1
|
Li R, Pan J, Pan C, Li J, Zhang Z, Shahzad K, Sun Y, Yixi Q, Zhaxi W, Qing H, Song T, Zhao W. Transcriptome analysis of mammary epithelial cell between Sewa sheep and East FriEsian sheep from different localities. BMC Genomics 2024; 25:1038. [PMID: 39501165 PMCID: PMC11539678 DOI: 10.1186/s12864-024-10946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Mammary epithelial cells, the only milk-producing cell type in the mammary gland, undergo dynamic proliferation and differentiation during pregnancy, culminating in lactation postpartum. The East FriEsian sheep ranks among the world's most prolific dairy breeds, while the Sewa sheep, a unique dual-purpose breed autochthonous to the Qinghai-Tibet Plateau, exhibits significantly lower milk production. Employing tissue culture methods, we successfully established mammary epithelial cell lines from both breeds. Morphological assessment of mammary epithelial cells and immunofluorescence identification of Cytokeratin 7 and Cytokeratin 8 confirmed the epithelial identity of the isolated cells. Subsequent RNA-seq analysis of these in vitro epithelial cell lines revealed 1813 differentially expressed genes (DEGs). Among these, 1108 were significantly up-regulated and 705 were down-regulated in Sewa epithelial sheep cells compared to East FriEsian epithelial cells. KEGG enrichment analysis identified cellular processes, environmental information processing, human diseases, metabolism, and organismal systems as the primary functional categories associated with DEGs. Gene ontology (GO) terms annotation, categorized into molecular function, biological processes, and cellular component, yielded "binding and catalytic activity," "molecular function regulator activity," and "cellular process," "biological regulation," and "regulation of biological process" as the top three terms within each domain, respectively. Clusters of Orthologous Groups of proteins (KOG) classification further revealed that "signal transduction mechanisms" accounted for the largest proportion of DEGs among all KOG categories. Finally, based on these analyses, ATF3 and MPP7 were identified as promising candidate genes for regulating lactation.
Collapse
Affiliation(s)
- Rui Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Junru Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Cheng Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Jingjing Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Zhenzhen Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Yu Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Quzhu Yixi
- Cultural Service Center of Maqian Township, Baingoin County, Nagqu, Xizang, 852599, China
| | - Wangjie Zhaxi
- The Service Station of Agricultural and Animal, Husbandry Technical of Baingoin County, Nagqu, Xizang, 852599, China
| | - Haofeng Qing
- The Service Station of Agricultural and Animal, Husbandry Technical of Baingoin County, Nagqu, Xizang, 852599, China
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang, 850009, China.
| | - Wangsheng Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| |
Collapse
|
2
|
Liu J, Liu B, Mu Q, Liu J, Li Y, Gong W, Chahaer T, Song Y, Hai E, Wang H, Zhang Y, Zhao Y. Melatonin promotes the proliferation of dermal papilla cells in cashmere goats via activation of chi-let-7d-5p/WNT2 axis. Genomics 2024; 116:110961. [PMID: 39577785 DOI: 10.1016/j.ygeno.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Exogenous melatonin promotes the differentiation of secondary hair follicles in Cashmere goats, thereby improving cashmere production. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional gene expression and influence hair follicle growth. However, the mechanism through which melatonin regulates hair follicle development via miRNA mediation remains unclear. In this study, we used RNA-seq to identify differentially expressed (DE) miRNAs during melatonin-induced growth of secondary hair follicles in inner Mongolian Cashmere goats. In total, 170 DE miRNAs were identified. Enrichment analysis revealed that the target genes of these DE miRNAs were related to biological processes such as protein modification; cytoskeletal components; and the Notch, Wnt, and MAPK signaling pathways. The miRNA-mRNA regulatory network suggested that the DE miRNA chi-let-7d-5p negatively regulates WNT2 expression. Mechanistic studies revealed that melatonin promotes the proliferation of DP cells in Cashmere goats via the chi-let-7d-5p/WNT2 axis.
Collapse
Affiliation(s)
- Junyang Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bin Liu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiasen Liu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yunhua Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wendian Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Tergel Chahaer
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yukun Song
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Haoyuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
3
|
Liu Y, Zhen H, Wu X, Wang J, Luo Y, Hu J, Liu X, Li S, Li M, Shi B, Ren C, Gu Y, Hao Z. Molecular Characteristics of JAK2 and Its Effect on the Milk Fat and Casein Synthesis of Ovine Mammary Epithelial Cells. Int J Mol Sci 2024; 25:4027. [PMID: 38612844 PMCID: PMC11012485 DOI: 10.3390/ijms25074027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In addition to its association with milk protein synthesis via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, JAK2 also affects milk fat synthesis. However, to date, there have been no reports on the effect of JAK2 on ovine mammary epithelial cells (OMECs), which directly determine milk yield and milk contents. In this study, the coding sequence (CDS) region of ovine JAK2 was cloned and identified and its tissue expression and localization in ovine mammary glands, as well as its effects on the viability, proliferation, and milk fat and casein levels of OMECs, were also investigated. The CDS region of ovine JAK2, 3399 bp in length, was cloned and its authenticity was validated by analyzing its sequence similarity with JAK2 sequences from other animal species using a phylogenetic tree. JAK2 was found to be expressed in six ovine tissues, with the highest expression being in the mammary gland. Over-expressed JAK2 and three groups of JAK2 interference sequences were successfully transfected into OMECs identified by immunofluorescence staining. When compared with the negative control (NC) group, the viability of OMECs was increased by 90.1% in the pcDNA3.1-JAK2 group. The over-expression of JAK2 also increased the number and ratio of EdU-labeled positive OMECs, as well as the expression levels of three cell proliferation marker genes. These findings show that JAK2 promotes the viability and proliferation of OMECs. Meanwhile, the triglyceride content in the over-expressed JAK2 group was 2.9-fold higher than the controls and the expression levels of four milk fat synthesis marker genes were also increased. These results indicate that JAK2 promotes milk fat synthesis. Over-expressed JAK2 significantly up-regulated the expression levels of casein alpha s2 (CSN1S2), casein beta (CSN2), and casein kappa (CSN3) but down-regulated casein alpha s1 (CSN1S1) expression. In contrast, small interfered JAK2 had the opposite effect to JAK2 over-expression on the viability, proliferation, and milk fat and milk protein synthesis of OMECs. In summary, these results demonstrate that JAK2 promotes the viability, proliferation, and milk fat synthesis of OMECs in addition to regulating casein expression in these cells. This study contributes to a better comprehension of the role of JAK2 in the lactation performance of sheep.
Collapse
Affiliation(s)
| | | | | | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.Z.); (X.W.); (Y.L.); (J.H.); (X.L.); (S.L.); (M.L.); (B.S.); (C.R.); (Y.G.)
| | | | | | | | | | | | | | | | | | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.Z.); (X.W.); (Y.L.); (J.H.); (X.L.); (S.L.); (M.L.); (B.S.); (C.R.); (Y.G.)
