1
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
2
|
George L, Alex R, Gowane G, Vohra V, Joshi P, Kumar R, Verma A. Weighted single step GWAS reveals genomic regions associated with economic traits in Murrah buffaloes. Anim Biotechnol 2024; 35:2319622. [PMID: 38437001 DOI: 10.1080/10495398.2024.2319622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The objective of the present study was to identify genomic regions influencing economic traits in Murrah buffaloes using weighted single step Genome Wide Association Analysis (WssGWAS). Data on 2000 animals, out of which 120 were genotyped using a double digest Restriction site Associated DNA (ddRAD) sequencing approach. The phenotypic data were collected from NDRI, India, on growth traits, viz., body weight at 6M (month), 12M, 18M and 24M, production traits like 305D (day) milk yield, lactation length (LL) and dry period (DP) and reproduction traits like age at first calving (AFC), calving interval (CI) and first service period (FSP). The biallelic genotypic data consisted of 49353 markers post-quality check. The heritability estimates were moderate to high, low to moderate, low for growth, production, reproduction traits, respectively. Important genomic regions explaining more than 0.5% of the total additive genetic variance explained by 30 adjacent SNPs were selected for further analysis of candidate genes. In this study, 105 genomic regions were associated with growth, 35 genomic regions with production and 42 window regions with reproduction traits. Different candidate genes were identified in these genomic regions, of which important are OSBPL8, NAP1L1 for growth, CNTNAP2 for production and ILDR2, TADA1 and POGK for reproduction traits.
Collapse
Affiliation(s)
- Linda George
- National Dairy Research Institute, Karnal, India
| | - Rani Alex
- National Dairy Research Institute, Karnal, India
| | - Gopal Gowane
- National Dairy Research Institute, Karnal, India
| | - Vikas Vohra
- National Dairy Research Institute, Karnal, India
| | - Pooja Joshi
- National Dairy Research Institute, Karnal, India
| | - Ravi Kumar
- National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
3
|
Mou MA, Deb GK, Hridoy MFA, Alam MA, Barai HR, Haque MA, Bhuiyan MSA. Detection of Polymorphisms in FASN, DGAT1, and PPARGC1A Genes and Their Association with Milk Yield and Composition Traits in River Buffalo of Bangladesh. Animals (Basel) 2024; 14:1945. [PMID: 38998056 PMCID: PMC11240816 DOI: 10.3390/ani14131945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to identify SNPs in the intron, exon, and UTR regions of the FASN, DGAT1, and PPARGC1A genes and to investigate their possible association with milk yield and composition traits in the riverine buffalo of Bangladesh. A total of 150 DNA samples from riverine buffalo were used for PCR amplification with five pairs of primers, followed by association studies using a generalized linear model in R. SNP genotyping was performed by direct sequencing of the respective amplicon. Traits analyzed included DMY, fat%, protein%, and SNF%. This study identified 8 SNPs in FASN (g.7163G>A and g.7271C>T), DGAT1 (g.7809C>T and g.8525C>T) and PPARGC1A (g.387642C>T, g.387758A>G, g.409354A>G, and g.409452G>A). Genotypic and allelic frequencies differed significantly for each SNP genotype and did not follow the Hardy-Weinberg principle (p < 0.01 or p < 0.001) in most cases. The g.7163G>A and g.7271C>T SNP genotypes of the FASN gene were significantly associated with milk fat%, with the latter also significantly associated with SNF%. The g.8525C>T polymorphism of the DGAT1 gene significantly affected protein% (p < 0.01). Additionally, PPARGC1A gene polymorphisms showed significant associations: g.387642C>T with fat% (p < 0.05); g.387758A>G and g.409354A>G with protein% (p < 0.001) and SNF% (p < 0.01); and g.409452G>A with DMY (p < 0.001), fat% (p < 0.05), and protein% (p < 0.01). Reconstructed haplotypes of the PPARGC1A gene were significantly associated (p < 0.01) with all traits except SNF%. These findings suggest that polymorphisms in these three candidate genes have the potential as molecular markers for improving milk yield and composition traits in the riverine buffalo of Bangladesh.
Collapse
Affiliation(s)
- Monira Akter Mou
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Gautam Kumar Deb
- Buffalo Production Research Division, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh
| | - Md Forhad Ahmed Hridoy
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Ashadul Alam
- Buffalo Production Research Division, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | | |
Collapse
|
4
|
Wei K, Lu Y, Ma X, Duan A, Lu X, Abdel-Shafy H, Deng T. Transcriptome-Wide Association Study Reveals Potentially Candidate Genes Responsible for Milk Production Traits in Buffalo. Int J Mol Sci 2024; 25:2626. [PMID: 38473873 DOI: 10.3390/ijms25052626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Identifying key causal genes is critical for unraveling the genetic basis of complex economic traits, yet it remains a formidable challenge. The advent of large-scale sequencing data and computational algorithms, such as transcriptome-wide association studies (TWASs), offers a promising avenue for identifying potential causal genes. In this study, we harnessed the power of TWAS to identify genes potentially responsible for milk production traits, including daily milk yield (MY), fat percentage (FP), and protein percentage (PP), within a cohort of 100 buffaloes. Our approach began by generating the genotype and expression profiles for these 100 buffaloes through whole-genome resequencing and RNA sequencing, respectively. Through comprehensive genome-wide association studies (GWAS), we pinpointed a total of seven and four single nucleotide polymorphisms (SNPs) significantly associated with MY and FP traits, respectively. By using TWAS, we identified 55, 71, and 101 genes as significant signals for MY, FP, and PP traits, respectively. To delve deeper, we conducted protein-protein interaction (PPI) analysis, revealing the categorization of these genes into distinct PPI networks. Interestingly, several TWAS-identified genes within the PPI network played a vital role in milk performance. These findings open new avenues for identifying potentially causal genes underlying important traits, thereby offering invaluable insights for genomics and breeding in buffalo populations.
Collapse
Affiliation(s)
- Kelong Wei
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Ying Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Anqian Duan
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xingrong Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
5
|
Pineda PS, Flores EB, Villamor LP, Parac CJM, Khatkar MS, Thu HT, Smith TPL, Rosen BD, Ajmone-Marsan P, Colli L, Williams JL, Low WY. Disentangling river and swamp buffalo genetic diversity: initial insights from the 1000 Buffalo Genomes Project. Gigascience 2024; 13:giae053. [PMID: 39250077 PMCID: PMC11382405 DOI: 10.1093/gigascience/giae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024] Open
Abstract
More people in the world depend on water buffalo for their livelihoods than on any other domesticated animals, but its genetics is still not extensively explored. The 1000 Buffalo Genomes Project (1000BGP) provides genetic resources for global buffalo population study and tools to breed more sustainable and productive buffaloes. Here we report the most contiguous swamp buffalo genome assembly (PCC_UOA_SB_1v2) with substantial resolution of telomeric and centromeric repeats, ∼4-fold more contiguous than the existing reference river buffalo assembly and exceeding a recently published male swamp buffalo genome. This assembly was used along with the current reference to align 140 water buffalo short-read sequences and produce a public genetic resource with an average of ∼41 million single nucleotide polymorphisms per swamp and river buffalo genome. Comparison of the swamp and river buffalo sequences showed ∼1.5% genetic differences, and estimated divergence time occurred 3.1 million years ago (95% CI, 2.6-4.9). The open science model employed in the 1000BGP provides a key genomic resource and tools for a species with global economic relevance.
Collapse
Affiliation(s)
- Paulene S Pineda
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
- Philippine Carabao Center National Headquarters and Genepool, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Ester B Flores
- Philippine Carabao Center National Headquarters and Genepool, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Lilian P Villamor
- Philippine Carabao Center National Headquarters and Genepool, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Connie Joyce M Parac
- Philippine Carabao Center National Headquarters and Genepool, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Mehar S Khatkar
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Hien To Thu
- Norwegian University of Life Sciences: NMBU, Universitetstunet 3, 1430 Ås, Norway
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, USDA-ARS, Clay Center, NE 68933, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Licia Colli
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| |
Collapse
|
6
|
EL Nagar AG, Salem MMI, Amin AMS, Khalil MH, Ashour AF, Hegazy MM, Abdel-Shafy H. A Single-Step Genome-Wide Association Study for Semen Traits of Egyptian Buffalo Bulls. Animals (Basel) 2023; 13:3758. [PMID: 38136796 PMCID: PMC10740893 DOI: 10.3390/ani13243758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The present study aimed to contribute to the limited research on buffalo (Bubalus bubalis) semen traits by incorporating genomic data. A total of 8465 ejaculates were collected. The genotyping procedure was conducted using the Axiom® Buffalo Genotyping 90 K array designed by the Affymetrix Expert Design Program. After conducting a quality assessment, we utilized 67,282 SNPs genotyped in 192 animals. We identified several genomic loci explaining high genetic variance by employing single-step genomic evaluation. The aforementioned regions were located on buffalo chromosomes no. 3, 4, 6, 7, 14, 16, 20, 22, and the X-chromosome. The X-chromosome exhibited substantial influence, accounting for 4.18, 4.59, 5.16, 5.19, and 4.31% of the genomic variance for ejaculate volume, mass motility, livability, abnormality, and concentration, respectively. In the examined genomic regions, we identified five novel candidate genes linked to male fertility and spermatogenesis, four in the X-chromosome and one in chromosome no. 16. Additional extensive research with larger sample sizes and datasets is imperative to validate these findings and evaluate their applicability for genomic selection.
Collapse
Affiliation(s)
- Ayman G. EL Nagar
- Department of Animal Production, Faculty of Agriculture at Moshtohor, Benha University, Benha 13736, Egypt;
| | - Mohamed M. I. Salem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Amin M. S. Amin
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt; (A.M.S.A.); (A.F.A.); (M.M.H.)
| | - Maher H. Khalil
- Department of Animal Production, Faculty of Agriculture at Moshtohor, Benha University, Benha 13736, Egypt;
| | - Ayman F. Ashour
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt; (A.M.S.A.); (A.F.A.); (M.M.H.)
| | - Mohammed M. Hegazy
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt; (A.M.S.A.); (A.F.A.); (M.M.H.)
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, El-Gamma Street, Giza 12613, Egypt;
| |
Collapse
|
7
|
Kumar H, Panigrahi M, G Strillacci M, Sonejita Nayak S, Rajawat D, Ghildiyal K, Bhushan B, Dutt T. Detection of genome-wide copy number variation in Murrah buffaloes. Anim Biotechnol 2023; 34:3783-3795. [PMID: 37381739 DOI: 10.1080/10495398.2023.2227670] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Riverine Buffaloes, especially the Murrah breed because of their adaptability to harsh climatic conditions, is farmed in many countries to convert low-quality feed into valuable dairy products and meat. Here, we investigated the copy number variations (CNVs) in 296 Murrah buffalo using the Axiom® Buffalo Genotyping Array 90K (Affymetrix, Santa Clara, CA, USA). The CNVs were detected on the autosomes, using the Copy Number Analysis Module (CNAM) using the univariate analysis. 7937 CNVs were detected in 279 Buffaloes, the average length of the CNVs was 119,048.87 bp that ranged between 7800 and 4,561,030 bp. These CNVs were accounting for 10.33% of the buffalo genome, which was comparable to cattle, sheep, and goat CNV analyses. Further, CNVs were merged and 1541 CNVRs were detected using the Bedtools-mergeBed command. 485 genes were annotated within 196 CNVRs that were identified in at least 10 animals of Murrah population. Out of these, 40 CNVRs contained 59 different genes that were associated with 69 different traits. Overall, the study identified a significant number of CNVs and CNVRs in the Murrah breed of buffalo, with a wide range of lengths and frequencies across the autosomes. The identified CNVRs contained genes associated with important traits related to production and reproduction, making them potentially important targets for future breeding and genetic improvement efforts.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Maria G Strillacci
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | | | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
8
|
Gómez-Carpio M, Cesarani A, Zullo G, Cimmino R, Neglia G, Campanile G, Biffani S. Genetic parameters for reproductive traits in the Italian Mediterranean buffalo using milk yield as a correlated trait. J Dairy Sci 2023; 106:9016-9025. [PMID: 37641333 DOI: 10.3168/jds.2023-23257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/16/2023] [Indexed: 08/31/2023]
Abstract
Until now, the genetic evaluation of the Italian Mediterranean Buffalo has been mainly focused on production traits. However, female fertility affects the efficiency of the dairy industry as it is essential to maintain the profitability of dairy farms. Indeed, the estimation of its genetic component is crucial for its improvement. In this study, 3 measures of buffalo's fertility were analyzed: the age at first calving (AFC), the interval between first and second calving (CIV1), and the interval between second and successive calvings (CIV2_12). Milk yield at 270 d (MY270) was used as a correlated trait. First, genetic parameters were estimated using 7,915 buffalo cows with first calving from 1991 to 2018, then breeding values were calculated from 236,087 buffalo cows. Genetic parameters were estimated by Bayesian inference fitting a multiple-trait animal model using the GIBBS1F90 program, and BLUPF90 was used for estimation of breeding value. The heritability and repeatability estimates of fertility traits were low. The genetic correlations among fertility traits ranged from 0.10 (AFC-CIV1) to 0.92 (CIV1-CIV2_12). Genetic correlation between MY270 and fertility traits was unfavorable, ranging from 0.23 to 0.48. The results from this study can be used as a basis for the future genetic improvement of fertility traits in the Italian Mediterranean Buffaloes.
