1
|
Hibbert TM, Whiteley M, Renshaw SA, Neill DR, Fothergill JL. Emerging strategies to target virulence in Pseudomonas aeruginosa respiratory infections. Crit Rev Microbiol 2024; 50:1037-1052. [PMID: 37999716 DOI: 10.1080/1040841x.2023.2285995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is responsible for infections in people living with chronic respiratory conditions, such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Traditionally, in people with chronic respiratory disorders, P. aeruginosa infection has been managed with a combination of inhaled and intravenous antibiotic therapies. However, due in part to the prolonged use of antibiotics in these people, the emergence of multi-drug resistant P. aeruginosa strains is a growing concern. The development of anti-virulence therapeutics may provide a new means of treating P. aeruginosa lung infections whilst also combatting the AMR crisis, as these agents are presumed to exert reduced pressure for the emergence of drug resistance as compared to antibiotics. However, the pipeline for developing anti-virulence therapeutics is poorly defined, and it is currently unclear as to whether in vivo and in vitro models effectively replicate the complex pulmonary environment sufficiently to enable development and testing of such therapies for future clinical use. Here, we discuss potential targets for P. aeruginosa anti-virulence therapeutics and the effectiveness of the current models used to study them. Focus is given to the difficulty of replicating the virulence gene expression patterns of P. aeruginosa in the CF and NCFB lung under laboratory conditions and to the challenges this poses for anti-virulence therapeutic development.
Collapse
Affiliation(s)
- Tegan M Hibbert
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Centre for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen A Renshaw
- The Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Daniel R Neill
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Long MB, Gilmour A, Kehl M, Tabor DE, Keller AE, Warrener P, Gopalakrishnan V, Rosengren S, Crichton ML, McIntosh E, Giam YH, Keir HR, Brailsford W, Hughes R, Belvisi MG, Sellman BR, DiGiandomenico A, Chalmers JD. A Bispecific Monoclonal Antibody Targeting Psl and PcrV Enhances Neutrophil-Mediated Killing of Pseudomonas aeruginosa in Patients with Bronchiectasis. Am J Respir Crit Care Med 2024; 210:35-46. [PMID: 38754132 DOI: 10.1164/rccm.202308-1403oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Rationale: Pseudomonas aeruginosa infection is associated with worse outcomes in bronchiectasis. Impaired neutrophil antimicrobial responses contribute to bacterial persistence. Gremubamab is a bivalent, bispecific monoclonal antibody targeting Psl exopolysaccharide and the type 3 secretion system component PcrV. Objectives: This study evaluated the efficacy of gremubamab to enhance killing of P. aeruginosa by neutrophils from patients with bronchiectasis and to prevent P. aeruginosa-associated cytotoxicity. Methods: P. aeruginosa isolates from a global bronchiectasis cohort (n = 100) underwent whole-genome sequencing to determine target prevalence. Functional activity of gremubamab against selected isolates was tested in vitro and in vivo. Patients with bronchiectasis (n = 11) and control subjects (n = 10) were enrolled, and the effect of gremubamab in peripheral blood neutrophil opsonophagocytic killing (OPK) assays against P. aeruginosa was evaluated. Serum antibody titers to Psl and PcrV were determined (n = 30; 19 chronic P. aeruginosa infection, 11 no known P. aeruginosa infection), as was the effect of gremubamab treatment in OPK and anti-cytotoxic activity assays. Measurements and Main Results: Psl and PcrV were conserved in isolates from chronically infected patients with bronchiectasis. Seventy-three of 100 isolates had a full psl locus, and 99 of 100 contained the pcrV gene, with 20 distinct full-length PcrV protein subtypes identified. PcrV subtypes were successfully bound by gremubamab and the monoclonal antibody-mediated potent protective activity against tested isolates. Gremubamab increased bronchiectasis patient neutrophil-mediated OPK (+34.6 ± 8.1%) and phagocytosis (+70.0 ± 48.8%), similar to effects observed in neutrophils from control subjects (OPK, +30.1 ± 7.6%). No evidence of competition between gremubamab and endogenous antibodies was found, with protection against P. aeruginosa-induced cytotoxicity and enhanced OPK demonstrated with and without addition of patient serum. Conclusions: Gremubamab enhanced bronchiectasis patient neutrophil phagocytosis and killing of P. aeruginosa and reduced virulence.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Margaret Kehl
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - David E Tabor
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Ashley E Keller
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Paul Warrener