| |
Collapse
|
4
|
Sun X, Gao S, Luo S, Chang R, Jia H, Xu Q, Jiang Q, Loor JJ, Xu C. Mitochondrial Calcium Uniporter Regulator 1 (MCUR1) Relieves Mitochondrial Damage Induced by Lipopolysaccharide by Mediating Mitochondrial Ca 2+ Homeostasis in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7278-7288. [PMID: 37145034 DOI: 10.1021/acs.jafc.2c07494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The metabolic stress triggered by negative energy balance after calving induces mitochondrial damage of bovine mammary epithelial cells. Mitochondrial calcium uniporter regulator 1 (MCUR1) is a key protein-coding gene that mediates mitochondrial calcium ion (Ca2+) uptake and plays an important role in mediating homeostasis of mitochondria. The aim of the present study was to elucidate the effects of MCUR1-mediated Ca2+ homeostasis on mitochondria of bovine mammary epithelial cells in response to an inflammatory challenge with lipopolysaccharide (LPS). Exogenous LPS resulted in upregulation of the MCUR1 mRNA and protein abundance, mitochondrial Ca2+ content, and mitochondrial reactive oxygen species (Mito-ROS) content while decreasing mitochondrial membrane potential, causing mitochondrial damage, and increasing the rate of apoptosis. Ryanodine pretreatment attenuated the upregulation of the mitochondrial Ca2+ content and Mito-ROS content induced by LPS. Overexpression of MCUR1 increased the mitochondrial Ca2+ content and Mito-ROS content, while it decreased mitochondrial membrane potential, damaged mitochondria, and induced cell apoptosis. In addition, knockdown of MCUR1 by small interfering RNA attenuated LPS-induced mitochondrial dysfunction by inhibiting mitochondrial Ca2+ uptake. Our results revealed that exogenous LPS induces MCUR1-mediated mitochondrial Ca2+ overload in bovine mammary epithelial cells, which leads to mitochondrial injury. Thus, MCUR1-mediated Ca2+ homeostasis may be a potential therapeutic target against mitochondrial damage induced by metabolic challenges in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Xudong Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuang Gao
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shengbin Luo
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Renxu Chang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Hongdou Jia
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qiushi Xu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Chuang Xu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
5
|
Erduran H. Effect of parturition time and photoperiod on milk production, quality, and somatic cell count traits of pure and crossbred goats in a different production system. Trop Anim Health Prod 2023; 55:145. [PMID: 37017785 DOI: 10.1007/s11250-023-03560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Abstract
This is the first study to compare the effects of parturition time and photoperiod on milk yield, quality, and somatic cell count (SCC) traits in pure and crossbred doe genotypes reared with supplementary feeding at various physiological stages in a mountain-pasture grazing system. Data were collected from Hair, Alpine × Hair F1 (AHF1), and Saanen × Hair F1 (SHF1) crossbred doe genotypes with an average live weight of 49.60±0.40 kg. Hair doe had significantly lower (P < 0.001) milk yields and lactation length, but higher (P < 0.001) fat, protein, and lactose contents and electrical conductivity (EC) than AHF1 and SHF1 crossbred doe genotypes. Does giving parturition in the hours of darkness had higher (P < 0.05) milk volume and lower (P < 0.05) SCC compared to does giving parturition in the hours of daylight. Daily milk yield was positively correlated with daylight (P < 0.05; r = 0.50 to 0.53), while milk fat, protein, and lactose contents were negatively correlated with daylight (P < 0.05 to P < 0.001; r = -0.51 to -0.82, respectively) in Hair, AHF1, and SHF1 crossbred doe genotypes. Lactation stages and daily milk yield levels significantly affected (P < 0.05) the SCC, pH, total solids, and freezing point of milk. It was concluded that the milk yield traits of goats can be rapidly improved by better modelling of physiological and environmental variations such as photoperiod, reproduction, and hormonal effects in sustainable production systems.
Collapse
Affiliation(s)
- Hakan Erduran
- Bahri Dağdaş International Agricultural Research Institute, 42020, Konya, Türkiye.
| |
Collapse
|
6
|
Duman E, Özmen Ö, Kul S. Oar-miR-16b and oar-miR-27a: negatively correlated with milk yield and milk protein in sheep. Anim Biotechnol 2022; 33:1466-1479. [PMID: 33840373 DOI: 10.1080/10495398.2021.1908317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The characterization of miRNAs from sheep milk and their effect on milk yield and composition in sheep are remain unclear. Therefore, the aim of this study was to determine the expression pattern of several important miRNAs, which are associated with lactation in the sheep milk between high and low lactating-yield ewe groups. In addition to experimentally obtained miRNA expression results, the miRNA target genes were determined by bioinformatics analysis to identify biological pathways involved. miRNAs found to differ significantly in the expression level between the groups were oar-miR-181a, oar-miR-23a, oar-miR-27a, oar-miR-16b and oar-miR-374. Also, oar-miR-27a was shown negative correlation with milk protein and lactose contents while oar-miR-16b was shown negative correlation with milk yield in the high milk yield group. The highest connected hub genes for miR-27a target genes were determined as MAPK14 and PPARG. Also, six genes (HSPA4L, DNAJA2, ATP6V1B2, PPP2R1A, PPP2R1B, and PRKAR2A) were detected as hub genes for miR-16b. In this study, the relationship between expression profiles of several important miRNAs in sheep milk and milk yield and milk composition were investigated for the first time in high and low lactating yield groups.
Collapse
Affiliation(s)
- Esra Duman
- Department of Veterinary Medicine and Laboratory, Tokat Gaziosmanpaşa University, Artova Vocational School, Tokat, Turkey
| | - Özge Özmen
- Faculty of Veterinary Medicine, Department of Genetics, Ankara University, Ankara, Turkey
| | - Selim Kul
- Faculty of Veterinary Medicine, Department of Animal Breeding, Fırat University, Elazig, Turkey
| |
Collapse
|
7
|
Xuan R, Wang J, Zhao X, Li Q, Wang Y, Du S, Duan Q, Guo Y, Ji Z, Chao T. Transcriptome Analysis of Goat Mammary Gland Tissue Reveals the Adaptive Strategies and Molecular Mechanisms of Lactation and Involution. Int J Mol Sci 2022; 23:ijms232214424. [PMID: 36430911 PMCID: PMC9693614 DOI: 10.3390/ijms232214424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), dry period (DP), and involution (IN) stages. A total of 13,083 differentially expressed transcripts were identified by mutual comparison of mammary gland tissues at six developmental stages. Genes related to cell growth, apoptosis, immunity, nutrient transport, synthesis, and metabolism make adaptive transcriptional changes to meet the needs of mammary lactation. Notably, platelet derived growth factor receptor beta (PDGFRB) was screened as a hub gene of the mammary gland developmental network, which is highly expressed during the DP and IN. Overexpression of PDGFRB in vitro could slow down the G1/S phase arrest of goat mammary epithelial cell cycle and promote cell proliferation by regulating the PI3K/Akt signaling pathway. In addition, PDGFRB overexpression can also affect the expression of genes related to apoptosis, matrix metalloproteinase family, and vascular development, which is beneficial to the remodeling of mammary gland tissue during involution. These findings provide new insights into the molecular mechanisms involved in lactation and mammary gland involution.
Collapse
|
8
|
Chen W, Gu X, Lv X, Cao X, Yuan Z, Wang S, Sun W. Non-coding transcriptomic profiles in the sheep mammary gland during different lactation periods. Front Vet Sci 2022; 9:983562. [PMID: 36425117 PMCID: PMC9679157 DOI: 10.3389/fvets.2022.983562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Sheep milk production is a dynamic and multifactorial trait regulated by diverse biological mechanisms. To improve the quality and production of sheep milk, it is necessary to understand the underlying non-coding transcriptomic mechanisms. In this study, ribonucleic acid-sequencing (RNA-seq) was used to profile the expression of microRNAs (miRNAs) and circular RNAs (circRNAs) in the sheep mammary gland at three key lactation time points (perinatal period, PP; early lactation, EL; and peak lactation, PL). A total of 2,369 novel circRNAs and 272 miRNAs were profiled, of which 348, 373, and 36 differentially expressed (DE) circRNAs and 30, 34, and 7 DE miRNAs were detected in the comparison of EL vs. PP, PL vs. PP, and PL vs. EL, respectively. A series of bioinformatics analyses including functional enrichment, machine learning prediction, and competing endogenous RNA (ceRNA) network analyses were conducted to identify subsets of the potential candidate miRNAs (e.g., oar_miR_148a, oar_miR_362, and oar_miR_432) and circRNAs (e.g., novel_circ_0011066, novel_circ_0010460, and novel_circ_0006589) involved in sheep mammary gland development. Taken together, this study offers a window into the dynamics of non-coding transcriptomes that occur during sheep lactation and may provide further insights into miRNA and circRNA that influence sheep mammary gland development.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinyu Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Xuan R, Chao T, Zhao X, Wang A, Chu Y, Li Q, Zhao Y, Ji Z, Wang J. Transcriptome profiling of the nonlactating mammary glands of dairy goats reveals the molecular genetic mechanism of mammary cell remodeling. J Dairy Sci 2022; 105:5238-5260. [DOI: 10.3168/jds.2021-21039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
10
|
Conte G, Giordani T, Vangelisti A, Serra A, Pauselli M, Cavallini A, Mele M. Transcriptome Adaptation of the Ovine Mammary Gland to Dietary Supplementation of Extruded Linseed. Animals (Basel) 2021; 11:2707. [PMID: 34573673 PMCID: PMC8465498 DOI: 10.3390/ani11092707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Several dietary strategies were adopted to reduce saturated fatty acids and increase beneficial fatty acids (FA) for human health. Few studies are available about the pathways/genes involved in these processes. Illumina RNA-sequencing was used to investigate changes in the ovine mammary gland transcriptome following supplemental feeding with 20% extruded linseed. Comisana ewes in mid-lactation were fed a control diet for 28 days (control period) followed by supplementation with 20% DM of linseed panel for 28 days (treatment period). Milk production was decreased by 30.46% with linseed supplementation. Moreover, a significant reduction in fat, protein and lactose secretion was also observed. Several unsaturated FAs were increased while short and medium chain saturated FAs were decreased by linseed treatment. Around four thousand (1795 up- and 2133 down-regulated) genes were significantly differentially regulated by linseed supplementation. The main pathways affected by linseed supplementation were those involved in the energy balance of the mammary gland. Principally, the mammary gland of fed linseed sheep showed a reduced abundance of transcripts related to the synthesis of lipids and carbohydrates and oxidative phosphorylation. Our study suggests that the observed decrease in milk saturated FA was correlated to down-regulation of genes in the lipid synthesis and lipid metabolism pathways.
