopic level as autofluorescence and strongly boosted in the presence of calcium. Moreover, inoculation of leaves expressing the small PLD-like genes resulted in increased lesion growth and greater numbers of sporangia, but this was abolished when mutated PLD-like genes were expressed with non-functional PLD catalytic motifs. These results show that the three small PLD-likes are catalytically active and suggest that their enzymatic activity is required for the promotion of virulence, possibly by executing membrane modifications to support the growth of P. infestans in the host.
Collapse
Affiliation(s)
- Harold J. G. Meijer
- Laboratory of PhytopathologyWageningen University and ResearchPO Box 16Wageningen6700AAthe Netherlands
- Wageningen Plant ResearchWageningen University and ResearchPO Box 16Wageningen6700AAthe Netherlands
| | - Charikleia Schoina
- Laboratory of PhytopathologyWageningen University and ResearchPO Box 16Wageningen6700AAthe Netherlands
| | - Shutong Wang
- Laboratory of PhytopathologyWageningen University and ResearchPO Box 16Wageningen6700AAthe Netherlands
- College of Plant ProtectionAgricultural University of HebeiBaoding071001China
| | - Klaas Bouwmeester
- Laboratory of PhytopathologyWageningen University and ResearchPO Box 16Wageningen6700AAthe Netherlands
| | - Chenlei Hua
- Laboratory of PhytopathologyWageningen University and ResearchPO Box 16Wageningen6700AAthe Netherlands
- Present address:
Center of Plant Molecular Biology (ZMBP)Eberhard‐Karls‐University TübingenTübingenD‐72076Germany
| | - Francine Govers
- Laboratory of PhytopathologyWageningen University and ResearchPO Box 16Wageningen6700AAthe Netherlands
| |
Collapse
|
46
|
Pecrix Y, Buendia L, Penouilh‐Suzette C, Maréchaux M, Legrand L, Bouchez O, Rengel D, Gouzy J, Cottret L, Vear F, Godiard L. Sunflower resistance to multiple downy mildew pathotypes revealed by recognition of conserved effectors of the oomycete Plasmopara halstedii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:730-748. [PMID: 30422341 PMCID: PMC6849628 DOI: 10.1111/tpj.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
Over the last 40 years, new sunflower downy mildew isolates (Plasmopara halstedii) have overcome major gene resistances in sunflower, requiring the identification of additional and possibly more durable broad-spectrum resistances. Here, 354 RXLR effectors defined in silico from our new genomic data were classified in a network of 40 connected components sharing conserved protein domains. Among 205 RXLR effector genes encoding conserved proteins in 17 P. halstedii pathotypes of varying virulence, we selected 30 effectors that were expressed during plant infection as potentially essential genes to target broad-spectrum resistance in sunflower. The transient expression of the 30 core effectors in sunflower and in Nicotiana benthamiana leaves revealed a wide diversity of targeted subcellular compartments, including organelles not so far shown to be targeted by oomycete effectors such as chloroplasts and processing bodies. More than half of the 30 core effectors were able to suppress pattern-triggered immunity in N. benthamiana, and five of these induced hypersensitive responses (HR) in sunflower broad-spectrum resistant lines. HR triggered by PhRXLRC01 co-segregated with Pl22 resistance in F3 populations and both traits localized in 1.7 Mb on chromosome 13 of the sunflower genome. Pl22 resistance was physically mapped on the sunflower genome recently sequenced, unlike all the other downy mildew resistances published so far. PhRXLRC01 and Pl22 are proposed as an avirulence/resistance gene couple not previously described in sunflower. Core effector recognition is a successful strategy to accelerate broad-spectrum resistance gene identification in complex crop genomes such as sunflower.