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Sanna Rosengren
- Translational Science and Experimental Medicine, Respiratory & Immunology, Respiratory and Immunology, and
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Eve McIntosh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Wayne Brailsford
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and
| | - Rod Hughes
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Maria G Belvisi
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and
| | - Bret R Sellman
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Antonio DiGiandomenico
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
3
|
Whole-Genome Sequencing Reveals Diversity of Carbapenem-Resistant Pseudomonas aeruginosa Collected through CDC's Emerging Infections Program, United States, 2016-2018. Antimicrob Agents Chemother 2022; 66:e0049622. [PMID: 36066241 PMCID: PMC9487505 DOI: 10.1128/aac.00496-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The CDC's Emerging Infections Program (EIP) conducted population- and laboratory-based surveillance of US carbapenem-resistant Pseudomonas aeruginosa (CRPA) from 2016 through 2018. To characterize the pathotype, 1,019 isolates collected through this project underwent antimicrobial susceptibility testing and whole-genome sequencing. Sequenced genomes were classified using the seven-gene multilocus sequence typing (MLST) scheme and a core genome (cg)MLST scheme was used to determine phylogeny. Both chromosomal and horizontally transmitted mechanisms of carbapenem resistance were assessed. There were 336 sequence types (STs) among the 1,019 sequenced genomes, and the genomes varied by an average of 84.7% of the cgMLST alleles used. Mutations associated with dysfunction of the porin OprD were found in 888 (87.1%) of the genomes and were correlated with carbapenem resistance, and a machine learning model incorporating hundreds of genetic variations among the chromosomal mechanisms of resistance was able to classify resistant genomes. While only 7 (0.1%) isolates harbored carbapenemase genes, 66 (6.5%) had acquired non-carbapenemase β-lactamase genes, and these were more likely to have OprD dysfunction and be resistant to all carbapenems tested. The genetic diversity demonstrates that the pathotype includes a variety of strains, and clones previously identified as high-risk make up only a minority of CRPA strains in the United States. The increased carbapenem resistance in isolates with acquired non-carbapenemase β-lactamase genes suggests that horizontally transmitted mechanisms aside from carbapenemases themselves may be important drivers of the spread of carbapenem resistance in P. aeruginosa.
Collapse
|
4
|
Hall KM, Pursell ZF, Morici LA. The role of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to chronic virulence during respiratory infection. Front Cell Infect Microbiol 2022; 12:943346. [PMID: 35937684 PMCID: PMC9355025 DOI: 10.3389/fcimb.2022.943346] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infection (CRI) with Pseudomonas aeruginosa (Pa) presents many unique challenges that complicate treatment. One notable challenge is the hypermutator phenotype which is present in up to 60% of sampled CRI patient isolates. Hypermutation can be caused by deactivating mutations in DNA mismatch repair (MMR) genes including mutS, mutL, and uvrD. In vitro and in vivo studies have demonstrated hypermutator strains to be less virulent than wild-type Pa. However, patients colonized with hypermutators display poorer lung function and a higher incidence of treatment failure. Hypermutation and MMR-deficiency create increased genetic diversity and population heterogeneity due to elevated mutation rates. MMR-deficient strains demonstrate higher rates of mucoidy, a hallmark virulence determinant of Pa during CRI in cystic fibrosis patients. The mucoid phenotype results from simple sequence repeat mutations in the mucA gene made in the absence of functional MMR. Mutations in Pa are further increased in the absence of MMR, leading to microcolony biofilm formation, further lineage diversification, and population heterogeneity which enhance bacterial persistence and host immune evasion. Hypermutation facilitates the adaptation to the lung microenvironment, enabling survival among nutritional complexity and microaerobic or anaerobic conditions. Mutations in key acute-to-chronic virulence “switch” genes, such as retS, bfmS, and ampR, are also catalyzed by hypermutation. Consequently, strong positive selection for many loss-of-function pathoadaptive mutations is seen in hypermutators and enriched in genes such as lasR. This results in the characteristic loss of Pa acute infection virulence factors, including quorum sensing, flagellar motility, and type III secretion. Further study of the role of hypermutation on Pa chronic infection is needed to better inform treatment regimens against CRI with hypermutator strains.