Collapse
Affiliation(s)
- Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
| | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Mariano Pauselli
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy;
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Marcello Mele
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| |
Collapse
|
11
|
Michailidou S, Gelasakis A, Banos G, Arsenos G, Argiriou A. Comparative Transcriptome Analysis of Milk Somatic Cells During Lactation Between Two Intensively Reared Dairy Sheep Breeds. Front Genet 2021; 12:700489. [PMID: 34349787 PMCID: PMC8326974 DOI: 10.3389/fgene.2021.700489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
In dairy sheep industry, milk production dictates the value of a ewe. Milk production is directly related to the morphology and physiology of the mammary gland; both being designated targets of breeding strategies. Although within a flock breeding parameters are mutual, large differences in milk production among individual ewes are usually observed. In this work, we tested two of the most productive dairy sheep breeds reared intensively in Greece, one local the Chios breed and one foreign the Lacaune breed. We used transcriptome sequencing to reveal molecular mechanisms that render the mammary gland highly productive or not. While highly expressed genes (caseins and major whey protein genes) were common among breeds, differences were observed in differentially expressed genes. ENSOARG00000008077, as a member of ribosomal protein 14 family, together with LPCAT2, CCR3, GPSM2, ZNF131, and ASIP were among the genes significantly differentiating mammary gland's productivity in high yielding ewes. Gene ontology terms were mainly linked to the inherent transcriptional activity of the mammary gland (GO:0005524, GO:0030552, GO:0016740, GO:0004842), lipid transfer activity (GO:0005319) and innate immunity (GO:0002376, GO:0075528, GO:0002520). In addition, clusters of genes affecting zinc and iron trafficking into mitochondria were highlighted for high yielding ewes (GO:0071294, GO:0010043). Our analyses provide insights into the molecular pathways involved in lactation between ewes of different performances. Results revealed management issues that should be addressed by breeders in order to move toward increased milk yields through selection of the desired phenotypes. Our results will also contribute toward the selection of the most resilient and productive ewes, thus, will strengthen the existing breeding systems against a spectrum of environmental threats.
Collapse
Affiliation(s)
- Sofia Michailidou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Georgios Banos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland’s Rural College, Easter Bush, Edinburgh, United Kingdom
| | - George Arsenos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Lemnos, Greece
| |
Collapse
|
12
|
Goyache F, Fernández I, Tapsoba ASR, Traoré A, Menéndez-Arias NA, Álvarez I. Functional characterization of Copy Number Variations regions in Djallonké sheep. J Anim Breed Genet 2021; 138:600-612. [PMID: 33682236 DOI: 10.1111/jbg.12542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
A total of 184 Djallonké (West African Dwarf) sheep of Burkina Faso were analysed for Copy Number Variations (CNV) using Ovine 50 K SNP BeadChip genotyping data and two different CNV calling platforms: PennCNV and QuantiSNP. Analyses allowed to identify a total of 63 candidate Copy Number Variations Regions (CNVR) on 11 different ovine chromosomes covering about 82.5 Mb of the sheep genome. Gene-annotation enrichment analysis allowed to identify a total of 751 potential candidate ovine genes located in the candidate CNVR bounds. Functional annotation allowed to identify five statistically significant Functional Clusters (FC; enrichment factor > 1.3) involving 61 candidate genes. All genes forming significantly enriched FC were located on ovine chromosome (OAR) 21. FC1 (22 genes including PAG4 and PAG6) and FC5 (three genes: CTSC, CTSW and CTSF), coding proteases (peptidases and cathepsins, respectively), were involved in reproductive performance and modulation of gestation. Both FC3 and FC4 were involved in inflammatory and immunologic response through coding serum amyloid A and B-box-type zinc finger proteins, respectively. Finally, FC2 consisted of 27 genes (including OR10G6 and OR8B8) involved in olfactory receptor activity, key for animals adapting to new food resources. CNVR identified on at least 15% of individuals were considered CNVR hotspots and further overlapped with previously reported quantitative trait loci (QTL). CNVR hotspots spanning genes putatively involved with lipid metabolism (SKP1, TCF7, JADE2, UBE2B and SAR1B) and differential expression in mammary gland (SEC24A and CDKN2AIPNL) on OAR5 and dairy traits (CCDC198 and SLC35F4) on OAR7 overlapped with QTL associated with lipid metabolism, milk protein yield and milk fat percentage. Information obtained from local sheep populations naturally adapted to harsh environments contributes to increase our understanding of the genomic importance of CNV.
Collapse
Affiliation(s)
- Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA, Gijón, Spain
| | - Iván Fernández
- Área de Genética y Reproducción Animal, SERIDA, Gijón, Spain
| | | | | | | | - Isabel Álvarez
- Área de Genética y Reproducción Animal, SERIDA, Gijón, Spain
| |
Collapse
|
13
|
Hao ZY, Wang JQ, Luo YL, Liu X, Li SB, Zhao ML, Jin XY, Shen JY, Ke N, Song YZ, Qiao LR. Deep small RNA-Seq reveals microRNAs expression profiles in lactating mammary gland of 2 sheep breeds with different milk performance. Domest Anim Endocrinol 2021; 74:106561. [PMID: 33035848 DOI: 10.1016/j.domaniend.2020.106561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Micro ribonucleic acid (miRNA) is a type of noncoding RNA, and it has been revealed to play important roles in the activity of the mammary gland (MG) in some species. However, the function of miRNAs in MG of sheep is poorly understood. In the study, Gansu Alpine Merino (GAM; n = 9) and Small-tailed Han sheep (STH; n = 9) with different milk production traits were investigated. Microstructures and the expression profile of miRNAs of MG tissues at peak lactation were studied. Mature alveolar lumens of MG in appearance were larger in STH than GAM. The expression levels of CSN2 and the content of rough endoplasmic reticulum were also higher in STH ewes than GAM ewes. A total of 124 mature miRNAs were expressed, and 18 of these were differentially expressed between the 2 breeds. The KEGG analysis results showed that the targeted genes of differentially expressed miRNAs were mainly involved in some metabolic pathways and signaling pathways related to MG development, milk protein, and fat synthesis. The findings in the study can improve our understanding of the roles of miRNAs in the development and lactation of MG in sheep.