Collapse
Affiliation(s)
- M Gómez-Carpio
- Italian National Association of Buffalo Breeders, 81100 Caserta, Italy
| | - A Cesarani
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy; Animal and Dairy Science Department, University of Georgia, Athens, GA 30602
| | - G Zullo
- Italian National Association of Buffalo Breeders, 81100 Caserta, Italy
| | - R Cimmino
- Italian National Association of Buffalo Breeders, 81100 Caserta, Italy
| | - G Neglia
- Department of Veterinary Medicine and Animal Production, Federico II University, 80137 Naples, Italy.
| | - G Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, 80137 Naples, Italy
| | - S Biffani
- Consiglio Nazionale delle Ricerche (CNR), Istituto di biologia e biotecnologia agraria (IBBA), 20133 Milan, Italy
| |
Collapse
|
9
|
Ye T, Yuan J, Raza SHA, Deng T, Yang L, Ahmad MJ, Hosseini SM, Zhang X, Alamoudi MO, AlGabbani Q, Alghamdi YS, Chen C, Liang A, Schreurs NM, Yang L. Evolutionary analysis of buffalo sterol regulatory element-binding factor (SREBF) family genes and their affection on milk traits. Anim Biotechnol 2023; 34:2082-2093. [PMID: 35533681 DOI: 10.1080/10495398.2022.2070185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The sterol regulatory element-binding factor (SREBF) genes are a vital group of proteins binding to the sterol regulatory element 1 (SRE-1) regulating the synthesis of fatty acid. Two potential candidate genes (SREBF1 and SREBF2) have been identified as affecting milk traits. This study aims to identify the SREBF family of genes and find candidate markers or SREBF genes influencing lactation production in buffalo. A genome-wide study was performed and identified seven SREBF genes randomly distributed on 7 chromosomes and 24 protein isoforms in buffalos. The SREBF family of genes were also characterized in cattle, goat, sheep and horse, and using these all-protein sequences, a phylogenetic tree was built. The SREBF family genes were homologous between each other in the five livestock. Eight single nucleotide polymorphisms (SNPs) within or near the SREBF genes in the buffalo genome were identified and at least one milk production trait was associated with three of the SNP. The expression of SREBF genes at different lactation stages in buffalo and cattle from published data were compared and the SREBF genes retained a high expression throughout lactation with the trend being the same for buffalo and cattle. These results provide valuable information for clarifying the evolutionary relationship of the SREBF family genes and determining the role of SREBF genes in the regulation of milk production in buffalo.
Collapse
Affiliation(s)
- Tingzhu Ye
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jing Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Sayed Haidar Abbas Raza
- State Key Laboratory of Animal Genetics Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Seyed Mahdi Hosseini
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Muna O Alamoudi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Youssef S Alghamdi
- Department of Biology, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Chao Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Naji MM, Jiang Y, Utsunomiya YT, Rosen BD, Sölkner J, Wang C, Jiang L, Zhang Q, Zhang Y, Ding X, Mészáros G. Favored single nucleotide variants identified using whole genome Re-sequencing of Austrian and Chinese cattle breeds. Front Genet 2022; 13:974787. [PMID: 36238155 PMCID: PMC9552183 DOI: 10.3389/fgene.2022.974787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cattle have been essential for the development of human civilization since their first domestication few thousand years ago. Since then, they have spread across vast geographic areas following human activities. Throughout generations, the cattle genome has been shaped with detectable signals induced by various evolutionary processes, such as natural and human selection processes and demographic events. Identifying such signals, called selection signatures, is one of the primary goals of population genetics. Previous studies used various selection signature methods and normalized the outputs score using specific windows, in kbp or based on the number of SNPs, to identify the candidate regions. The recent method of iSAFE claimed for high accuracy in pinpointing the candidate SNPs. In this study, we analyzed whole-genome resequencing (WGS) data of ten individuals from Austrian Fleckvieh (Bos taurus) and fifty individuals from 14 Chinese indigenous breeds (Bos taurus, Bos taurus indicus, and admixed). Individual WGS reads were aligned to the cattle reference genome of ARS. UCD1.2 and subsequently undergone single nucleotide variants (SNVs) calling pipeline using GATK. Using these SNVs, we examined the population structure using principal component and admixture analysis. Then we refined selection signature candidates using the iSAFE program and compared it with the classical iHS approach. Additionally, we run Fst population differentiation from these two cattle groups. We found gradual changes of taurine in north China to admixed and indicine to the south. Based on the population structure and the number of individuals, we grouped samples to Fleckvieh, three Chinese taurines (Kazakh, Mongolian, Yanbian), admixed individuals (CHBI_Med), indicine individuals (CHBI_Low), and a combination of admixed and indicine (CHBI) for performing iSAFE and iHS tests. There were more significant SNVs identified using iSAFE than the iHS for the candidate of positive selection and more detectable signals in taurine than in indicine individuals. However, combining admixed and indicine individuals decreased the iSAFE signals. From both within-population tests, significant SNVs are linked to the olfactory receptors, production, reproduction, and temperament traits in taurine cattle, while heat and parasites tolerance in the admixed individuals. Fst test suggests similar patterns of population differentiation between Fleckvieh and three Chinese taurine breeds against CHBI. Nevertheless, there are genes shared only among the Chinese taurine, such as PAX5, affecting coat color, which might drive the differences between these yellowish coated breeds, and those in the greater Far East region.
Collapse
Affiliation(s)
- Maulana M. Naji
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yifan Jiang
- China Agricultural University, Beijing, China
| | - Yuri T. Utsunomiya
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, USDA‐ARS, Beltsville, MD, United States
| | - Johann Sölkner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Li Jiang
- China Agricultural University, Beijing, China
| | - Qin Zhang
- China Agricultural University, Beijing, China
| | - Yi Zhang
- China Agricultural University, Beijing, China
| | - Xiangdong Ding
- China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding, ; Gábor Mészáros,
| | - Gábor Mészáros
- University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Xiangdong Ding, ; Gábor Mészáros,
| |
Collapse
|
11
|
Hao X, Liang A, Plastow G, Zhang C, Wang Z, Liu J, Salzano A, Gasparrini B, Campanile G, Zhang S, Yang L. An Integrative Genomic Prediction Approach for Predicting Buffalo Milk Traits by Incorporating Related Cattle QTLs. Genes (Basel) 2022; 13:genes13081430. [PMID: 36011341 PMCID: PMC9408041 DOI: 10.3390/genes13081430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The 90K Axiom Buffalo SNP Array is expected to improve and speed up various genomic analyses for the buffalo (Bubalus bubalis). Genomic prediction is an effective approach in animal breeding to improve selection and reduce costs. As buffalo genome research is lagging behind that of the cow and production records are also limited, genomic prediction performance will be relatively poor. To improve the genomic prediction in buffalo, we introduced a new approach (pGBLUP) for genomic prediction of six buffalo milk traits by incorporating QTL information from the cattle milk traits in order to help improve the prediction performance for buffalo. Results: In simulations, the pGBLUP could outperform BayesR and the GBLUP if the prior biological information (i.e., the known causal loci) was appropriate; otherwise, it performed slightly worse than BayesR and equal to or better than the GBLUP. In real data, the heritability of the buffalo genomic region corresponding to the cattle milk trait QTLs was enriched (fold of enrichment > 1) in four buffalo milk traits (FY270, MY270, PY270, and PM) when the EBV was used as the response variable. The DEBV as the response variable yielded more reliable genomic predictions than the traditional EBV, as has been shown by previous research. The performance of the three approaches (GBLUP, BayesR, and pGBLUP) did not vary greatly in this study, probably due to the limited sample size, incomplete prior biological information, and less artificial selection in buffalo. Conclusions: To our knowledge, this study is the first to apply genomic prediction to buffalo by incorporating prior biological information. The genomic prediction of buffalo traits can be further improved with a larger sample size, higher-density SNP chips, and more precise prior biological information.
Collapse
Affiliation(s)
- Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (X.H.); (L.Y.)
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Graham Plastow
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8, Canada
| | - Chunyan Zhang
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8, Canada
| | - Zhiquan Wang
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8, Canada
| | - Jiajia Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.H.); (L.Y.)
| |
Collapse
|
12
|
Genomic analysis of arginine vasopressin gene in riverine buffalo reveals its potential association with silent estrus behavior. Mol Biol Rep 2022; 49:9315-9324. [PMID: 35902449 DOI: 10.1007/s11033-022-07776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Poor estrus expression behavior causes suboptimal reproductive efficiency through poor conception rate. Various signaling pathways are involved in estrus expression but arginine vasopressin (AVP) gene with oxytocin predominantly regulates estrus behavior. This study aimed to perform genomic characterization and evolutionary dynamics of AVP gene through association testing of the novel polymorphic loci and comparative genomic analysis to explore the potential effect of AVP gene on estrus behavior of Nili-Ravi buffaloes. METHODS AND RESULTS 198 Nili-Ravi buffaloes were screened for the quest of novel polymorphism in the AVP gene. In exon-1, five polymorphic sites were detected including deletion of two (c.47delA and c.57delA) nucleotides that caused drastic variation in subsequent amino acid sequence due to frame shift including functional short peptide of nine residues. The 3-D structure revealed a loss of transmembrane loop between 16 and 31 residues in Nili-Ravi buffalo AVP protein sequence, suggesting that missing loop apparently reduced the gene functionality in Nili-Ravi buffalo by inhibiting cellular reactions and muting the animal estrus cyclicity. Three polymorphisms detected in AVP gene were significantly associated with silent estrus (P < 0.05). The comparative genomic analysis revealed that AVP gene is present on chromosome 14 having one conserved motif (Neurohypophysial) in buffalo. CONCLUSIONS This study suggested the potential use of polymorphic sites as promising genetic markers for selection of buffaloes with pronounced estrus expression.