Collapse
Affiliation(s)
- Yann Pecrix
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Luis Buendia
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Charlotte Penouilh‐Suzette
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Maude Maréchaux
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Ludovic Legrand
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Olivier Bouchez
- GeT‐PlaGeUS INRA 1426INRA AuzevilleF‐31326Castanet‐Tolosan CedexFrance
| | - David Rengel
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Jérôme Gouzy
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Ludovic Cottret
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | | | - Laurence Godiard
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| |
Collapse
|
47
|
McGowan J, Byrne KP, Fitzpatrick DA. Comparative Analysis of Oomycete Genome Evolution Using the Oomycete Gene Order Browser (OGOB). Genome Biol Evol 2019; 11:189-206. [PMID: 30535146 PMCID: PMC6330052 DOI: 10.1093/gbe/evy267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles–alveolates–rhizaria eukaryotic supergroup. They include some of the most destructive pathogens of animals and plants, such as Phytophthora infestans, the causative agent of late potato blight. Despite the threat they pose to worldwide food security and natural ecosystems, there is a lack of tools and databases available to study oomycete genetics and evolution. To this end, we have developed the Oomycete Gene Order Browser (OGOB), a curated database that facilitates comparative genomic and syntenic analyses of oomycete species. OGOB incorporates genomic data for 20 oomycete species including functional annotations and a number of bioinformatics tools. OGOB hosts a robust set of orthologous oomycete genes for evolutionary analyses. Here, we present the structure and function of OGOB as well as a number of comparative genomic analyses we have performed to better understand oomycete genome evolution. We analyze the extent of oomycete gene duplication and identify tandem gene duplication as a driving force of the expansion of secreted oomycete genes. We identify core genes that are present and microsyntenically conserved (termed syntenologs) in oomycete lineages and identify the degree of microsynteny between each pair of the 20 species housed in OGOB. Consistent with previous comparative synteny analyses between a small number of oomycete species, our results reveal an extensive degree of microsyntenic conservation amongst genes with housekeeping functions within the oomycetes. OGOB is available at https://ogob.ie.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland.,Human Health Research Institute, Maynooth University, Co. Kildare, Ireland
| | - Kevin P Byrne
- School of Medicine, UCD Conway Institute, University College Dublin, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland.,Human Health Research Institute, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
48
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
49
|
Fletcher K, Klosterman SJ, Derevnina L, Martin F, Bertier LD, Koike S, Reyes-Chin-Wo S, Mou B, Michelmore R. Comparative genomics of downy mildews reveals potential adaptations to biotrophy. BMC Genomics 2018; 19:851. [PMID: 30486780 PMCID: PMC6264045 DOI: 10.1186/s12864-018-5214-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/31/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Spinach downy mildew caused by the oomycete Peronospora effusa is a significant burden on the expanding spinach production industry, especially for organic farms where synthetic fungicides cannot be deployed to control the pathogen. P. effusa is highly variable and 15 new races have been recognized in the past 30 years. RESULTS We virulence phenotyped, sequenced, and assembled two isolates of P. effusa from the Salinas Valley, California, U.S.A. that were identified as race 13 and 14. These assemblies are high quality in comparison to assemblies of other downy mildews having low total scaffold count (784 & 880), high contig N50s (48 kb & 52 kb), high BUSCO completion and low BUSCO duplication scores and share many syntenic blocks with Phytophthora species. Comparative analysis of four downy mildew and three Phytophthora species revealed parallel absences of genes encoding conserved domains linked to transporters, pathogenesis, and carbohydrate activity in the biotrophic species. Downy mildews surveyed that have lost the ability to produce zoospores have a common loss of flagella/motor and calcium domain encoding genes. Our phylogenomic data support multiple origins of downy mildews from hemibiotrophic progenitors and suggest that common gene losses in these downy mildews may be of genes involved in the necrotrophic stages of Phytophthora spp. CONCLUSIONS We present a high-quality draft genome of Peronospora effusa that will serve as a reference for Peronospora spp. We identified several Pfam domains as under-represented in the downy mildews consistent with the loss of zoosporegenesis and necrotrophy. Phylogenomics provides further support for a polyphyletic origin of downy mildews.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Lida Derevnina
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
- Present Address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| | - Frank Martin
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Lien D. Bertier
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Steven Koike
- UC Davis Cooperative Extension Monterey County, Salinas, CA 93901 USA
- Present Address: TriCal Diagnostics, Hollister, CA 95023 USA
| | - Sebastian Reyes-Chin-Wo
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Beiquan Mou
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Richard Michelmore
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, 95616 USA
| |
Collapse
|
50
|
Gómez-Zeledón J, Spring O. Up-regulated RxLR effector genes of Plasmopara viticola in synchronized host-free stages and infected leaves of hosts with different susceptibility. Fungal Biol 2018; 122:1125-1133. [PMID: 30449350 DOI: 10.1016/j.funbio.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
Fast recognition of host signals and early activation of infection mechanisms in Plasmopara viticola are decisive for successful infestation of Vitis vinifera. To better understand interactive processes at the first front line of combat between the pathogen and its host, a specific pre-infective stage was generated in a host-free system. Zoospore encystment was triggered within minutes after treatment with CaCl2. Subsequently, high rates of germ tube formation occurred in a synchronized manner. This method was employed to compare development-related gene expression in strains of different virulence. Soon after germination, spores showed strong up-regulation of two effector genes, PvRxLR18 and PvRxLR28, particularly in the high virulence strain. On infected grapevine leaf-discs of cultivars with different susceptibility, a similar up-regulation was found at 6 hours post inoculation (hpi). This effect was much more evident in the high virulence than in the low virulence strain and was significantly higher on leaves of the tolerant cultivar Regent than on Müller-Thurgau. In addition, PvRxLR67 was up-regulated 24 hpi in the high virulence strain indicating that different effectors are active in later infection stages. Differences in the expression pattern of RxLR effector genes between the two strains corroborated with infection symptoms visible by sporulation.
Collapse
Affiliation(s)
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, 70593, Stuttgart, BW, Germany.
| |
Collapse
|