Collapse
Affiliation(s)
- Z Y Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - J Q Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Y L Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - X Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - S B Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - M L Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - X Y Jin
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - J Y Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - N Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Z Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - L R Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Wang J, Zhou H, Hickford JGH, Hao Z, Gong H, Hu J, Liu X, Li S, Shen J, Ke N, Song Y, Qiao L, Luo Y. Identification and characterization of circular RNAs in mammary gland tissue from sheep at peak lactation and during the nonlactating period. J Dairy Sci 2020; 104:2396-2409. [PMID: 33246614 DOI: 10.3168/jds.2020-18911] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022]
Abstract
Circular RNAs are a class of noncoding RNA with a widespread occurrence in eukaryote tissues, and with some having been demonstrated to have clear biological function. In sheep, little is known about the role of circular RNAs in mammary gland tissue, and therefore an RNA sequencing approach was used to compare mammary gland tissue expression of circular RNAs in 9 Small Tail Han sheep at peak lactation, and subsequently when they were not lactating. These 9 sheep had their RNA pooled for analysis into 3 libraries from peak lactation and 3 from the nonlactating period. A total of 3,278 and 1,756 circular RNAs were identified in the peak lactation and nonlactating mammary gland tissues, respectively, and the expression and identity of 9 of them was confirmed using reverse transcriptase-polymerase chain reaction analysis and DNA sequencing. The type, chromosomal location and length of the circular RNAs identified were ascertained. Forty upregulated and one downregulated circular RNAs were characterized in the mammary gland tissue at peak lactation compared with the nonlactating mammary gland tissue. Gene ontology enrichment analysis revealed that the parental genes of these differentially expressed circular RNAs were related to molecular function, binding, protein binding, ATP binding, and ion binding. Five differentially expression circular RNAs were selected for further analysis to predict their target microRNAs, and some microRNAs reportedly associated with the development of the mammary gland were found in the constructed circular RNA-microRNA network. This study reveals the expression profiles and characterization of circular RNAs at 2 key stages of mammary gland activity, thereby providing an improved understanding of the roles of circular RNAs in the mammary gland of sheep.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hua Gong
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
15
|
Hughes K. Comparative mammary gland postnatal development and tumourigenesis in the sheep, cow, cat and rabbit: Exploring the menagerie. Semin Cell Dev Biol 2020; 114:186-195. [PMID: 33082118 DOI: 10.1016/j.semcdb.2020.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Sheep, cows, cats, and rabbits are kept by humans for agricultural purposes and as companion animals. Much of the mammary research in these species has focussed on mastitis in the case of ruminants and rabbits, and mammary tumourigenesis in cats and rabbits. However, similarities with the human breast suggest that these species may be currently underutilised as valuable comparative models of breast development and disease. The mammary gland undergoes cyclical postnatal development that will be considered here in the context of these non-traditional model species, with a focus on the mammary microenvironment at different postnatal developmental stages. The second part of this review will consider mammary tumour development. Ruminants are thought to be relatively 'resistant' to mammary tumourigenesis, likely due to multiple factors including functional properties of ruminant mammary stem/progenitor cells, diet, and/or the fact that production animals undergo a first parity soon after puberty. By contrast, unneutered female cats and rabbits have a propensity to develop mammary neoplasms, and subsets of these may constitute valuable comparative models of breast cancer.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
16
|
Wang J, Hao Z, Hu J, Liu X, Li S, Wang J, Shen J, Song Y, Ke N, Luo Y. Small RNA deep sequencing reveals the expressions of microRNAs in ovine mammary gland development at peak-lactation and during the non-lactating period. Genomics 2020; 113:637-646. [PMID: 33007397 DOI: 10.1016/j.ygeno.2020.09.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in mammary gland development and lactation in livestock. Little is known about the roles of miRNAs in ovine mammary gland development, hence in this study the expression profiles of miRNAs of the mammary gland tissues of ewes at peak-lactation and during the non-lactating period were investigated using RNA sequencing. A total of 147 mature miRNAs were expressed in the two periods. Compared with peak-lactation, eight miRNAs in the non-lactating ewe mammary gland were significantly up-regulated, whereas fifteen miRNAs were down-regulated. A KEGG analysis revealed that the target genes of the up-regulated miRNAs were significantly enriched in lysosome, Wnt and MAPK signaling pathways, while the target genes of down-regulated miRNAs were significantly enriched in the PI3K-Akt signaling pathway, protein processing in endoplasmic reticulum and axon guidance. These results suggest that further study of the differentially expressed miRNAs could provide a better understanding of the molecular mechanisms of mammary development and lactation in sheep.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
17
|
Hao Z, Luo Y, Wang J, Hu J, Liu X, Li S, Jin X, Ke N, Zhao M, Hu L, Lu Y, Wu X, Qiao L. RNA-Seq Reveals the Expression Profiles of Long Non-Coding RNAs in Lactating Mammary Gland from Two Sheep Breeds with Divergent Milk Phenotype. Animals (Basel) 2020; 10:ani10091565. [PMID: 32899158 PMCID: PMC7552154 DOI: 10.3390/ani10091565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) play a key role in regulating the expression level of mRNAs. The expression profiles of ovine mammary gland were investigated in two sheep breeds with divergent milk phenotype using RNA-Seq. A total of 1894 lncRNAs were found to be expressed and 68 of these were differentially expressed between the two breeds. Some important Gene Ontogeny (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were related to lactation and mammary gland morphogenesis were found for the target genes of differentially expressed lncRNAs. This study can improve our understanding of the functions of lncRNAs in the regulation of lactation, milk yield, and milk components in sheep. Abstract Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.
Collapse
|
18
|
Wang J, Zhou H, Hickford JGH, Hao Z, Shen J, Luo Y, Hu J, Liu X, Li S. Comparison of the Transcriptome of the Ovine Mammary Gland in Lactating and Non-lactating Small-Tailed Han Sheep. Front Genet 2020; 11:472. [PMID: 32508880 PMCID: PMC7253648 DOI: 10.3389/fgene.2020.00472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Small-Tailed Han (STH) sheep are known for their high fecundity, but the survival of lambs is compromised and influences the commercial return from farming these sheep, with this being attributed in part to starvation from insufficient milk production by the ewes. In this study, the transcriptome profiles of the mammary gland of lactating and non-lactating STH ewes were investigated using paired-end RNA sequencing (RNA-Seq). An average of 14,447 genes were found to be expressed at peak-lactation in the STH sheep, while 15,146 genes were expressed in non-lactating ewes. A total of 4,003 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the DEGs were associated with a wide range of cellular components, biological processes and metabolic pathways, including binding activities, signaling pathways, cellular structures, and immune responses. The most highly expressed genes at peak-lactation included CSN2, LGB, LALBA, CSN1S1, CSN1S2, and CSN3, and the 10 most highly expressed genes accounted for 61.37% of the total Reads Per Kilobase of transcript, per Million mapped reads (RPKM). The most highly expressed genes in the mammary gland of non-lactating ewes included IgG, THYMB4X, EEF1A1, IgA, and APOE, and the 10 most highly expressed genes accounted for only 12.97% of the total gene RPKM values. This suggests that the sheep mammary gland undergoes a substantial development in milk protein synthesis infrastructure and promotion of protein transportation during lactation.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Hao Z, Zhou H, Hickford JG, Gong H, Wang J, Hu J, Liu X, Li S, Zhao M, Luo Y. Identification and characterization of circular RNA in lactating mammary glands from two breeds of sheep with different milk production profiles using RNA-Seq. Genomics 2020; 112:2186-2193. [DOI: 10.1016/j.ygeno.2019.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
|
20
|
Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis. BMC Vet Res 2019; 15:457. [PMID: 31852463 PMCID: PMC6921551 DOI: 10.1186/s12917-019-2206-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Milk sialylated oligosaccharides (SOS) play crucial roles in many biological processes. The most abundant free SOS in goat’s milk are 3’sialyllactose (3′-SL), 6’sialyllactose (6′-SL) and disialyllactose (DSL). The production of these molecules is determined genetically by the expression of glycosyltransferases and by the availability of nucleotide sugar substrates, but the precise mechanisms regulating the differential patterns of milk oligosaccharides are not known. We aimed to identify the complete cDNAs of candidate genes implicated in SOS biosynthesis (B4GALT1, LALBA, ST3GAL5, ST6GAL1) and to analyse their expression during lactation in the Garganica and Maltese goat breeds. Moreover, we analysed the colostrum and milk contents of 3′-SL, 6′-SL and disialyllactose (DSL) and the possible correlations between expressed genes and SOS. Results We identified the complete coding cDNAs of B4GALT1 (HQ700335.1), ST3GAL5 (KF055858.2), and ST6GAL1 (HQ709167.1), the single nucleotide polymorphism (SNPs) of these genes and 2 splicing variants of the ST6GAL1 cDNA. RT-qPCR analysis showed that LALBA and ST6GAL1 were the genes with the highest and lowest expression in both breeds, respectively. The interaction effects of the breeds and sampling times were associated with higher levels of B4GALT1 and ST3GAL5 gene expression in Garganica than in Maltese goats at kidding. B4GALT1, LALBA, and ST3GAL5 gene expression changed from kidding to 60 and 120 days in Maltese goats, while in Garganica goats, a difference was observed only for the LALBA gene. Breed and lactation effects were also found for SOS contents. Positive correlations of B4GALT1, LALBA, ST3GAL5, and ST6GAL1 with 3′-SL/6′SL and DSL were found. Conclusions The genetic effect on the oligosaccharide content of milk was previously highlighted in bovines, and this study is the first to investigate this effect in two goat breeds (Garganica and Maltese) during lactation. The genetic variability of candidate genes involved in SOS biosynthesis highlights their potential role in affecting gene expression and ultimately biological function. The investigation of gene regulatory regions as well as the examination of other sialyltransferase genes will be needed to identify the genetic pattern leading to a higher SOS content in the autochtonous Garganica breed and to protect it using a focused breeding strategy.
Collapse
|
21
|
Transcriptome Profile Analysis of Mammary Gland Tissue from Two Breeds of Lactating Sheep. Genes (Basel) 2019; 10:genes10100781. [PMID: 31597369 PMCID: PMC6826511 DOI: 10.3390/genes10100781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
The mammary gland is a crucial tissue for milk synthesis and plays a critical role in the feeding and growth of mammalian offspring. The aim of this study was to use RNA-sequencing (RNA-Seq) technology to provide a transcriptome profile of the ovine mammary gland at the peak of lactation. Small-Tailed Han (STH) sheep (n = 9) and Gansu Alpine Merino (GAM) sheep (n = 9), breeds with phenotypic differences in milk production traits, were selected for the RNA-Seq analysis. This revealed 74 genes that were more highly expressed in the STHs than in the GAMs. Similarly, 143 genes that were expressed at lower levels in the STHs than in the GAMs, were identified. Gene ontogeny (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that these differentially expressed genes (DEGs) were associated with binding and catalytic activities, hematopoietic cell lineages, oxytocin signaling pathway and neuroactive ligand–receptor interaction. This is the first study of the transcriptome profile of the ovine mammary gland in these Chinese breeds at peak lactation. The results provide for a better understanding of the genetic mechanisms involved in ovine lactation.