Collapse
|
13
|
Khan A, Singh K, Jaiswal S, Raza M, Jasrotia RS, Kumar A, Gurjar AKS, Kumari J, Nayan V, Iquebal MA, Angadi UB, Rai A, Datta TK, Kumar D. Whole-Genome-Based Web Genomic Resource for Water Buffalo (Bubalus bubalis). Front Genet 2022; 13:809741. [PMID: 35480326 PMCID: PMC9035531 DOI: 10.3389/fgene.2022.809741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water buffalo (Bubalus bubalis), belonging to the Bovidae family, is an economically important animal as it is the major source of milk, meat, and drought in numerous countries. It is mainly distributed in tropical and subtropical regions with a global population of approximately 202 million. The advent of low cost and rapid sequencing technologies has opened a new vista for global buffalo researchers. In this study, we utilized the genomic data of five commercially important buffalo breeds, distributed globally, namely, Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and Murrah. Since there is no whole-genome sequence analysis of these five distinct buffalo breeds, which represent a highly diverse ecosystem, we made an attempt for the same. We report the first comprehensive, holistic, and user-friendly web genomic resource of buffalo (BuffGR) accessible at http://backlin.cabgrid.res.in/buffgr/, that catalogues 6028881 SNPs and 613403 InDels extracted from a set of 31 buffalo tissues. We found a total of 7727122 SNPs and 634124 InDels distributed in four breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and Egyptian) with reference to the Mediterranean breed. It also houses 4504691 SSR markers from all the breeds along with 1458 unique circRNAs, 37712 lncRNAs, and 938 miRNAs. This comprehensive web resource can be widely used by buffalo researchers across the globe for use of markers in marker trait association, genetic diversity among the different breeds of buffalo, use of ncRNAs as regulatory molecules, post-transcriptional regulations, and role in various diseases/stresses. These SNPs and InDelscan also be used as biomarkers to address adulteration and traceability. This resource can also be useful in buffalo improvement programs and disease/breed management.
Collapse
Affiliation(s)
- Aamir Khan
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kalpana Singh
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Animesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anoop Kishor Singh Gurjar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Juli Kumari
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Varij Nayan
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- *Correspondence: Mir Asif Iquebal,
| | - U. B. Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
14
|
Magnier J, Druet T, Naves M, Ouvrard M, Raoul S, Janelle J, Moazami-Goudarzi K, Lesnoff M, Tillard E, Gautier M, Flori L. The genetic history of Mayotte and Madagascar cattle breeds mirrors the complex pattern of human exchanges in Western Indian Ocean. G3 GENES|GENOMES|GENETICS 2022; 12:6523972. [PMID: 35137043 PMCID: PMC8982424 DOI: 10.1093/g3journal/jkac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Despite their central economic and cultural role, the origin of cattle populations living in Indian Ocean islands still remains poorly documented. Here, we unravel the demographic and adaptive histories of the extant Zebus from the Mayotte and Madagascar islands using high-density SNP genotyping data. We found that these populations are very closely related and both display a predominant indicine ancestry. They diverged in the 16th century at the arrival of European people who transformed the trade network in the area. Their common ancestral cattle population originates from an admixture between an admixed African zebu population and an Indian zebu that occurred around the 12th century at the time of the earliest contacts between human African populations of the Swahili corridor and Austronesian people from Southeast Asia in Comoros and Madagascar. A steep increase in the estimated population sizes from the beginning of the 16th to the 17th century coincides with the expansion of the cattle trade. By carrying out genome scans for recent selection in the two cattle populations from Mayotte and Madagascar, we identified sets of candidate genes involved in biological functions (cancer, skin structure, and UV-protection, nervous system and behavior, organ development, metabolism, and immune response) broadly representative of the physiological adaptation to tropical conditions. Overall, the origin of the cattle populations from Western Indian Ocean islands mirrors the complex history of human migrations and trade in this area.
Collapse
Affiliation(s)
- Jessica Magnier
- SELMET, University of Montpellier, CIRAD, INRAE, L’Institut Agro, Montpellier 34398, France
- CIRAD, UMR SELMET, Montpellier 34398, France
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
| | | | | | | | - Jérôme Janelle
- SELMET, University of Montpellier, CIRAD, INRAE, L’Institut Agro, Montpellier 34398, France
- CIRAD, UMR SELMET, Saint-Pierre 97410, France
| | | | - Matthieu Lesnoff
- SELMET, University of Montpellier, CIRAD, INRAE, L’Institut Agro, Montpellier 34398, France
- CIRAD, UMR SELMET, Montpellier 34398, France
| | - Emmanuel Tillard
- SELMET, University of Montpellier, CIRAD, INRAE, L’Institut Agro, Montpellier 34398, France
- CIRAD, UMR SELMET, Saint-Pierre 97410, France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, L’Institut Agro, University of Montpellier, Montferrier sur Lez 34988, France
| | - Laurence Flori
- SELMET, INRAE, CIRAD, L’Institut Agro, University of Montpellier, Montpellier 34398, France
| |
Collapse
|
15
|
Cavedon M, vonHoldt B, Hebblewhite M, Hegel T, Heppenheimer E, Hervieux D, Mariani S, Schwantje H, Steenweg R, Theoret J, Watters M, Musiani M. Genomic legacy of migration in endangered caribou. PLoS Genet 2022; 18:e1009974. [PMID: 35143486 PMCID: PMC8830729 DOI: 10.1371/journal.pgen.1009974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.
Collapse
Affiliation(s)
- Maria Cavedon
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Bridgett vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Troy Hegel
- Yukon Department of Environment, Whitehorse, Yukon, Canada
| | - Elizabeth Heppenheimer
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dave Hervieux
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Grande Prairie, Alberta, Canada
| | - Stefano Mariani
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helen Schwantje
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, Nanaimo, British Columbia, Canada
| | - Robin Steenweg
- Pacific Region, Canadian Wildlife Service, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Jessica Theoret
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Megan Watters
- Land and Resource Specialist, Fort St. John, British Columbia, Canada
| | - Marco Musiani
- Department of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Abdel-Shafy H, Deng T, Zhou Y, Low WY, Hua G. Editorial: Buffalo Genetics and Genomics. Front Genet 2022; 12:820627. [PMID: 35154263 PMCID: PMC8832542 DOI: 10.3389/fgene.2021.820627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- *Correspondence: Hamdy Abdel-Shafy,
| | - Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Rezvannejad E, Asadollahpour Nanaei H, Esmailizadeh A. Detection of candidate genes affecting milk production traits in sheep using whole-genome sequencing analysis. Vet Med Sci 2022; 8:1197-1204. [PMID: 35014209 PMCID: PMC9122411 DOI: 10.1002/vms3.731] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Artificial and natural selection for important economic traits and genetic adaptation of the populations to specific environments have led to the changes on the sheep genome. Recent advances in genome sequencing methods have made it possible to use comparative genomics tools to identify genes under selection for traits of economic interest in domestic animals. OBJECTIVES In this study, we compared the genomes of Assaf and Awassi sheep breeds with those of the Cambridge, Romanov and British du cher sheep breeds to explore positive selection signatures for milk traits using nucleotide diversity (Pi) and FST statistical methods. METHODS Genome sequences from fourteen sheep with a mean sequence depth of 9.32X per sample were analysed, and a total of 23 million single nucleotide polymorphisms (SNPs) were called and applied for this study. Genomic clustering of breeds was identified using ADMIXTURE software. The FST and Pi values for each SNP were computed between population A (Assaf and Awassi) and population B (Cambridge, British du cher, and Romanov). RESULTS The results of the PCA grouped two classes for these five dairy sheep breeds. The selection signatures analysis displayed 735 and 515 genes from FST and nucleotide diversity (Pi) statistical methods, respectively. Among all these, 12 genes were shared between the two approaches. The most conspicuous genes were related to milk traits, including ST3GAL1 (the synthesis of oligosacáridos), CSN1S1 (milk protein), CSN2 (milk protein), OSBPL8 (fatty acid traits), SLC35A3 (milk fat and protein percentage), VPS13B (total milk production, fat yield, and protein yield), DPY19L1 (peak yield), CCDC152 (lactation persistency and somatic cell count), NT5DC1 (lactation persistency), P4HTM (test day protein), CYTH4 (FAT Production) and METRNL (somatic cell), U1 (milk traits), U6 (milk traits) and 5S_RRNA (milk traits). CONCLUSIONS The findings provide new insight into the genetic basis of sheep milk properties and can play a role in designing sheep breeding programs incorporating genomic information.
Collapse
Affiliation(s)
- Elham Rezvannejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Ali Esmailizadeh
- Faculty of Agriculture, Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
18
|
Pedrosa VB, Schenkel FS, Chen SY, Oliveira HR, Casey TM, Melka MG, Brito LF. Genomewide Association Analyses of Lactation Persistency and Milk Production Traits in Holstein Cattle Based on Imputed Whole-Genome Sequence Data. Genes (Basel) 2021; 12:1830. [PMID: 34828436 PMCID: PMC8624223 DOI: 10.3390/genes12111830] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Lactation persistency and milk production are among the most economically important traits in the dairy industry. In this study, we explored the association of over 6.1 million imputed whole-genome sequence variants with lactation persistency (LP), milk yield (MILK), fat yield (FAT), fat percentage (FAT%), protein yield (PROT), and protein percentage (PROT%) in North American Holstein cattle. We identified 49, 3991, 2607, 4459, 805, and 5519 SNPs significantly associated with LP, MILK, FAT, FAT%, PROT, and PROT%, respectively. Various known associations were confirmed while several novel candidate genes were also revealed, including ARHGAP35, NPAS1, TMEM160, ZC3H4, SAE1, ZMIZ1, PPIF, LDB2, ABI3, SERPINB6, and SERPINB9 for LP; NIM1K, ZNF131, GABRG1, GABRA2, DCHS1, and SPIDR for MILK; NR6A1, OLFML2A, EXT2, POLD1, GOT1, and ETV6 for FAT; DPP6, LRRC26, and the KCN gene family for FAT%; CDC14A, RTCA, HSTN, and ODAM for PROT; and HERC3, HERC5, LALBA, CCL28, and NEURL1 for PROT%. Most of these genes are involved in relevant gene ontology (GO) terms such as fatty acid homeostasis, transporter regulator activity, response to progesterone and estradiol, response to steroid hormones, and lactation. The significant genomic regions found contribute to a better understanding of the molecular mechanisms related to LP and milk production in North American Holstein cattle.
Collapse
Affiliation(s)
- Victor B. Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada;
| | - Shi-Yi Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada;
| | - Theresa M. Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
| | - Melkaye G. Melka
- Department of Animal and Food Science, University of Wisconsin River Falls, River Falls, WI 54022, USA;
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
| |
Collapse
|
19
|
Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2021; 105:468-494. [PMID: 34756438 DOI: 10.3168/jds.2020-19826] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies are a powerful tool to identify genomic regions and variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. The objectives of this study were to identify genomic regions as well as genes and pathways associated with the first-lactation milk, fat, protein, and total solid yields; fat, protein, and total solid percentage; and somatic cell score (SCS) in a Thai dairy cattle population. Effects of SNPs were estimated by a weighted single-step GWAS, which back-solved the genomic breeding values predicted using single-step genomic BLUP (ssGBLUP) fitting a single-trait random regression test-day model. Genomic regions that explained at least 0.5% of the total genetic variance were selected for further analyses of candidate genes. Despite the small number of genotyped animals, genomic predictions led to an improvement in the accuracy over the traditional BLUP. Genomic predictions using weighted ssGBLUP were slightly better than the ssGBLUP. The genomic regions associated with milk production traits contained 210 candidate genes on 19 chromosomes [Bos taurus autosome (BTA) 1 to 7, 9, 11 to 16, 20 to 21, 26 to 27 and 29], whereas 21 candidate genes on 3 chromosomes (BTA 11, 16, and 21) were associated with SCS. Many genomic regions explained a small fraction of the genetic variance, indicating polygenic inheritance of the studied traits. Several candidate genes coincided with previous reports for milk production traits in Holstein cattle, especially a large region of genes on BTA14. We identified 141 and 5 novel genes related to milk production and SCS, respectively. These novel genes were also found to be functionally related to heat tolerance (e.g., SLC45A2, IRAG1, and LOC101902172), longevity (e.g., SYT10 and LOC101903327), and fertility (e.g., PAG1). These findings may be attributed to indirect selection in our population. Identified biological networks including intracellular cell transportation and protein catabolism implicate milk production, whereas the immunological pathways such as lymphocyte activation are closely related to SCS. Further studies are required to validate our findings before exploiting them in genomic selection.