Collapse
|
22
|
Gallardo M, Cárcamo JG, Arias-Darraz L, Alvear C. Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals (Basel) 2019; 9:ani9090589. [PMID: 31438555 PMCID: PMC6770544 DOI: 10.3390/ani9090589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Simple Summary An experiment was designed to determine the effect of diet and type of pregnancy on the mammary gland development, measured by the transcriptional expression of genes involved in angiogenesis and cell turnover/lactogenesis. To that end, twin and single-bearing ewes were fed naturalized pasture or red clover from day −45 pre-partum until day +60 post-partum, taking samples of mammary tissue at day −10, +30 and +60 post-partum. The results showed that the group of twin-bearing ewes fed red clover was the best combination to increase the expression of genes associated to angiogenesis and cell turnover/lactogenesis in the mammary gland. Abstract These trials were carried out to determine firstly the effect of diet and type of pregnancy on the transcriptional expression of genes involved in angiogenesis and cell turnover/lactogenesis inside the sheep mammary gland from late gestation to late lactation. Eighteen Ile de France sheep, 8 twin- and 10 single-bearing ewes were alloted into two groups according to their diet, either based on ad libitum naturalized pasture or red clover hay plus lupine from day −45 pre-partum until day +60 post-partum. Samples from diets and mammary glands were collected at day −10 pre partum (time 1), day +30 (time 2) and day +60 post-partum (time 3) and analyzed by qRT-PCR. Additionally, samples from longissimus dorsi muscle were taken from lambs twice, at weaning and 45 days later, to determine the effect of the maternal treatment with regard to diet and type of pregnancy, on the mRNA expression of genes involved in lipid metabolism. The data was processed using the lme4 package for R, and SPSS Statistics 23.0 for Windows®. The results showed that the group of twin-bearing ewes fed red clover showed a higher expression of genes involved in angiogenesis before lambing and in cell turnover/lactogenesis during late lactation, explained by a lamb survival mechanism to delay apoptosis as a way to keep a secretory cells population and boosted by the diet quality, assuring a longer milk production potential during late lactation. Regarding lambs, apparently the maternal diet would influence the transcriptional expression of lipogenic enzymes in the longissimus dorsi muscle after weaning, but further studies are necessary to validate these results. In summary, Twin-bearing ewes fed red clover performed best at increasing the expression of genes associated with angiogenesis and cell turnover/lactogenesis in the mammary gland.
Collapse
Affiliation(s)
- María Gallardo
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile.
| | - Juan G Cárcamo
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia 5090000, Chile
| | - Luis Arias-Darraz
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia 5090000, Chile
| | - Carlos Alvear
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, Santiago 8320000, Chile
| |
Collapse
|
23
|
Brodhagen J, Weikard R, Thom U, Heimes A, Günther J, Hadlich F, Zerbe H, Petzl W, Meyerholz MM, Hoedemaker M, Schuberth HJ, Engelmann S, Kühn C. Development and evaluation of a milk protein transcript depletion method for differential transcriptome analysis in mammary gland tissue. BMC Genomics 2019; 20:400. [PMID: 31117949 PMCID: PMC6530097 DOI: 10.1186/s12864-019-5781-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/07/2019] [Indexed: 11/30/2022] Open
Abstract
Background In the mammary gland transcriptome of lactating dairy cows genes encoding milk proteins are highly abundant, which can impair the detection of lowly expressed transcripts and can bias the outcome in global transcriptome analyses. Therefore, the aim of this study was to develop and evaluate a method to deplete extremely highly expressed transcripts in mRNA from lactating mammary gland tissue. Results Selective RNA depletion was performed by hybridization of antisense oligonucleotides targeting genes encoding the caseins (CSN1S1, CSN1S2, CSN2 and CSN3) and whey proteins (LALBA and PAEP) within total RNA followed by RNase H-mediated elimination of the respective transcripts. The effect of the RNA depletion procedure was monitored by RNA sequencing analysis comparing depleted and non-depleted RNA samples from Escherichia coli (E. coli) challenged and non-challenged udder tissue of lactating cows in a proof of principle experiment. Using RNase H-mediated RNA depletion, the ratio of highly abundant milk protein gene transcripts was reduced in all depleted samples by an average of more than 50% compared to the non-depleted samples. Furthermore, the sensitivity for discovering transcripts with marginal expression levels and transcripts not yet annotated was improved. Finally, the sensitivity to detect significantly differentially expressed transcripts between non-challenged and challenged udder tissue was increased without leading to an inadvertent bias in the pathogen challenge-associated biological signaling pathway patterns. Conclusions The implementation of selective RNase H-mediated RNA depletion of milk protein gene transcripts from the mammary gland transcriptome of lactating cows will be highly beneficial to establish comprehensive transcript catalogues of the tissue that better reflects its transcriptome complexity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5781-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johanna Brodhagen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Ulrike Thom
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Annika Heimes
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Juliane Günther
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Holm Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764, Oberschleissheim, Germany
| | - Wolfgang Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764, Oberschleissheim, Germany
| | - Marie M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764, Oberschleissheim, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany
| | - Hans-Joachim Schuberth
- Immunology Unit, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany
| | - Susanne Engelmann
- Institute for Microbiology, Technical University Braunschweig, 38106, Braunschweig, Germany.,Microbial Proteomics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Christa Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany. .,Agricultural and Environmental Faculty, University Rostock, 18059, Rostock, Germany.
| |
Collapse
|
24
|
Sharma A, Shandilya UK, Sodhi M, Jatav P, Mohanty A, Jain P, Verma P, Kataria RS, Kumari P, Mukesh M. Milk-derived mammary epithelial cells as non-invasive source to define stage-specific abundance of milk protein and fat synthesis transcripts in native Sahiwal cows and Murrah buffaloes. 3 Biotech 2019; 9:106. [PMID: 30863690 DOI: 10.1007/s13205-019-1642-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
The molecular physiology of milk production of two important dairy species; Sahiwal cows (Bos indicus) and Murrah buffaloes (Bubalus bubalis) are not fully understood due to constraints in obtaining mammary tissue samples because of sacred and ethical reasons. The present study suggests the use of milk-derived mammary epithelial cells (MECs) as a non-invasive method to understand molecular aspects of lactation biology in dairy animals. A total of 76 MECs were collected from five different lactation periods viz. colostrum (0-2), early (5-20), peak (30-50), mid (90-140) and late lactation (> 215 days) stages from Sahiwal cows and Murrah buffaloes to study the transcription kinetics of milk protein, fat synthesis, and their regulatory genes. Significant changes were observed in milk composition of both dairy species with lactation stages. High mRNA abundance of all milk protein and fat synthesis genes was observed in MECs of Murrah buffaloes as compared to Sahiwal cows. The mRNA abundance of caseins (CSN1S1, CSN1S2, CSN2, and CSN3) and whey protein (LALBA, LF) were higher in early lactation stage. Similarly, the expression of milk fat synthesis genes (SCD, BTN1A1, ACACA, GPAM, FAPB3, FASN) was also high in early lactation stage. The relative abundance of 4 regulatory genes (JAK2, STAT5, SREBF1 and EIF4BP41) remained high during early lactation indicating their regulatory roles in lactogenesis process. Overall, results suggested a significant effect of lactation stages on milk composition and transcription abundance of milk protein and fat synthesis genes. The present study establishes the fact that milk-derived MECs could be utilized as a valuable source to understand mammary gland functioning of native cows and buffaloes.
Collapse
|
25
|
Combined haplotype blocks regression and multi-locus mixed model analysis reveals novel candidate genes associated with milk traits in dairy sheep. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Genetic Analyses Confirm SNPs in HSPA8 and ERBB2 are Associated with Milk Protein Concentration in Chinese Holstein Cattle. Genes (Basel) 2019; 10:genes10020104. [PMID: 30704154 PMCID: PMC6409942 DOI: 10.3390/genes10020104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Abstract
Heat shock 70 kDa protein 8 (HSPA8) and erb-b2 receptor tyrosine kinase 2 (ERBB2) were the promising candidates for milk protein concentration in dairy cattle revealed through previous RNA sequencing (RNA-Seq) study. The objective of this post-RNA-Seq study was to confirm genetic effects of HSPA8 and ERBB2 on milk protein concentration in a large Chinese Holstein population and to evaluate the genetic effects of both genes on other milk production traits. There were 2 single-nucleotide polymorphisms (SNPs) identified for HSPA8 and 11 SNPs for ERBB2 by sequencing 17 unrelated Chinese Holstein sires. The SNP-rs136632043 in HSPA8 had significant associations with all five milk production traits (p = 0.0086 to p < 0.0001), whereas SNP-rs132976221 was remarkably associated with three yield traits (p < 0.0001). Nine (ss1996900615, rs109017161, rs109122971, ss1996900614, rs110133654, rs109941438, rs110552983, rs133031530, and rs109763505) of 11 SNPs in ERBB2 were significantly associated with milk protein percentage (p = 0.0177 to p < 0.0001). A 12 Kb haplotype block was formed in ERBB2 and haplotype associations revealed similar effects on milk protein traits. Our findings confirmed the significant genetic effects of HSPA8 and ERBB2 on milk protein concentration and other milk production traits and SNP phenotypic variances above 1% may serve as genetic markers in dairy cattle breeding programs.
Collapse
|
27
|
Shabrandi F, Dirandeh E, Ansari-Pirsaraei Z, Teimouri-Yansari A. Increasing metabolisable energy and protein supplementation to stimulate the subsequent milk production during late gestation by increasing proliferation and reducing apoptosis in goat mammary gland prepartum. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In total, 32 pregnant goats were assigned randomly to four diets fed from Day 100 of pregnancy to Day 30 after parturition, to determine the effects of metabolisable energy (ME) and metabolisable protein (MP) supplementation levels on feed intake, subsequent colostrum and milk production and expression of genes regulating mammary-cell proliferation and apoptosis. Diets were as follows: (1) diet with ME and MP provided according to NRC recommendations (control), (2) diet with extra 10% ME, (3) diet with extra 10% MP, and (4) diet 1 with 10% extra of both ME and MP. Mammary biopsies were obtained from each udder half 24 h after parturition. Feed intake (g/day), and colostrum (kg/day) and milk (kg/month) production increased when the extra ME and MP were provided together prepartum and in early lactation (P < 0.05). Relative mRNA expressions significantly increased in the mammary gland of insulin-like growth factor 1 (IGF-1, 4.3-fold), IGF-1 receptor (IGF-1R, 3.6-fold) and B-cell lymphoma 2 (Bcl-2, 4.6-fold), whereas insulin-like growth factor binding protein 3 (IGFBP-3, 3.2-fold), Bcl-2-associated X protein (Bax, 16.7-fold) and the ratio of Bax:Bcl-2 expressions significantly decreased (69.8-fold) with increased ME and MP levels fed in late gestation. In conclusion, colostrum production and milk yield in the early lactation period are sensitive to nutrient supply during gestation, where increased dietary ME as well as MP supplementation levels during late gestation will favour mammary development, by increasing expression of genes stimulating cellular proliferation (IGF-1, IGF-1R, Bcl-2) and reduced those stimulating apoptosis (IGFBP-3, Bax).
Collapse
|
28
|
Zheng X, Ning C, Zhao P, Feng W, Jin Y, Zhou L, Yu Y, Liu J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J Dairy Sci 2018; 101:11061-11073. [PMID: 30268606 DOI: 10.3168/jds.2018-14900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) play a critical role in mammary development and breast cancer biology. Despite their important role in the mammary gland, little is known of the roles of lncRNA in bovine lactation, particularly regarding the molecular processes underlying it. To characterize the role of lncRNA in bovine lactation, 4 samples of Holstein cow mammary gland tissue at peak and late lactation stages were examined after biopsy. We then profiled the transcriptome of the mammary gland using RNA sequencing technology. Further, functional lncRNA-mRNA coexpression pairs were constructed to infer the function of lncRNA using a generalized linear model, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. More than 1,000 putative lncRNA were identified, 117 of which were differentially expressed between peak and late lactation stages. Bovine lncRNA were shorter, with fewer exon numbers, and expressed at significantly lower levels than protein-coding genes. Seventy-two differentially expressed (DE) lncRNA were coexpressed with 340 different protein-coding genes. The KEGG pathway analysis showed that target mRNA for DE lncRNA were mainly related to lipid and glucose metabolism, including the peroxisome proliferator-activated receptors and 5' adenosine monophosphate-activated protein kinase signaling pathways. Further bioinformatics and integrative analyses revealed that 12 DE lncRNA potentially played important roles in bovine lactation. Our findings provide a valuable resource for future bovine transcriptome studies, facilitate the understanding of bovine lactation biology, and offer functional information for cattle lactation.
Collapse
Affiliation(s)
- X Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - C Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - P Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - W Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - L Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - J Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Jiangfeng F, Yuzhu L, Sijiu Y, Yan C, Gengquan X, Libin W, Yangyang P, Honghong H. Transcriptional profiling of two different physiological states of the yak mammary gland using RNA sequencing. PLoS One 2018; 13:e0201628. [PMID: 30059556 PMCID: PMC6066247 DOI: 10.1371/journal.pone.0201628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
Yak milk is superior to common cow milk in nutrients including protein, fat and calories. However, the milk yield of the yak is very much lower compared with other dairy bovines. To understand the molecular mechanisms of lactogenesis, lactation and mammary gland development, mammary tissue samples were taken from five yaks during a dry period (DP, n = 3) and lactation period (LP, n = 2). Two types of cDNA sequence libraries that reflected the different physiological states of the mammary gland were constructed using RNA sequencing technology. After removing reads containing adapters, reads containing poly-N and low-quality reads from the raw data, 45,423,478 to 53,274,976 clean reads were obtained from these libraries. A total of 74.72% to 80.65% of the high-quality sequence reads were uniquely aligned to the BosGru v2.0 yak reference genome. Using the DESeq R package, 360 differentially expressed genes were detected between the two groups when the adjusted P value (padj < 0.05) was used as the cutoff value; this included 192 upregulated and 168 downregulated genes in the yak mammary gland tissue of the DP compared to the LP. A gene ontology analysis revealed that the most enriched GO terms were protein binding, multi-organism process, immune system and others. KEGG pathway analysis indicated that the differentially expressed genes were mostly enriched in Hippo signaling, insulin signaling, steroid biosynthesis and others. The analysis of the up- and downregulated genes provides important insights into the molecular events involved in lactogenesis, lactation and mammary gland development and will guide further research to enhance milk yield and optimize the constituents of yak milk.