Collapse
Affiliation(s)
- S Buaban
- Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - K Lengnudum
- Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - W Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - P Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
Vohra V, Chhotaray S, Gowane G, Alex R, Mukherjee A, Verma A, Deb SM. Genome-Wide Association Studies in Indian Buffalo Revealed Genomic Regions for Lactation and Fertility. Front Genet 2021; 12:696109. [PMID: 34616425 PMCID: PMC8488374 DOI: 10.3389/fgene.2021.696109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Murrah breed of buffalo is an excellent dairy germplasm known for its superior milk quality in terms of milk fat and solids-not-fat (SNF); however, it is often reported that Indian buffaloes had lower lactation and fertility potential compared to the non-native cattle of the country. Recent techniques, particularly the genome-wide association studies (GWAS), to identify genomic variations associated with lactation and fertility traits offer prospects for systematic improvement of buffalo. DNA samples were sequenced using the double-digestion restriction-associated DNA (RAD) tag genotyping-by-sequencing. The bioinformatics pipeline was standardized to call the variants, and single-nucleotide polymorphisms (SNPs) qualifying the stringent quality check measures were retained for GWAS. Over 38,000 SNPs were used to perform GWAS on the first two principal components of test-day records of milk yields, fat percentages, and SNF percentages, separately. GWAS was also performed on 305 days’ milk yield; lactation persistency was estimated through the rate of decline after attaining the peak yield method, along with three other standard methods; and breeding efficiency, post-partum breeding interval, and age at sexual maturity were considered fertility traits. Significant association of SNPs was observed for the first principal component, explaining the maximum proportion of variation in milk yield. Furthermore, some potential genomic regions were identified to have a potential role in regulating milk yield and fertility in Murrah. Identification of such genomic regions shall help in carrying out an early selection of high-yielding persistent Murrah buffaloes and, in the long run, would be helpful in shaping their future genetic improvement programs.
Collapse
Affiliation(s)
- Vikas Vohra
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Supriya Chhotaray
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Gopal Gowane
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Rani Alex
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Anupama Mukherjee
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Archana Verma
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Sitangsu Mohan Deb
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| |
Collapse
|
21
|
Marina H, Pelayo R, Suárez-Vega A, Gutiérrez-Gil B, Esteban-Blanco C, Arranz JJ. Genome-wide association studies (GWAS) and post-GWAS analyses for technological traits in Assaf and Churra dairy breeds. J Dairy Sci 2021; 104:11850-11866. [PMID: 34454756 DOI: 10.3168/jds.2021-20510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
This study aimed to perform a GWAS to identify genomic regions associated with milk and cheese-making traits in Assaf and Churra dairy sheep breeds; second, it aimed to identify possible positional and functional candidate genes and their interactions through post-GWAS studies. For 2,020 dairy ewes from 2 breeds (1,039 Spanish Assaf and 981 Churra), milk samples were collected and analyzed to determine 6 milk production and composition traits and 6 traits related to milk coagulation properties and cheese yield. The genetic profiles of the ewes were obtained using a genotyping chip array that included 50,934 SNP markers. For both milk and cheese-making traits, separate single-breed GWAS were performed using GCTA software. The set of positional candidate genes identified via GWAS was subjected to guilt-by-association-based prioritization analysis with ToppGene software. Totals of 84 and 139 chromosome-wise significant associations for the 6 milk traits and the 6 cheese-making traits were identified in this study. No significant SNPs were found in common between the 2 studied breeds, possibly due to their genetic heterogeneity of the phenotypes under study. Additionally, 63 and 176 positional candidate genes were located in the genomic intervals defined as confidence regions in relation to the significant SNPs identified for the analyzed traits for Assaf and Churra breeds. After the functional prioritization analysis, 71 genes were identified as promising positional and functional candidate genes and proposed as targets of future research to identify putative causative variants in relation to the traits under examination. In addition, this multitrait study allowed us to identify variants that have a pleiotropic effect on both milk production and cheese-related traits. The incorporation of variants among the proposed functional and positional candidate genes into genomic selection strategies represent an interesting approach for achieving rapid genetic gains, specifically for those traits difficult to measure, such as cheese-making traits.
Collapse
Affiliation(s)
- H Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - R Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - A Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - B Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - C Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - J J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain.
| |
Collapse
|
22
|
Strillacci MG, Moradi-Shahrbabak H, Davoudi P, Ghoreishifar SM, Mokhber M, Masroure AJ, Bagnato A. A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes. BMC Genomics 2021; 22:305. [PMID: 33902439 PMCID: PMC8077898 DOI: 10.1186/s12864-021-07604-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In Iran, river buffalo is of great importance. It plays an important role in the economy of the Country, because its adaptation to harsh climate conditions and long productive lifespan permitting its farming across the Country and to convert low-quality feed into valuable milk. The genetic variability in Iranian buffalo breeds have been recently studied using SNPs genotyping data, but a whole genome Copy Number Variants (CNVs) mapping was not available. The aim of this study was to perform a genome wide CNV scan in 361 buffaloes of the three Iranian river breeds (Azeri, Khuzestani and Mazandarani) through the analysis of data obtained using the Axiom® Buffalo Genotyping Array 90 K. RESULTS CNVs detection resulted in a total of 9550 CNVs and 302 CNVRs identified in at least 5% of samples within breed, covering around 1.97% of the buffalo genome. and A total of 22 CNVRs were identified in all breeds and a different proportion of regions were in common among the three populations. Within the more represented CNVRs (n = 302) mapped a total of 409 buffalo genes, some of which resulted associated with morphological, healthy, milk, meat and reproductive traits, according to Animal Genome Cattle database. CONCLUSIONS This work provides a step forward in the interpretation of genomic variation within and among the buffalo populations, releasing a first map of CNVs and providing insights about their recent selection and adaptation to environment. The presence of the set of genes and QTL traits harbored in the CNVRs could be possibly linked with the buffalo's natural adaptive history together to a recent selection for milk used as primary food source from this species.
Collapse
Affiliation(s)
- Maria G. Strillacci
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167 Iran
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3 Canada
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167 Iran
| | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agriculture and Natural resources, Urmia University, 11Km Sero Road, P. O. Box: 165, Urmia, 57561-51818 Iran
| | - Anoar Jamai Masroure
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| |
Collapse
|
23
|
Shao B, Sun H, Ahmad MJ, Ghanem N, Abdel-Shafy H, Du C, Deng T, Mansoor S, Zhou Y, Yang Y, Zhang S, Yang L, Hua G. Genetic Features of Reproductive Traits in Bovine and Buffalo: Lessons From Bovine to Buffalo. Front Genet 2021; 12:617128. [PMID: 33833774 PMCID: PMC8021858 DOI: 10.3389/fgene.2021.617128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine and buffalo are important livestock species that have contributed to human lives for more than 1000 years. Improving fertility is very important to reduce the cost of production. In the current review, we classified reproductive traits into three categories: ovulation, breeding, and calving related traits. We systematically summarized the heritability estimates, molecular markers, and genomic selection (GS) for reproductive traits of bovine and buffalo. This review aimed to compile the heritability and genome-wide association studies (GWASs) related to reproductive traits in both bovine and buffalos and tried to highlight the possible disciplines which should benefit buffalo breeding. The estimates of heritability of reproductive traits ranged were from 0 to 0.57 and there were wide differences between the populations. For some specific traits, such as age of puberty (AOP) and calving difficulty (CD), the majority beef population presents relatively higher heritability than dairy cattle. Compared to bovine, genetic studies for buffalo reproductive traits are limited for age at first calving and calving interval traits. Several quantitative trait loci (QTLs), candidate genes, and SNPs associated with bovine reproductive traits were screened and identified by candidate gene methods and/or GWASs. The IGF1 and LEP pathways in addition to non-coding RNAs are highlighted due to their crucial relevance with reproductive traits. The distribution of QTLs related to various traits showed a great differences. Few GWAS have been performed so far on buffalo age at first calving, calving interval, and days open traits. In addition, we summarized the GS studies on bovine and buffalo reproductive traits and compared the accuracy between different reports. Taken together, GWAS and candidate gene approaches can help to understand the molecular genetic mechanisms of complex traits. Recently, GS has been used extensively and can be performed on multiple traits to improve the accuracy of prediction even for traits with low heritability, and can be combined with multi-omics for further analysis.
Collapse
Affiliation(s)
- Baoshun Shao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Chao Du
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingxian Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Yang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Yifen Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
24
|
Genetic Association of PPARGC1A Gene Single Nucleotide Polymorphism with Milk Production Traits in Italian Mediterranean Buffalo. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3653157. [PMID: 33829059 PMCID: PMC8004361 DOI: 10.1155/2021/3653157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
PPARGC1A gene plays an important role in the activation of various important hormone receptors and transcriptional factors involved in the regulation of adaptive thermogenesis, gluconeogenesis, fiber-type switching in skeletal muscle, mitochondrial biogenesis, and adipogenesis, regulating the reproduction and proposed as a candidate gene for milk-related traits in cattle. This study identified polymorphisms in the PPARGC1A gene in Italian Mediterranean buffaloes and their associations to milk production and quality traits (lactation length, peak milk yield, fat and protein yield, and percentage). As a result, a total of seven SNPs (g.-78A>G, g.224651G>C, g.286986G>A, g.304050G>A, g.325647G>A, g.325817T>C, and g.325997G>A) were identified by DNA pooled sequencing. Analysis of productivity traits within the genotyped animals revealed that the g.286986G>A located at intron 4 was associated with milk production traits, but the g.325817T>C had no association with milk production. Polymorphisms in g.-78A>G was associated with peak milk yield and milk yield, while g.304050G>A and g.325997 G>A were associated with both milk yield and protein percentage. Our findings suggest that polymorphisms in the buffalo PPARGC1A gene are associated with milk production traits and can be used as a candidate gene for milk traits and marker-assisted selection in the buffalo breeding program.
Collapse
|
25
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Nascimento AV, Santos DJA, Stefani G, Brito LF. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. J Dairy Sci 2021; 104:5768-5793. [PMID: 33685677 DOI: 10.3168/jds.2020-19534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/02/2021] [Indexed: 01/14/2023]
Abstract
Genomic selection has been widely implemented in many livestock breeding programs, but it remains incipient in buffalo. Therefore, this study aimed to (1) estimate variance components incorporating genomic information in Murrah buffalo; (2) evaluate the performance of genomic prediction for milk-related traits using single- and multitrait random regression models (RRM) and the single-step genomic best linear unbiased prediction approach; and (3) estimate longitudinal SNP effects and candidate genes potentially associated with time-dependent variation in milk, fat, and protein yields, as well as somatic cell score (SCS) in multiple parities. The data used to estimate the genetic parameters consisted of a total of 323,140 test-day records. The average daily heritability estimates were moderate (0.35 ± 0.02 for milk yield, 0.22 ± 0.03 for fat yield, 0.42 ± 0.03 for protein yield, and 0.16 ± 0.03 for SCS). The highest heritability estimates, considering all traits studied, were observed between 20 and 280 d in milk (DIM). The genetic correlation estimates at different DIM among the evaluated traits ranged from -0.10 (156 to 185 DIM for SCS) to 0.61 (36 to 65 DIM for fat yield). In general, direct selection for any of the traits evaluated is expected to result in indirect genetic gains for milk yield, fat yield, and protein yield but also increase SCS at certain lactation stages, which is undesirable. The predicted RRM coefficients were used to derive the genomic estimated breeding values (GEBV) for each time point (from 5 to 305 DIM). In general, the tuning parameters evaluated when constructing the hybrid genomic relationship matrices had a small effect on the GEBV accuracy and a greater effect on the bias estimates. The SNP solutions were back-solved from the GEBV predicted from the Legendre random regression coefficients, which were then used to estimate the longitudinal SNP effects (from 5 to 305 DIM). The daily SNP effect for 3 different lactation stages were performed considering 3 different lactation stages for each trait and parity: from 5 to 70, from 71 to 150, and from 151 to 305 DIM. Important genomic regions related to the analyzed traits and parities that explain more than 0.50% of the total additive genetic variance were selected for further analyses of candidate genes. In general, similar potential candidate genes were found between traits, but our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the traits across parities. These results contribute to a better understanding of the genetic architecture of milk production traits in dairy buffalo and reinforce the relevance of incorporating genomic information to genetically evaluate longitudinal traits in dairy buffalo. Furthermore, the candidate genes identified can be used as target genes in future functional genomics studies.