Collapse
Affiliation(s)
- Fan Jiangfeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
- * E-mail:
| | - Luo Yuzhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Yu Sijiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Cui Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Xu Gengquan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Wang Libin
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, P. R. China
| | - Pan Yangyang
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, P. R. China
| | - He Honghong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
30
|
Choudhary S, Li W, Bickhart D, Verma R, Sethi RS, Mukhopadhyay CS, Choudhary RK. Examination of the xanthosine response on gene expression of mammary epithelial cells using RNA-seq technology. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:18. [PMID: 30009039 PMCID: PMC6045846 DOI: 10.1186/s40781-018-0177-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/09/2018] [Indexed: 01/16/2023]
Abstract
Background Xanthosine treatment has been previously reported to increase mammary stem cell population and milk production in cattle and goats. However, the underlying molecular mechanisms associated with the increase in stem cell population and milk production remain unclear. Methods Primiparous Beetal goats were assigned to the study. Five days post-partum, one mammary gland of each goat was infused with xanthosine (TRT) twice daily (2×) for 3 days consecutively, and the other gland served as a control (CON). Milk samples from the TRT and CON glands were collected on the 10th day after the last xanthosine infusion and the total RNA was isolated from milk fat globules (MEGs). Total RNA in MFGs was mainly derived from the milk epithelial cells (MECs) as evidenced by expression of milk synthesis genes. Significant differentially expressed genes (DEGs) were subjected to Gene Ontology (GO) terms using PANTHER and gene networks were generated using STRING db. Results Preliminary analysis indicated that each individual goat responded to xanthosine treatment differently, with this trend being correlated with specific DEGs within the same animal’s mammary gland. Several pathways are impacted by these DEGs, including cell communication, cell proliferation and anti-microbials. Conclusions This study provides valuable insights into transcriptomic changes in milk producing epithelial cells in response to xanthosine treatment. Further characterization of DEGs identified in this study is likely to delineate the molecular mechanisms of increased milk production and stem or progenitor cell population by the xanthosine treatment. Electronic supplementary material The online version of this article (10.1186/s40781-018-0177-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanti Choudhary
- 1School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 101004 India
| | - Wenli Li
- 2Cell Wall Biology and Utilization Research, USDA-ARS, Madison, WI 53706 USA
| | - Derek Bickhart
- 2Cell Wall Biology and Utilization Research, USDA-ARS, Madison, WI 53706 USA
| | - Ramneek Verma
- 1School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 101004 India
| | - R S Sethi
- 1School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 101004 India
| | - C S Mukhopadhyay
- 1School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 101004 India
| | - Ratan K Choudhary
- 1School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 101004 India
| |
Collapse
|
31
|
Choudhary RK, Choudhary S, Verma R. In vivo response of xanthosine on mammary gene expression of lactating Beetal goat. Mol Biol Rep 2018; 45:581-590. [PMID: 29804277 DOI: 10.1007/s11033-018-4196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
|
32
|
Baldwin RL, Li RW, Jia Y, Li CJ. Transcriptomic Impacts of Rumen Epithelium Induced by Butyrate Infusion in Dairy Cattle in Dry Period. GENE REGULATION AND SYSTEMS BIOLOGY 2018; 12:1177625018774798. [PMID: 29785087 PMCID: PMC5954180 DOI: 10.1177/1177625018774798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to evaluate the effects of butyrate infusion on rumen epithelial transcriptome. Next-generation sequencing (NGS) and bioinformatics are used to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion at the level of the whole transcriptome. Butyrate, as an essential element of nutrients, is a histone deacetylase (HDAC) inhibitor that can alter histone acetylation and methylation, and plays a prominent role in regulating genomic activities influencing rumen nutrition utilization and function. Ruminal infusion of butyrate was following 0-hour sampling (baseline controls) and continued for 168 hours at a rate of 5.0 L/day of a 2.5 M solution as a continuous infusion. Following the 168-hour infusion, the infusion was stopped, and cows were maintained on the basal lactation ration for an additional 168 hours for sampling. Rumen epithelial samples were serially collected via biopsy through rumen fistulae at 0-, 24-, 72-, and 168-hour (D1, D3, D7) and 168-hour post-infusion (D14). In comparison with pre-infusion at 0 hours, a total of 3513 genes were identified to be impacted in the rumen epithelium by butyrate infusion at least once at different sampling time points at a stringent cutoff of false discovery rate (FDR) < 0.01. The maximal effect of butyrate was observed at day 7. Among these impacted genes, 117 genes were responsive consistently from day 1 to day 14, and another 42 genes were lasting through day 7. Temporal effects induced by butyrate infusion indicate that the transcriptomic alterations are very dynamic. Gene ontology (GO) enrichment analysis revealed that in the early stage of rumen butyrate infusion (on day 1 and day 3 of butyrate infusion), the transcriptomic effects in the rumen epithelium were involved with mitotic cell cycle process, cell cycle process, and regulation of cell cycle. Bioinformatic analysis of cellular functions, canonical pathways, and upstream regulator of impacted genes underlie the potential mechanisms of butyrate-induced gene expression regulation in rumen epithelium. The introduction of transcriptomic and bioinformatic technologies to study nutrigenomics in the farm animal presented a new prospect to study multiple levels of biological information to better apprehend the whole animal response to nutrition, physiological state, and their interactions. The nutrigenomics approach may eventually lead to more precise management of utilization of feed resources in a more effective approach.
Collapse
Affiliation(s)
- Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Robert W Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Yankai Jia
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| |
Collapse
|
33
|
SNP co-association and network analyses identify E2F3, KDM5A and BACH2 as key regulators of the bovine milk fatty acid profile. Sci Rep 2017; 7:17317. [PMID: 29230020 PMCID: PMC5725496 DOI: 10.1038/s41598-017-17434-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
The fatty acid (FA) profile has a considerable impact on the nutritional and technological quality of milk and dairy products. The molecular mechanism underlying the regulation of fat metabolism in bovine mammary gland have been not completely elucidated. We conducted genome-wide association studies (GWAS) across 65 milk FAs and fat percentage in 1,152 Brown Swiss cows. In total, we identified 175 significant single nucleotide polymorphism (SNPs) spanning all chromosomes. Pathway analyses revealed that 12:0 was associated with the greatest number of overrepresented categories/pathways (e.g. mitogen-activated protein kinase (MAPK) activity and protein phosphorylation), suggesting that it might play an important biological role in controlling milk fat composition. An Associated Weight Matrix approach based on SNP co-associations predicted a network of 791 genes related to the milk FA profile, which were involved in several connected molecular pathways (e.g., MAPK, lipid metabolism and hormone signalling) and undetectable through standard GWAS. Analysis of transcription factors and their putative target genes within the network identified BACH2, E2F3 and KDM5A as key regulators of milk FA metabolism. These findings contribute to increasing knowledge of FA metabolism and mammary gland functionality in dairy cows and may be useful in developing targeted breeding practices to improve milk quality.
Collapse
|
34
|
Zheng X, Ning C, Dong Y, Zhao P, Li J, Fan Z, Li J, Yu Y, Mrode R, Liu JF. Quantitative proteome analysis of bovine mammary gland reveals protein dynamic changes involved in peak and late lactation stages. Biochem Biophys Res Commun 2017; 494:292-297. [PMID: 29024632 DOI: 10.1016/j.bbrc.2017.10.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 01/06/2023]
Abstract
Mammary gland is an important organ for milk synthesis and secretion. It undergoes dramatic physiological changes to adapt the shift from peak to late lactation stage. Protein plays a final very vital role in many life functions, and the protein changes during different lactation stages potentially reflect the biology of lactation and the functions of mammary gland in cows. In current study, we adopted tandem mass tags label-based quantitative analysis technique and to investigate proteome changes occurring in bovine mammary gland from peak to late lactation stages. A total of 3753 proteins from mammary tissues taken at two lactation points from four individual cows by biopsy were quantified, out of which 179 proteins were expressed differentially between two stages. We observed five new DEPs (AACS, DHCR7, GSTM3, SFRP1 and SFRP4) and nine functional well-studies known proteins (PLIN2, LPIN1, PLIN3, GSN, CD74, MMP2, SOD1, SOD3 and GPX3) related to milk performance and mammary morphology. Bioinformatics analyses of the DEPs showed a majority of the up-regulated proteins during late lactation stage were related to apoptosis and immune process, while the downregulated proteins were mainly involved in localization, lipid metabolic and transport process. This suggests that the mammary gland can adapt to different molecular functions according to the biological need of the animal. From the integrated analysis of the differentially expressed proteins with known quantitative trait loci and genome-wide association study data, we identified 95 proteins may potentially affect milking performance. We expect findings in this study could be a valuable resource for future studies investigating the bovine proteome and functional studies.
Collapse
Affiliation(s)
- Xianrui Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yichun Dong
- Agricultural Commission of Haian County, Jiangsu Province, Haian 226600, China
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ziyao Fan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiang Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Raphael Mrode
- International Livestock Research Institute Nairobi, Kenya
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Osorio JS, Vailati-Riboni M, Palladino A, Luo J, Loor JJ. Application of nutrigenomics in small ruminants: Lactation, growth, and beyond. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Ángeles Hernández JC, Radic Schilling S, Vera Arias MA, Echeverría Pérez RA, Castelán-Ortega OA, Ramírez Pérez AH, González Ronquillo M. Effect of live weight pre- and post-lambing on milk production of East Friesian sheep. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1349536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Juan C. Ángeles Hernández
- Programa de Maestría y Doctorado en Ciencias de la Producción y de la Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico
- Departamento de Bioqu?mica y Nutricion Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico
| | - Sergio Radic Schilling
- Department of Agriculture and Aquaculture Sciences, University of Magallanes, Punta Arenas, Chile
| | - Marcela A. Vera Arias
- Department of Agriculture and Aquaculture Sciences, University of Magallanes, Punta Arenas, Chile
| | | | | | - Aurora H. Ramírez Pérez
- Departamento de Bioqu?mica y Nutricion Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico
| | - Manuel González Ronquillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
37
|
Miltiadou D, Hager-Theodorides AL, Symeou S, Constantinou C, Psifidi A, Banos G, Tzamaloukas O. Variants in the 3' untranslated region of the ovine acetyl-coenzyme A acyltransferase 2 gene are associated with dairy traits and exhibit differential allelic expression. J Dairy Sci 2017. [PMID: 28624287 DOI: 10.3168/jds.2016-12326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The acetyl-CoA acyltransferase 2 (ACAA2) gene encodes an enzyme of the thiolase family that is involved in mitochondrial fatty acid elongation and degradation by catalyzing the last step of the respective β-oxidation pathway. The increased energy needs for gluconeogenesis and triglyceride synthesis during lactation are met primarily by increased fatty acid oxidation. Therefore, the ACAA2 enzyme plays an important role in the supply of energy and carbon substrates for lactation and may thus affect milk production traits. This study investigated the association of the ACAA2 gene with important sheep traits and the putative functional involvement of this gene in dairy traits. A single nucleotide substitution, a T to C transition located in the 3' untranslated region of the ACAA2 gene, was used in mixed model association analysis with milk yield, milk protein yield and percentage, milk fat yield and percentage, and litter size at birth. The single nucleotide polymorphism was significantly associated with total lactation production and milk protein percentage, with respective additive effects of 6.81 ± 2.95 kg and -0.05 ± 0.02%. Additionally, a significant dominance effect of 0.46 ± 0.21 kg was detected for milk fat yield. Homozygous TT and heterozygous CT animals exhibited higher milk yield compared with homozygous CC animals, whereas the latter exhibited increased milk protein percentage. Expression analysis from age-, lactation-, and parity-matched female sheep showed that mRNA expression of the ACAA2 gene from TT animals was 2.8- and 11.8-fold higher in liver and mammary gland, respectively. In addition, by developing an allelic expression imbalance assay, it was estimated that the T allele was expressed at an average of 18% more compared with the C allele in the udder of randomly selected ewes. We demonstrated for the first time that the variants in the 3' untranslated region of the ovine ACAA2 gene are differentially expressed in homozygous ewes of each allele and exhibit allelic expression imbalance within heterozygotes in a tissue-specific manner, supporting the existence of cis-regulatory DNA variation in the ovine ACAA2 gene. This is the first study reporting differential allelic imbalance expression of a candidate gene associated with milk production traits in dairy sheep.