Collapse
Affiliation(s)
- Sirlene F Lázaro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Humberto Tonhati
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Alessandra A Silva
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - André V Nascimento
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Daniel J A Santos
- Department of Animal and Avian Science, University of Maryland, College Park 20742
| | - Gabriela Stefani
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
26
|
Macciotta NPP, Colli L, Cesarani A, Ajmone-Marsan P, Low WY, Tearle R, Williams JL. The distribution of runs of homozygosity in the genome of river and swamp buffaloes reveals a history of adaptation, migration and crossbred events. Genet Sel Evol 2021; 53:20. [PMID: 33639853 PMCID: PMC7912491 DOI: 10.1186/s12711-021-00616-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Water buffalo is one of the most important livestock species in the world. Two types of water buffalo exist: river buffalo (Bubalus bubalis bubalis) and swamp buffalo (Bubalus bubalis carabanensis). The buffalo genome has been recently sequenced, and thus a new 90 K single nucleotide polymorphism (SNP) bead chip has been developed. In this study, we investigated the genomic population structure and the level of inbreeding of 185 river and 153 swamp buffaloes using runs of homozygosity (ROH). Analyses were carried out jointly and separately for the two buffalo types. Results The SNP bead chip detected in swamp about one-third of the SNPs identified in the river type. In total, 18,116 ROH were detected in the combined data set (17,784 SNPs), and 16,251 of these were unique. ROH were present in both buffalo types mostly detected (~ 59%) in swamp buffalo. The number of ROH per animal was larger and genomic inbreeding was higher in swamp than river buffalo. In the separated datasets (46,891 and 17,690 SNPs for river and swamp type, respectively), 19,760 and 10,581 ROH were found in river and swamp, respectively. The genes that map to the ROH islands are associated with the adaptation to the environment, fitness traits and reproduction. Conclusions Analysis of ROH features in the genome of the two water buffalo types allowed their genomic characterization and highlighted differences between buffalo types and between breeds. A large ROH island on chromosome 2 was shared between river and swamp buffaloes and contained genes that are involved in environmental adaptation and reproduction. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00616-3.
Collapse
Affiliation(s)
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,Centro di Ricerca sulla Biodiversità e sul DNA Antico-BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italia
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italia. .,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,Centro di Ricerca Nutrigenomica e Proteomica-PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italia
| | - Wai Y Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Rick Tearle
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| |
Collapse
|
27
|
Hidalgo J, Cesarani A, Garcia A, Sumreddee P, Larios N, Mancin E, García JG, Núñez R, Ramírez R. Genetic Background and Inbreeding Depression in Romosinuano Cattle Breed in Mexico. Animals (Basel) 2021; 11:ani11020321. [PMID: 33525405 PMCID: PMC7911603 DOI: 10.3390/ani11020321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The objective of this study was to evaluate the genetic background and inbreeding depression in the Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH). Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals; 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. A 1% increase in inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to sustainable breeding programs for the Mexican Romosinuano cattle breed. Abstract The ultimate goal of genetic selection is to improve genetic progress by increasing favorable alleles in the population. However, with selection, homozygosity, and potentially harmful recessive alleles can accumulate, deteriorating genetic variability and hampering continued genetic progress. Such potential adverse side effects of selection are of particular interest in populations with a small effective population size like the Romosinuano beef cattle in Mexico. The objective of this study was to evaluate the genetic background and inbreeding depression in Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH) of different length classes. Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals born between 1950 and 2019, of which 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The reduction in effective population size implies the existence of genetic bottlenecks and the decline of genetic diversity due to the intensive use of few individuals as parents of the next generations. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The shortest and longest segments were 1.0 and 36.0 Mb long, respectively, reflecting ancient and recent inbreeding. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. The correlation between FPED and FGRM was −0.25, and the correlations among FPED and FROH of different length classes were low (from 0.16 to 0.31). The correlations between FGRM and FROH of different length classes were moderate (from 0.44 to 0.58), indicating better agreement. A 1% increase in population inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to more sustainable breeding programs for the Mexican Romosinuano beef cattle breed.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Alberto Cesarani
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Andre Garcia
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Pattarapol Sumreddee
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani 12000, Thailand;
| | - Neon Larios
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment-DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - José Guadalupe García
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
- Correspondence:
| | - Rafael Núñez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| | - Rodolfo Ramírez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| |
Collapse
|
28
|
Roldan-Montes V, Cardoso DF, Hurtado-Lugo NA, do Nascimento AV, Santos DJDA, Scalez DCB, de Freitas AC, Herrera AC, Albuquerque LG, de Camargo GMF, Tonhati H. Polymorphisms in TLR4 Gene Associated With Somatic Cell Score in Water Buffaloes ( Bubalus bubalis). Front Vet Sci 2020; 7:568249. [PMID: 33251259 PMCID: PMC7676892 DOI: 10.3389/fvets.2020.568249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Considering the importance of the diseases affecting the productive performance of animals in the dairy industry worldwide, it is necessary to implement tools that help to control and limit the occurrence of such diseases. As the increased somatic cell counts (SCC) are a direct expression of the inflammatory process, they are candidates to become the usual parameter for assessing udder health regarding milk quality and for monitoring mastitis incidences. Toll-Like Receptors are membrane proteins that play a key role in immunity, recognizing pathogens and, subsequently, activating immune responses. The present study was conducted to identify single nucleotide polymorphisms in the TLR4 gene of buffaloes and to analyze its associations with somatic cell counts. DNA samples of 120 Murrah buffaloes were used. The whole coding region of the TLR4 gene was amplified by polymerase chain reaction reactions and sequenced for polymorphism scanning. A total of 13 polymorphisms were identified for the sequenced regions of the TLR4, most of which are in the coding region. The association with the somatic cell score was highly significant (p < 0.001) for all identified polymorphisms of TLR4 gene (g.54621T>A, g.54429G>T, g.54407T>A, g.46616C>A, g.46613T>G, g.46612A>G, g.46611C>A, g.46609T>G, g.46541C>G, g.46526C>A, g.46516T>C, g.46376C>T, g.46372T>C). Therefore, it is suggested that the markers of the TLR4 gene can be used as molecular markers for mastitis resistance in buffaloes, due to their association with somatic cell counts.
Collapse
Affiliation(s)
- Valentina Roldan-Montes
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Diercles Francisco Cardoso
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | | | - André Vieira do Nascimento
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Daniel Jordan de Abreu Santos
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Daiane Cristina Becker Scalez
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Ana Cláudia de Freitas
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Ana Cristina Herrera
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Lucia Galvão Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Humberto Tonhati
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
29
|
Nascimento AV, Cardoso DF, Santos DJA, Romero ARS, Scalez DCB, Borquis RRA, Neto FRA, Gondro C, Tonhati H. Inbreeding coefficients and runs of homozygosity islands in Brazilian water buffalo. J Dairy Sci 2020; 104:1917-1927. [PMID: 33272579 DOI: 10.3168/jds.2020-18397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Characterization of autozygosity is relevant to monitor genetic diversity and manage inbreeding levels in breeding programs. Identification of autozygosity hotspots can unravel genomic regions targeted by selection for economically important traits and can help identify candidate genes for selection. In this study, we estimated the inbreeding levels of a Brazilian population of Murrah buffalo undergoing selection for milk production traits, particularly milk yield. We also studied the distribution of runs of homozygosity (ROH) islands and identified putative genes and quantitative trait loci (QTL) under selection. We genotyped 422 Murrah buffalo for 51,611 SNP; 350 of these had ROH longer than 10 Mb, indicating the occurrence of inbreeding in the last 5 generations. The mean length of the ROH per animal was 4.28 ± 1.85 Mb. Inbreeding coefficients were calculated from the genomic relationship matrix, the pedigree, and the ROH, with estimates varying between 0.242 and 0.035. Inbreeding estimates from the pedigree had a low correlation with the genomic estimates, and estimates from the genomic relationship matrix were much higher than those from the pedigree or the ROH. Signatures of selection were identified in 6 genomic regions, located on chromosomes 1, 2, 3, 5, 16, and 18, encompassing a total of 190 genes and 174 QTL. Many of the genes (e.g., APRT and ACSF3) and QTL identified are related to milk production traits, such as milk yield, milk fat yield and percentage, and milk protein yield and percentage. Other genes are associated with reproduction and immune response traits as well as morphological aspects of the buffalo species. Inbreeding levels in this population are still low but are increasing due to selection and should be managed to avoid future losses due to inbreeding depression. The proximity of genes linked to milk production traits with genes associated with reproduction and immune system traits suggests the need to include these latter genes in the breeding program to avoid negatively affecting them due to selection for production traits.
Collapse
Affiliation(s)
- A V Nascimento
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D F Cardoso
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D J A Santos
- Department of Animal Science, University of Maryland, College Park 20742
| | - A R S Romero
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D C B Scalez
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - R R A Borquis
- College of Agricultural Sciences, Federal University of Grande Dourados (UFGD), Dourados, 79804970, Brazil
| | - F R A Neto
- Goiano Federal Institute, Campus Rio Verde, Rio Verde, 75909120, Brazil
| | - C Gondro
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - H Tonhati
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil.
| |
Collapse
|
30
|
Islam S, Reddy UK, Natarajan P, Abburi VL, Bajwa AA, Imran M, Zahoor MY, Abdullah M, Bukhari AM, Iqbal S, Ashraf K, Nadeem A, Rehman H, Rashid I, Shehzad W. Population demographic history and population structure for Pakistani Nili-Ravi breeding bulls based on SNP genotyping to identify genomic regions associated with male effects for milk yield and body weight. PLoS One 2020; 15:e0242500. [PMID: 33232358 PMCID: PMC7685427 DOI: 10.1371/journal.pone.0242500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
The domestic Nili-Ravi water buffalo (Bubalus bubalis) is the best dairy animal contributing 68% to total milk production in Pakistan. In this study, we identified genome-wide single nucleotide polymorphisms (SNPs) to estimate various population genetic parameters such as diversity, pairwise population differentiation, linkage disequilibrium (LD) distribution and for genome-wide association study for milk yield and body weight traits in the Nili-Ravi dairy bulls that they may pass on to their daughters who are retained for milking purposes. The genotyping by sequencing approach revealed 13,039 reference genome-anchored SNPs with minor allele frequency of 0.05 among 167 buffalos. Population structure analysis revealed that the bulls were grouped into two clusters (K = 2), which indicates the presence of two different lineages in the Pakistani Nili-Ravi water buffalo population, and we showed the extent of admixture of these two lineages in our bull collection. LD analysis revealed 4169 significant SNP associations, with an average LD decay of 90 kb for these buffalo genome. Genome-wide association study involved a multi-locus mixed linear model for milk yield and body weight to identify genome-wide male effects. Our study further illustrates the utility of the genotyping by sequencing approach for identifying genomic regions to uncover additional demographic complexity and to improve the complex dairy traits of the Pakistani Nili-Ravi water buffalo population that would provide the lot of economic benefits to dairy industry.
Collapse
Affiliation(s)
- Saher Islam
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Lakshmi Abburi
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Amna Arshad Bajwa
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abdullah
- Department of Livestock Production, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Aamir Mehmood Bukhari
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Sajid Iqbal
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asif Nadeem
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habibur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
31
|
Abstract
The objectives of the current study were to detect putative genomic loci and to identify candidate genes associated with milk production traits in Egyptian buffalo. A total number of 161 479 daily milk yield (DMY) records and 60 318 monthly measures for fat and protein percentages (FP and PP, respectively), along with fat and protein yields (FY and PY, respectively) from 1670 animals were used. Genotyping was performed using Axiom® Buffalo Genotyping 90 K array. Genome-wide association study (GWAS) for each trait was performed using PLINK. After Bonferroni correction, 47 SNPs were associated with one or more milk production traits. These SNPs were distributed over 36 quantitative trait loci (QTL) and located on 20 buffalo chromosomes (BBU). For the 47 SNPs, one was overlapped for three traits (DMY, FY, and PY), six were associated with two traits (one for PP and PY and five for FY and PY) while the rest were associated with only one trait. Out of 36 identified QTL, eleven were overlapped with previously reported loci in buffalo and/or cattle populations. Some of these SNPs are placed within or close to potential candidate genes, for example: TPD52, ZBTB10, RALYL and SNX16 on BBU15, ADGRD1 on BBU17, ESRRG on BBU5 and GRIP1 on BBU4. This is the first reported study between genome-wide markers and milk components in Egyptian buffalo. Our findings provide useful information to explore the genetic mechanisms and relevant genes contributing to the variation in milk production traits. Further confirmation studies with larger population size are necessary to validate the findings and detect the causal genetic variants.
Collapse
|
32
|
Moscarelli A, Sardina MT, Cassandro M, Ciani E, Pilla F, Senczuk G, Portolano B, Mastrangelo S. Genome-wide assessment of diversity and differentiation between original and modern Brown cattle populations. Anim Genet 2020; 52:21-31. [PMID: 33174276 DOI: 10.1111/age.13019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Identifying genomic regions involved in the differences between breeds can provide information on genes that are under the influence of both artificial and natural selection. The aim of this study was to assess the genetic diversity and differentiation among four different Brown cattle populations (two original vs. two modern populations) and to characterize the distribution of runs of homozygosity (ROH) islands using the Illumina Bovine SNP50 BeadChip genotyping data. After quality control, 34 735 SNPs and 106 animals were retained for the analyses. Larger heterogeneity was highlighted for the original populations. Patterns of genetic differentiation, multidimensional scaling, and the neighboring joining tree distinguished the modern from the original populations. The FST -outlier identified several genes putatively involved in the genetic differentiation between the two groups, such as stature and growth, behavior, and adaptability to local environments. The ROH islands within both the original and the modern populations overlapped with QTL associated with relevant traits. In modern Brown (Brown Swiss and Italian Brown), ROH islands harbored candidate genes associated with milk production traits, in evident agreement with the artificial selection conducted to improve this trait in these populations. In original Brown (Original Braunvieh and Braunvieh), we identified candidate genes related with fat deposition, confirming that breeding strategies for the original Brown populations aimed to produce dual-purpose animals. Our study highlighted the presence of several genomic regions that vary between Brown populations, in line with their different breeding histories.
Collapse
Affiliation(s)
- A Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M T Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M Cassandro
- Dipartimento di Agronomia Animali Alimenti Risorse naturali e Ambiente, University of Padova, Legnaro, 35020, Italy
| | - E Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari, Bari, 70124, Italy
| | - F Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - G Senczuk
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - B Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - S Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| |
Collapse
|
33
|
Huang J, Feng X, Zhu R, Guo D, Wei Y, Cao X, Ma Y, Shi D. Comparative transcriptome analysis reveals that PCK1 is a potential gene affecting IMF deposition in buffalo. BMC Genomics 2020; 21:710. [PMID: 33045988 PMCID: PMC7552535 DOI: 10.1186/s12864-020-07120-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In China, although buffaloes are abundant, beef is mainly obtained from cattle, and this preference is mainly attributed to the low intramuscular fat (IMF) content of buffalo. Genetic factors are an important driver that affects IMF deposition. RESULTS To reveal the intrinsic factors responsible for the low IMF content of buffalo, mRNA expression patterns in muscle and adipose tissue between buffalo and cattle were characterized by RNA sequencing analysis. The IMF content in Nanyang cattle was higher than that in Xinyang buffalo. A total of 1566 mRNAs expressed in adipose tissue showed differential expression between the longissimus dorsi muscles of buffalo and cattle. Functional annotation suggested a difference in the glycolysis/gluconeogenesis pathway between the two species. The results of RT-qPCR analysis and gain-of-function experiments confirmed the positive association between the IMF content and phosphoenolpyruvate carboxykinase 1 (PCK1) expression in buffalo. In both mouse C2C12 cells and cultured bovine myocytes, the activity of the PCK1 promoter in buffalo is lower than that in cattle. However, in mouse 3T3-L1 adipocytes and cultured bovine adipocytes, the activity of PCK1 in buffalo promoter is higher than that in cattle. CONCLUSIONS These results indicate the important role of PCK1 in buffalo IMF deposition and illustrate the differences between buffalo and cattle promoter activity that drive PCK1 expression. This research helps to establish a foundation for further studies investigating IMF deposition in buffalo.
Collapse
Affiliation(s)
- Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China. .,College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China.
| | - Xue Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| | - Duo Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| | - Yutong Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Xiaodan Cao
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China.,School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| |
Collapse
|
34
|
de Araujo Neto FR, Takada L, Dos Santos DJA, Aspilcueta-Borquis RR, Cardoso DF, do Nascimento AV, Leão KM, de Oliveira HN, Tonhati H. Identification of genomic regions related to age at first calving and first calving interval in water buffalo using single-step GBLUP. Reprod Domest Anim 2020; 55:1565-1572. [PMID: 32853485 DOI: 10.1111/rda.13811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
In Brazil, water buffaloes have been used to produce milk for mozzarella cheese production. Consequently, the main selection criterion applied for the buffalo genetic improvement is the estimated mozzarella yield as a function of milk, fat and protein production. However, given the importance of reproductive traits in production systems, this study aimed to use techniques for identifying genomic regions that affect the age at first calving (AFC) and first calving interval (FCI) in buffalo cows and to select candidate genes for the identification of QTL and gene expression studies. The single-step GBLUP method was used for the identification of genomic regions. Windows of 1 Mb containing single-nucleotide polymorphisms were constructed and the 10 windows that explained the greatest proportion of genetic variance were considered candidate regions for each trait. Genes present into the selected windows were identified using the UOA_WB_1 assembly as the reference, and their ontology was defined with the Panther tool. Candidate regions for both traits were identified on BBU 3, 12, 21 and 22; for AFC, candidates were detected on BBU 6, 7, 8, 9 and 15 and for first calving interval on BBU 4, 14 and 19. This study identified regions with great contribution to the additive genetic variance of age at first calving and first calving interval in the population of buffalo cows studied. The ROCK2, PMVK, ADCY2, MAP2K6, BMP10 and GFPT1 genes are main candidates for reproductive traits in water dairy buffaloes, and these results may have future applications in animal breeding programs or in gene expression studies of the species.
Collapse
|
35
|
Aytekin İ, Bayraktar M, Sakar ÇM, Ünal İ. Association between MYLK4 gene polymorphism and growth traits at different age stages in Anatolian black cattle. Anim Biotechnol 2020; 31:555-560. [DOI: 10.1080/10495398.2020.1823402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- İbrahim Aytekin
- Department of Animal Science, Faculty of Agriculture, University of Selçuk, Konya, Turkey
| | - Mervan Bayraktar
- Department of Animal Science, Faculty of Agriculture, University of Selçuk, Konya, Turkey
| | | | - İlker Ünal
- International Center for Livestock Research and Training, Ankara, Turkey
| |
Collapse
|
36
|
El-Khishin DA, Ageez A, Saad ME, Ibrahim A, Shokrof M, Hassan LR, Abouelhoda MI. Sequencing and assembly of the Egyptian buffalo genome. PLoS One 2020; 15:e0237087. [PMID: 32813723 PMCID: PMC7437910 DOI: 10.1371/journal.pone.0237087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/20/2020] [Indexed: 01/09/2023] Open
Abstract
Water buffalo (Bubalus bubalis) is an important source of meat and milk in countries with relatively warm weather. Compared to the cattle genome, a little has been done to reveal its genome structure and genomic traits. This is due to the complications stemming from the large genome size, the complexity of the genome, and the high repetitive content. In this paper, we introduce a high-quality draft assembly of the Egyptian water buffalo genome. The Egyptian breed is used as a dual purpose animal (milk/meat). It is distinguished by its adaptability to the local environment, quality of feed changes, as well as its high resistance to diseases. The genome assembly of the Egyptian water buffalo has been achieved using a reference-based assembly workflow. Our workflow significantly reduced the computational complexity of the assembly process, and improved the assembly quality by integrating different public resources. We also compared our assembly to the currently available draft assemblies of water buffalo breeds. A total of 21,128 genes were identified in the produced assembly. A list of milk virgin-related genes; milk pregnancy-related genes; milk lactation-related genes; milk involution-related genes; and milk mastitis-related genes were identified in the assembly. Our results will significantly contribute to a better understanding of the genetics of the Egyptian water buffalo which will eventually support the ongoing breeding efforts and facilitate the future discovery of genes responsible for complex processes of dairy, meat production and disease resistance among other significant traits.
Collapse
Affiliation(s)
- Dina A. El-Khishin
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- * E-mail:
| | - Amr Ageez
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Faculty of Biotechnology, MSA University, October City, Egypt
| | - Mohamed E. Saad
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Department of Biology, Taibah University, Almadinah Almonawarah, KSA
| | - Amr Ibrahim
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Moustafa Shokrof
- Centre for Informatics Sciences, Nile University Giza, October city, Egypt
- Department of Computer Science, University of California at Davis, Davis, CA, United States of America
| | - Laila R. Hassan
- Animal Production Research Institute, Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Mohamed I. Abouelhoda
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
37
|
Linkage Disequilibrium-Based Inference of Genome Homology and Chromosomal Rearrangements Between Species. G3-GENES GENOMES GENETICS 2020; 10:2327-2343. [PMID: 32434754 PMCID: PMC7341147 DOI: 10.1534/g3.120.401090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to analyze the genomic homology between cattle (Bos taurus) and buffaloes (Bubalus bubalis) and to propose a rearrangement of the buffalo genome through linkage disequilibrium analyses of buffalo SNP markers referenced in the cattle genome assembly and also compare it to the buffalo genome assembly. A panel of bovine SNPs (single nucleotide polymorphisms) was used for hierarchical, non-hierarchical and admixture cluster analyses. Thus, the linkage disequilibrium information between markers of a specific panel of buffalo was used to infer chromosomal rearrangement. Haplotype diversity and imputation accuracy of the submetacentric chromosomes were also analyzed. The genomic homology between the species enabled us to use the bovine genome assembly to recreate a buffalo genomic reference by rearranging the submetacentric chromosomes. The centromere of the submetacentric chromosomes exhibited high linkage disequilibrium and low haplotype diversity. It allowed hypothesizing about chromosome evolution. It indicated that buffalo submetacentric chromosomes are a centric fusion of ancestral acrocentric chromosomes. The chronology of fusions was also suggested. Moreover, a linear regression between buffalo and cattle rearranged assembly and the imputation accuracy indicated that the rearrangement of the chromosomes was adequate. When using the bovine reference genome assembly, the rearrangement of the buffalo submetacentric chromosomes could be done by SNP BTA (chromosome of Bos taurus) calculations: shorter BTA (shorter arm of buffalo chromosome) was given as [(shorter BTA length - SNP position in shorter BTA)] and larger BTA length as [shorter BTA length + (larger BTA length - SNP position in larger BTA)]. Finally, the proposed linkage disequilibrium-based method can be applied to elucidate other chromosomal rearrangement events in other species with the possibility of better understanding the evolutionary relationship between their genomes.
Collapse
|
38
|
Genomic Identification, Evolution, and Expression Analysis of Collagen Genes Family in Water Buffalo during Lactation. Genes (Basel) 2020; 11:genes11050515. [PMID: 32384775 PMCID: PMC7288458 DOI: 10.3390/genes11050515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
Collagens, as extracellular matrix proteins, support cells for structural integrity and contribute to support mammary basic structure and development. This study aims to perform the genomic identification, evolution, and expression analyses of the collagen gene family in water buffalo (Bubalus bubalis) during lactation. A total of 128 buffalo collagen protein sequences were deduced from the 45 collagen genes identified in silico from buffalo genome, which classified into six groups based on their phylogenetic relationships, conserved motifs, and gene structure analyses. The identified collagen sequences were unequally distributed on 16 chromosomes. The tandem duplicated genes were found within three chromosomes, while only one segmental event occurred between Chr3 and Chr8. Collinearity analysis revealed that a total of 36 collagen gene pairs were orthologous between buffalo and cattle genomes despite having different chromosome numbers. Comparative transcription analyses revealed that a total of 23 orthologous collagen genes were detected in the milk samples at different lactation periods between the two species. Notably, the duplicated gene pair of COL4A1-COL4A2 during lactation had a higher mRNA expression level than that of cattle, while a higher expression level of COL6A1-COL6A2 pair was found in cattle compared with that of buffalo. The present study provides useful information for investigating the potential functions of the collagen family in buffalo during lactation and helps in the functional characterization of collagen genes in additional research.