Collapse
Affiliation(s)
- D Miltiadou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, PO Box 50329, Cyprus.
| | - A L Hager-Theodorides
- Department of Animal Science and Aquaculture, Agricultural University of Athens, 11855 Athens, Greece
| | - S Symeou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, PO Box 50329, Cyprus
| | - C Constantinou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, PO Box 50329, Cyprus
| | - A Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG Midlothian, United Kingdom
| | - G Banos
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG Midlothian, United Kingdom; Animal and Veterinary Sciences, Scotland's Rural College, EH25 9RG, Midlothian, United Kingdom
| | - O Tzamaloukas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, PO Box 50329, Cyprus
| |
Collapse
|
38
|
Crisà A, Ferrè F, Chillemi G, Moioli B. RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk. BMC Vet Res 2016; 12:264. [PMID: 27884183 PMCID: PMC5123407 DOI: 10.1186/s12917-016-0881-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In this work we aimed at sequencing and assembling the goat milk transcriptome corresponding at colostrum and 120 days of lactation. To reconstruct transcripts we used both the genome as reference, and a de novo assembly approach. Additionally, we aimed at identifying the differentially expressed genes (DEGs) between the two lactation stages and at analyzing the expression of genes involved in oligosaccharides metabolism. RESULTS A total of 44,635 different transcripts, organized in 33,757 tentative genes, were obtained using the goat genome as reference. A significant sequence similarity match was found for 40,353 transcripts (90%) against the NCBI NT and for 35,701 (80%) against the NR databases. 68% and 69% of the de novo assembled transcripts, in colostrum and 120 days of lactation samples respectively, have a significant match with the merged transcriptome obtained using Cufflinks/Cuffmerge. CSN2, PAEP, CSN1S2, CSN3, LALBA, TPT1, FTH1, M-SAA3, SPP1, GLYCAM1, EEF1A1, CTSD, FASN, RPS29, CSN1S1, KRT19 and CHEK1 were found between the top fifteen highly expressed genes. 418 loci were differentially expressed between lactation stages, among which 207 and 122 were significantly up- and down-regulated in colostrum, respectively. Functional annotation and pathway enrichment analysis showed that in goat colostrum somatic cells predominate biological processes involved in glycolysis, carbohydrate metabolism, defense response, cytokine activity, regulation of cell proliferation and cell death, vasculature development, while in mature milk, biological process associated with positive regulation of lymphocyte activation and anatomical structure morphogenesis are enriched. The analysis of 144 different oligosaccharide metabolism-related genes showed that most of these (64%) were more expressed in colostrum than in mature milk, with eight expressed at very high levels (SLCA3, GMSD, NME2, SLC2A1, B4GALT1, B3GNT2, NANS, HEXB). CONCLUSIONS To our knowledge, this is the first study comparing goat transcriptome of two lactation stages: colostrum and 120 days. Our findings suggest putative differences of expression between stages and can be envisioned as a base for further research in the topic. Moreover because a higher expression of genes involved in immune defense response, carbohydrate metabolism and related to oligosaccharide metabolism was identified in colostrum we here corroborate the potential of goat milk as a natural source of lactose-derived oligosaccharides and for the development of functional foods.
Collapse
Affiliation(s)
- Alessandra Crisà
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) - Animal production research centre, Via Salaria 31, 00015, Monterotondo, Rome, Italy.
| | - Fabrizio Ferrè
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna Alma Mater, Via Belmeloro 6, 40126, Bologna, Italy
| | - Giovanni Chillemi
- Applications and Innovation Department, CINECA, SCAI SuperComputing, Via dei Tizii 6, 00185, Rome, Italy
| | - Bianca Moioli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) - Animal production research centre, Via Salaria 31, 00015, Monterotondo, Rome, Italy
| |
Collapse
|
39
|
Comprehensive RNA-Seq profiling to evaluate lactating sheep mammary gland transcriptome. Sci Data 2016; 3:160051. [PMID: 27377755 PMCID: PMC4932878 DOI: 10.1038/sdata.2016.51] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/06/2016] [Indexed: 11/16/2022] Open
Abstract
RNA-Seq enables the generation of extensive transcriptome information providing the capability to characterize transcripts (including alternative isoforms and polymorphism), to quantify expression and to identify differential regulation in a single experiment. Our aim in this study was to take advantage of using RNA-Seq high-throughput technology to provide a comprehensive transcriptome profiling of the sheep lactating mammary gland. Eight ewes of two dairy sheep breeds with differences in milk production traits were used in this experiment (four Churra and four Assaf ewes). Milk samples from these animals were collected on days 10, 50, 120 and 150 after lambing to cover the various physiological stages of the mammary gland across the complete lactation. RNA samples were extracted from milk somatic cells. The RNA-Seq dataset was generated using an Illumina HiSeq 2000 sequencer. The information reported here will be useful to understand the biology of lactation in sheep, providing also an opportunity to characterize their different patterns on milk production aptitude.
Collapse
|
40
|
Zhao D, Ma G, Zhang X, He Y, Li M, Han X, Fu L, Dong XY, Nagy T, Zhao Q, Fu L, Dong JT. Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity. J Biol Chem 2016; 291:12809-12820. [PMID: 27129249 DOI: 10.1074/jbc.m116.719377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
The zinc finger homeobox 3 (ZFHX3, also named ATBF1 for AT motif binding factor 1) is a transcription factor that suppresses prostatic carcinogenesis and induces neuronal differentiation. It also interacts with estrogen receptor α to inhibit cell proliferation and regulate pubertal mammary gland development in mice. In the present study, we examined whether and how Zfhx3 regulates lactogenic differentiation in mouse mammary glands. At different stages of mammary gland development, Zfhx3 protein was expressed at varying levels, with the highest level at lactation. In the HC11 mouse mammary epithelial cell line, an in vitro model of lactogenesis, knockdown of Zfhx3 attenuated prolactin-induced β-casein expression and morphological changes, indicators of lactogenic differentiation. In mouse mammary tissue, knock-out of Zfhx3 interrupted lactogenesis, resulting in underdeveloped glands with much smaller and fewer alveoli, reduced β-casein expression, accumulation of large cytoplasmic lipid droplets in luminal cells after parturition, and failure in lactation. Mechanistically, Zfhx3 maintained the expression of Prlr (prolactin receptor) and Prlr-Jak2-Stat5 signaling activity, whereas knockdown and knock-out of Zfhx3 in HC11 cells and mammary tissues, respectively, decreased Prlr expression, Stat5 phosphorylation, and the expression of Prlr-Jak2-Stat5 target genes. These findings indicate that Zfhx3 plays an essential role in proper lactogenic development in mammary glands, at least in part by maintaining Prlr expression and Prlr-Jak2-Stat5 signaling activity.
Collapse
Affiliation(s)
- Dan Zhao
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Gui Ma
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolin Zhang
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan He
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mei Li
- the Ningbo Institute of Medical Sciences, Ningbo 315020, China
| | - Xueying Han
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liya Fu
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue-Yuan Dong
- the Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322
| | - Tamas Nagy
- the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, and
| | - Qiang Zhao
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Fu
- the Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Jin-Tang Dong
- From the Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China,; the Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322,.
| |
Collapse
|