Collapse
|
39
|
Mishra DC, Sikka P, Yadav S, Bhati J, Paul SS, Jerome A, Singh I, Nath A, Budhlakoti N, Rao AR, Rai A, Chaturvedi KK. Identification and characterization of trait-specific SNPs using ddRAD sequencing in water buffalo. Genomics 2020; 112:3571-3578. [PMID: 32320820 DOI: 10.1016/j.ygeno.2020.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Single Nucleotide Polymorphism (SNP) is one of the important molecular markers widely used in animal breeding program for improvement of any desirable genetic traits. Considering this, the present study was carried out to identify, annotate and analyze the SNPs related to four important traits of buffalo viz. milk volume, age at first calving, post-partum cyclicity and feed conversion efficiency. We identified 246,495, 168,202, 74,136 and 194,747 genome-wide SNPs related to mentioned traits, respectively using ddRAD sequencing technique based on 85 samples of Murrah Buffaloes. Distribution of these SNPs were highest (61.69%) and lowest (1.78%) in intron and exon regions, respectively. Under coding regions, the SNPs for the four traits were further classified as synonymous (4697) and non-synonymous (3827). Moreover, Gene Ontology (GO) terms of identified genes assigned to various traits. These characterized SNPs will enhance the knowledge of cellular mechanism for enhancing productivity of water buffalo through molecular breeding.
Collapse
Affiliation(s)
- D C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Poonam Sikka
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Sunita Yadav
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jyotika Bhati
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - S S Paul
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - A Jerome
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Inderjeet Singh
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Abhigyan Nath
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A R Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
| |
Collapse
|
40
|
Abdel-Shafy H, Awad MA, El-Regalaty H, Ismael A, El-Assal SED, Abou-Bakr S. A single-step genomic evaluation for milk production in Egyptian buffalo. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Lukić B, Ferenčaković M, Šalamon D, Čačić M, Orehovački V, Iacolina L, Curik I, Cubric-Curik V. Conservation Genomic Analysis of the Croatian Indigenous Black Slavonian and Turopolje Pig Breeds. Front Genet 2020; 11:261. [PMID: 32296459 PMCID: PMC7136467 DOI: 10.3389/fgene.2020.00261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The majority of the nearly 400 existing local pig breeds are adapted to specific environments and human needs. The demand for large production quantities and the industrialized pig production have caused a rapid decline of many local pig breeds in recent decades. Black Slavonian pig and Turopolje pig, the latter highly threatened, are the two Croatian local indigenous breeds typically grown in extensive or semi-intensive systems. In order to guide a long-term breeding program to prevent the disappearance of these breeds, we analyzed their genetic diversity, inbreeding level and relationship with other local breeds across the world, as well as modern breeds and several wild populations, using high throughput genomic data obtained using the Illumina Infinium PorcineSNP60 v2 BeadChip. Multidimensional scaling analysis positioned Black Slavonian pigs close to the UK/North American breeds, while the Turopolje pig clustered within the Mediterranean breeds. Turopolje pig showed a very high inbreeding level (FROH>4Mb = 0.400 and FROH>8Mb = 0.332) that considerably exceeded the level of full-sib mating, while Black Slavonian pig showed much lower inbreeding (FROH>4Mb = 0.098 and FROH>8Mb = 0.074), indicating a planned mating strategy. In Croatian local breeds we identified several genome regions showing adaptive selection signals that were not present in commercial breeds. The results obtained in this study reflect the current genetic status and breeding management of the two Croatian indigenous local breeds. Given the small populations of both breeds, a controlled management activity has been implemented in Black Slavonian pigs since their commercial value has been recognized. In contrast, the extremely high inbreeding level observed in Turopolje pig argues for an urgent conservation plan with a long-term, diversity-oriented breeding program.
Collapse
Affiliation(s)
- Boris Lukić
- Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Ferenčaković
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Dragica Šalamon
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Mato Čačić
- Ministry of Agriculture, Zagreb, Croatia
| | | | - Laura Iacolina
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.,Department for Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
42
|
Liu J, Wang Z, Li J, Li H, Yang L. Genome-wide identification of Diacylglycerol Acyltransferases (DGAT) family genes influencing Milk production in Buffalo. BMC Genet 2020; 21:26. [PMID: 32138658 PMCID: PMC7059399 DOI: 10.1186/s12863-020-0832-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background The diacylglycerol acyltransferases (DGAT) are a vital group of enzymes in catalyzing triacylglycerol biosynthesis. DGAT genes like DGAT1 and DGAT2, have been identified as two functional candidate genes affecting milk production traits, especially for fat content in milk. Buffalo milk is famous for its excellent quality, which is rich in fat and protein content. Therefore, this study aimed to characterize DGAT family genes in buffalo and to find candidate markers or DGAT genes influencing lactation performance. Results We performed a genome-wide study and identified eight DGAT genes in buffalo. All the DGAT genes classified into two distinct clades (DGAT1 and DGAT2 subfamily) based on their phylogenetic relationships and structural features. Chromosome localization displayed eight buffalo DGAT genes distributed on five chromosomes. Collinearity analysis revealed that the DGAT family genes were extensive homologous between buffalo and cattle. Afterward, we discovered genetic variants loci within the genomic regions that DGAT genes located in buffalo. Seven haplotype blocks were constructed and were associated with buffalo milk production traits. Single marker association analyses revealed four most significant single nucleotide polymorphisms (SNPs) mainly affecting milk protein percentage or milk fat yield in buffalo. Genes functional analysis indicated that these DGAT family genes could influence lactation performance in the mammal through regulating lipid metabolism. Conclusion In the present study, we performed a comprehensive analysis for the DGAT family genes in buffalo, which including identification, structural characterization, phylogenetic classification, chromosomal distribution, collinearity analysis, association analysis, and functional analysis. These findings provide useful information for an in-depth study to determine the role of DGAT family gens play in the regulation of milk production and milk quality improvement in buffalo.
Collapse
Affiliation(s)
- Jiajia Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, China.,School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhiquan Wang
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Jun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, China.,Department of Immunology, Zunyi Medical College, Zunyi, China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, China.
| |
Collapse
|
43
|
Lu XR, Duan AQ, Li WQ, Abdel-Shafy H, Rushdi HE, Liang SS, Ma XY, Liang XW, Deng TX. Genome-wide analysis reveals genetic diversity, linkage disequilibrium, and selection for milk production traits in Chinese buffalo breeds. J Dairy Sci 2020; 103:4545-4556. [PMID: 32147265 DOI: 10.3168/jds.2019-17364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/13/2020] [Indexed: 11/19/2022]
Abstract
The water buffalo is an important dual-purpose livestock that is widespread throughout central and southern China. However, there has been no characterization of the population genetics of Chinese buffalo. Using an Axiom buffalo genotyping array (Thermo Fisher Scientific, Wilmington, DE), we analyzed the genetic diversity, linkage disequilibrium pattern, and signature of selection in 176 Chinese buffaloes from 13 breeds. A total of 35,547 SNP passed quality control and were used for further analyses. Population genetic analysis revealed a clear separation between swamp and river types. Ten Chinese indigenous breeds were clustered into the swamp group, the Murrah and Nili-Ravi breeds were clustered into the river group, and the crossbred breed was closer to the river group. Genetic diversity analysis showed that the swamp group had a lower average expected heterozygosity. Linkage disequilibrium decay distance was much shorter in the swamp group compared with the river group, with an average square of correlation coefficient value of 0.2 of approximately 50 kb. Analysis of runs of homozygosity indicated extensive remote and recent inbreeding within swamp and river groups, respectively. Moreover, one genomic region under selection was detected between the river and swamp groups. Our findings contribute to our understanding of the characterization of population genetics in Chinese buffaloes, which in turn may be used in buffalo breeding programs.
Collapse
Affiliation(s)
- X R Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - A Q Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - W Q Li
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - H Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - H E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - S S Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - X Y Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - X W Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - T X Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| |
Collapse
|
44
|
Ghoreishifar SM, Moradi-Shahrbabak H, Fallahi MH, Jalil Sarghale A, Moradi-Shahrbabak M, Abdollahi-Arpanahi R, Khansefid M. Genomic measures of inbreeding coefficients and genome-wide scan for runs of homozygosity islands in Iranian river buffalo, Bubalus bubalis. BMC Genet 2020; 21:16. [PMID: 32041535 PMCID: PMC7011551 DOI: 10.1186/s12863-020-0824-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Background Consecutive homozygous fragments of a genome inherited by offspring from a common ancestor are known as runs of homozygosity (ROH). ROH can be used to calculate genomic inbreeding and to identify genomic regions that are potentially under historical selection pressure. The dataset of our study consisted of 254 Azeri (AZ) and 115 Khuzestani (KHZ) river buffalo genotyped for ~ 65,000 SNPs for the following two purposes: 1) to estimate and compare inbreeding calculated using ROH (FROH), excess of homozygosity (FHOM), correlation between uniting gametes (FUNI), and diagonal elements of the genomic relationship matrix (FGRM); 2) to identify frequently occurring ROH (i.e. ROH islands) for our selection signature and gene enrichment studies. Results In this study, 9102 ROH were identified, with an average number of 21.2 ± 13.1 and 33.2 ± 15.9 segments per animal in AZ and KHZ breeds, respectively. On average in AZ, 4.35% (108.8 ± 120.3 Mb), and in KHZ, 5.96% (149.1 ± 107.7 Mb) of the genome was autozygous. The estimated inbreeding values based on FHOM, FUNI and FGRM were higher in AZ than they were in KHZ, which was in contrast to the FROH estimates. We identified 11 ROH islands (four in AZ and seven in KHZ). In the KHZ breed, the genes located in ROH islands were enriched for multiple Gene Ontology (GO) terms (P ≤ 0.05). The genes located in ROH islands were associated with diverse biological functions and traits such as body size and muscle development (BMP2), immune response (CYP27B1), milk production and components (MARS, ADRA1A, and KCTD16), coat colour and pigmentation (PMEL and MYO1A), reproductive traits (INHBC, INHBE, STAT6 and PCNA), and bone development (SUOX). Conclusion The calculated FROH was in line with expected higher inbreeding in KHZ than in AZ because of the smaller effective population size of KHZ. Thus, we find that FROH can be used as a robust estimate of genomic inbreeding. Further, the majority of ROH peaks were overlapped with or in close proximity to the previously reported genomic regions with signatures of selection. This tells us that it is likely that the genes in the ROH islands have been subject to artificial or natural selection.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran.
| | - Mohammad Hossein Fallahi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Ali Jalil Sarghale
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Mohammad Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Rostam Abdollahi-Arpanahi
- Departments of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht, 33916-53755, Iran
| | - Majid Khansefid
- AgriBio Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| |
Collapse
|
45
|
D'Occhio MJ, Ghuman SS, Neglia G, Della Valle G, Baruselli PS, Zicarelli L, Visintin JA, Sarkar M, Campanile G. Exogenous and endogenous factors in seasonality of reproduction in buffalo: A review. Theriogenology 2020; 150:186-192. [PMID: 32000994 DOI: 10.1016/j.theriogenology.2020.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022]
Abstract
Seasonal breeding in buffalo is influenced by exogenous (photoperiod, climate, nutrition, management) and endogenous (hormones, genotype) factors. Buffalo are negatively photoperiodic and show a natural increase in fertility during decreasing day length. The hormone melatonin is produced by the pineal gland and has a fundamental role in photoperiodic time measurement within the brain. This drives annual cycles of gonadotropin secretion and gonadal function in buffaloes. Some melatonin is released into the systemic circulation and, together with peripherally produced melatonin, acts at somatic tissues. In the ovaries and testes of buffalo, melatonin acts as an antioxidant and scavenges oxygen free radicals to reduce both oxidative stress and apoptosis. This has beneficial effects on gametogenesis and steroidogenesis. Female buffalo treated with melatonin show an improved response to estrus synchronization protocols in out-of-season breeding. Melatonin acts through melatonin receptors MT1 and MT2 and the gene for MT1 (MTNR1A) is polymorphic in buffaloes. Single nucleotide polymorphisms (SNPs) in gene MTNR1A have been associated with fertility in female buffalo. The knowledge and tools are available to lift the reproductive performance of buffalo. This is highly important as the global demand for nutritious buffalo food products has undergone a sharp rise, and continues to grow. Buffalo can make an important contribution to affordable, nutritious animal protein. This will help address global nutritional security.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarvpreet S Ghuman
- Department of Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Giovanni Della Valle
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Mihir Sarkar
- Physiology and Climatology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
46
|
Zhang Y, Colli L, Barker JSF. Asian water buffalo: domestication, history and genetics. Anim Genet 2020; 51:177-191. [PMID: 31967365 DOI: 10.1111/age.12911] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
The domestic Asian water buffalo (Bubalus bubalis) is found on all five continents, with a global population of some 202 million. The livelihoods of more people depend on this species than on any other domestic animal. The two distinct types (river and swamp) descended from different wild Asian water buffalo (Bubalus arnee) populations that diverged some 900 kyr BP and then evolved in separate geographical regions. After domestication in the western region of the Indian subcontinent (ca. 6300 years BP), the river buffalo spread west as far as Egypt, the Balkans and Italy. Conversely, after domestication in the China/Indochina border region ca. 3000-7000 years BP, swamp buffaloes dispersed through south-east Asia and China as far as the Yangtze River valley. Molecular and morphological evidence indicates that swamp buffalo populations have strong geographic genetic differentiation and a lack of gene flow, but strong phenotypic uniformity. In contrast, river buffalo populations show a weaker phylogeographic structure, but higher phenotypic diversity (i.e. many breeds). The recent availability of a high-quality reference genome and of a medium-density marker panel for genotyping has triggered a number of genome-wide investigations on diversity, evolutionary history, production traits and functional elements. The growing molecular knowledge combined with breeding programmes should pave the way to improvements in production, environmental adaptation and disease resistance in water buffalo populations worldwide.
Collapse
Affiliation(s)
- Y Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOA, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - L Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - J S F Barker
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
47
|
Nava-Trujillo H, Valeris-Chacin R, Quintero-Moreno A, Escalona-Muñoz J. Milk yield at first lactation, parity, and season of calving affect the reproductive performance of water buffalo cows. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Profitability of water buffalo systems depends on a calving interval (CI) <400 days. Several factors affect the achievement of this target. However, milk yield at first lactation has received little attention.
Aims
Determine the effect of milk yield at first lactation, parity, season of calving and farm, on the length of CI and the probability of a CI ≤ 400 days in water buffaloes.
Methods
A retrospective analysis of milk yield at first lactation and reproductive records of 1459 water buffaloes was carried out. Milk yield was categorised as Group 1 (≤1090 kg), Group 2 (1090–1377 kg), Group 3 (1377–1684 kg) and Group 4 (>1684 kg); parity was categorised as parity 1, 2 and ≥ 3; and month of calving was grouped into three seasons: December–March, April–July, and August–November. Data were analysed using linear and logistic mixed models.
Key results
CI increased from 425.3 days (95% CI: 418.8–431.8 days) in group 1 to 463.3 days (95% CI: 456–470.6 days) in group 4 (P < 0.05), while the probability of having a CI ≤ 400 days decreased from 0.5 (95% CI: 0.46–0.54) to 0.26 (95% CI: 0.22–0.29), respectively (P < 0.05). CI decreased from 466 days (95% CI: 460.8–471.3 days) in parity 1 to 410.5 days (95% CI: 405.2–415.8 days) in parity ≥3, whereas the probability of a CI ≤ 400 days increased from 0.26 (95% CI: 0.24–0.29) to 0.51 (95% CI: 0.47–0.54) respectively (P < 0.05). Water buffaloes calving in August–November showed significantly shorter CI and, along with those calving between December–March, showed the highest probability of a CI ≤ 400 days. An interaction between milk yield at first lactation and parity on both outcomes was observed.
Conclusions
Shorter CI and higher probability of a CI <400 days were associated with lower milk yields at first lactation, higher parity and calving between August–November. Higher milk yield at first lactation affected negatively the reproductive performance of water buffaloes, especially at parity 1 and 2.
Implications
These results highlight the importance of adequate nutritional management to allow water buffaloes to cope with the challenge of the postpartum negative energy balance and have a calving interval less than 400 days.
Collapse
|
48
|
Gonzalez Guzman JL, Lázaro SF, do Nascimento AV, de Abreu Santos DJ, Cardoso DF, Becker Scalez DC, Galvão de Albuquerque L, Hurtado Lugo NA, Tonhati H. Genome-wide association study applied to type traits related to milk yield in water buffaloes (Bubalus bubalis). J Dairy Sci 2019; 103:1642-1650. [PMID: 31759604 DOI: 10.3168/jds.2019-16499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/07/2019] [Indexed: 01/13/2023]
Abstract
This research aimed to estimate genetic parameters for milk yield and type traits [withers height (WH), croup height (CH), body length (BL), croup length (CL), iliac width (ILW), ischial width (ISW), and thoracic circumference] in Murrah buffaloes and to identify genomic regions related to type traits by applying a single-step genome-wide association study. Data used to estimate the genetic parameters consisted of 601 records of milk yield in the first lactation and the aforementioned type traits. For the single-step genome-wide association study, 322 samples genotyped with a 90K Axiom Buffalo Genotyping array (Thermo Fisher Scientific, Santa Clara, CA) were used. Bivariate analysis revealed that heritability for milk yield (kg) at 305 d was 0.31 ± 0.11, whereas it ranged from 0.22 ± 0.07 to 0.34 ± 0.09 for the studied conformation traits. Based on the percentages of genetic variance explained by windows of 10 markers, there were 16 genomic regions explaining more than 0.5% of the variance for WH, CH, BL, CL, ILW, ISW, and thoracic circumference. Between those regions, 4 were associated with more than 1 trait, suggesting pleiotropic roles for some genes of Bos taurus autosome (BTA) 12 on CL and WH, BTA13 on ISW and ILW, BTA23 on CH and BL, and BTA28 on ISW and BL. Most of these regions coincide with known quantitative trait loci for milk traits. Thus, further studies based on sequence data will help to validate the association of this region with type traits and likely identify the causal mutations.
Collapse
Affiliation(s)
- Jessica Lorena Gonzalez Guzman
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Sirlene Fernandes Lázaro
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - André Vieira do Nascimento
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | | | - Diercles Francisco Cardoso
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Daiane Cristina Becker Scalez
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Lúcia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Naudin Alejandro Hurtado Lugo
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Humberto Tonhati
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil.
| |
Collapse
|
49
|
de Araujo Neto FR, Santos DJDA, Fernandes Júnior GA, Aspilcueta-Borquis RR, Nascimento AVD, de Oliveira Seno L, Tonhati H, de Oliveira HN. Genome-wide association studies for growth traits in buffaloes using the single step genomic BLUP. J Appl Genet 2019; 61:113-115. [PMID: 31673966 DOI: 10.1007/s13353-019-00528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/11/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
Growth traits are important for the profitability of buffalo breeding systems, since in general, these animals are raised both for meat and milk. In this study, the single-step genomic BLUP method was employed to prospect the genomic regions' associated with weight at standard ages of 100, 210, 365, and 550 days in a buffalo population, aiming to identify genes with stronger expression for those characteristics. We found 6, 1, 2, and 5 SNPs significantly associated (p value < 10-5) with weight at 100, 210, 365, and 550 days of age, respectively, where those SNPs respectively explained 0.164, 0.040, 0.044, and 0.213% of the additive variance of each trait. SNP AX-85099682 (BBU24) was significant for weight at 100, 210, and 365 days, indicating the existence of a possible QTL affecting the initial growth rate of buffaloes. All told, eight genes (CBLB, TRNAG-UCC, GADD45B, LOC112583811, MGAT4C, KCNMA1, SLC5A2, and TGFB1I1) were identified as candidates for the growth traits of buffaloes. However, molecular and gene expression studies are necessary to validate these genes for subsequent use in programs for genetic improvement of the species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Humberto Tonhati
- Universidade Estadual Paulista Júlio de Mesquita Filho, Câmpus de Jaboticabal, São Paulo, Brazil
| | | |
Collapse
|
50
|
Li B, Fang L, Null DJ, Hutchison JL, Connor EE, VanRaden PM, VandeHaar MJ, Tempelman RJ, Weigel KA, Cole JB. High-density genome-wide association study for residual feed intake in Holstein dairy cattle. J Dairy Sci 2019; 102:11067-11080. [PMID: 31563317 DOI: 10.3168/jds.2019-16645] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/19/2019] [Indexed: 01/27/2023]
Abstract
Improving feed efficiency (FE) of dairy cattle may boost farm profitability and reduce the environmental footprint of the dairy industry. Residual feed intake (RFI), a candidate FE trait in dairy cattle, can be defined to be genetically uncorrelated with major energy sink traits (e.g., milk production, body weight) by including genomic predicted transmitting ability of such traits in genetic analyses for RFI. We examined the genetic basis of RFI through genome-wide association (GWA) analyses and post-GWA enrichment analyses and identified candidate genes and biological pathways associated with RFI in dairy cattle. Data were collected from 4,823 lactations of 3,947 Holstein cows in 9 research herds in the United States. Of these cows, 3,555 were genotyped and were imputed to a high-density list of 312,614 SNP. We used a single-step GWA method to combine information from genotyped and nongenotyped animals with phenotypes as well as their ancestors' information. The estimated genomic breeding values from a single-step genomic BLUP were back-solved to obtain the individual SNP effects for RFI. The proportion of genetic variance explained by each 5-SNP sliding window was also calculated for RFI. Our GWA analyses suggested that RFI is a highly polygenic trait regulated by many genes with small effects. The closest genes to the top SNP and sliding windows were associated with dry matter intake (DMI), RFI, energy homeostasis and energy balance regulation, digestion and metabolism of carbohydrates and proteins, immune regulation, leptin signaling, mitochondrial ATP activities, rumen development, skeletal muscle development, and spermatogenesis. The region of 40.7 to 41.5 Mb on BTA25 (UMD3.1 reference genome) was the top associated region for RFI. The closest genes to this region, CARD11 and EIF3B, were previously shown to be related to RFI of dairy cattle and FE of broilers, respectively. Another candidate region, 57.7 to 58.2 Mb on BTA18, which is associated with DMI and leptin signaling, was also associated with RFI in this study. Post-GWA enrichment analyses used a sum-based marker-set test based on 4 public annotation databases: Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Reactome pathways, and medical subject heading (MeSH) terms. Results of these analyses were consistent with those from the top GWA signals. Across the 4 databases, GWA signals for RFI were highly enriched in the biosynthesis and metabolism of amino acids and proteins, digestion and metabolism of carbohydrates, skeletal development, mitochondrial electron transport, immunity, rumen bacteria activities, and sperm motility. Our findings offer novel insight into the genetic basis of RFI and identify candidate regions and biological pathways associated with RFI in dairy cattle.
Collapse
Affiliation(s)
- B Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - L Fang
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350; Department of Animal and Avian Sciences, University of Maryland, College Park 20742; Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - D J Null
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - J L Hutchison
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - E E Connor
- Department of Animal and Food Sciences, University of Delaware, Newark 19716
| | - P M VanRaden
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - M J VandeHaar
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - R J Tempelman
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - K A Weigel
- Department of Dairy Science, University of Wisconsin, Madison 53706
| | - J B Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350.
| |
Collapse
|