Collapse
Affiliation(s)
- Kalen M. Hall
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Zachary F. Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Lisa A. Morici,
| |
Collapse
|
5
|
Dual-purpose isocyanides produced by Aspergillus fumigatus contribute to cellular copper sufficiency and exhibit antimicrobial activity. Proc Natl Acad Sci U S A 2021; 118:2015224118. [PMID: 33593906 DOI: 10.1073/pnas.2015224118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The maintenance of sufficient but nontoxic pools of metal micronutrients is accomplished through diverse homeostasis mechanisms in fungi. Siderophores play a well established role for iron homeostasis; however, no copper-binding analogs have been found in fungi. Here we demonstrate that, in Aspergillus fumigatus, xanthocillin and other isocyanides derived from the xan biosynthetic gene cluster (BGC) bind copper, impact cellular copper content, and have significant metal-dependent antimicrobial properties. xan BGC-derived isocyanides are secreted and bind copper as visualized by a chrome azurol S (CAS) assay, and inductively coupled plasma mass spectrometry analysis of A. fumigatus intracellular copper pools demonstrated a role for xan cluster metabolites in the accumulation of copper. A. fumigatus coculture with a variety of human pathogenic fungi and bacteria established copper-dependent antimicrobial properties of xan BGC metabolites, including inhibition of laccase activity. Remediation of xanthocillin-treated Pseudomonas aeruginosa growth by copper supported the copper-chelating properties of xan BGC isocyanide products. The existence of the xan BGC in several filamentous fungi suggests a heretofore unknown role of eukaryotic natural products in copper homeostasis and mediation of interactions with competing microbes.
Collapse
|
6
|
Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, Sgambato A, Falabella P. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci 2021; 78:4259-4282. [PMID: 33595669 PMCID: PMC8164593 DOI: 10.1007/s00018-021-03784-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Misuse and overuse of antibiotics have contributed in the last decades to a phenomenon known as antibiotic resistance which is currently considered one of the principal threats to global public health by the World Health Organization. The aim to find alternative drugs has been demonstrated as a real challenge. Thanks to their biodiversity, insects represent the largest class of organisms in the animal kingdom. The humoral immune response includes the production of antimicrobial peptides (AMPs) that are released into the insect hemolymph after microbial infection. In this review, we have focused on insect immune responses, particularly on AMP characteristics, their mechanism of action and applications, especially in the biomedical field. Furthermore, we discuss the Toll, Imd, and JAK-STAT pathways that activate genes encoding for the expression of AMPs. Moreover, we focused on strategies to improve insect peptides stability against proteolytic susceptibility such as D-amino acid substitutions, N-terminus modification, cyclization and dimerization.
Collapse
Affiliation(s)
- M D Manniello
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - A Moretta
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - R Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - C Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - D Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - A Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture (PZ), Italy
| | - P Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
7
|
Le Sénéchal C, Puges M, Barthe C, Costaglioli P, Tokarski C, Buré C, Vilain S. Analysis of the Phospholipid Profile of the Collection Strain PAO1 and Clinical Isolates of Pseudomonas aeruginosa in Relation to Their Attachment Capacity. Int J Mol Sci 2021; 22:ijms22084003. [PMID: 33924531 PMCID: PMC8068974 DOI: 10.3390/ijms22084003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteria form multicellular and resistant structures named biofilms. Biofilm formation starts with the attachment phase, and the molecular actors involved in this phase, except adhesins, are poorly characterized. There is growing evidence that phospholipids are more than simple structural bricks. They are involved in bacterial adaptive physiology, but little is known about their role in biofilm formation. Here, we report a mass spectrometry analysis of the phospholipid (PL) profile of several strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. The aim of our study was to evaluate a possible link between the PL profile of a strain and its attachment phenotype. Our results showed that PL profile is strongly strain-dependent. The PL profile of P. aeruginosa PAO1, a collection strain, was different from those of 10 clinical isolates characterized either by a very low or a very high attachment capacity. We observed also that the clinical strain’s PL profiles varied even more importantly between isolates. By comparing groups of strains having similar attachment capacities, we identified one PL, PE 18:1-18:1, as a potential molecular actor involved in attachment, the first step in biofilm formation. This PL represents a possible target in the fight against biofilms.
Collapse
Affiliation(s)
- Caroline Le Sénéchal
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Mathilde Puges
- Infectious and Tropical Diseases Department, CHU of Bordeaux, F-33000 Bordeaux, France;
| | - Christophe Barthe
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Patricia Costaglioli
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Caroline Tokarski
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Corinne Buré
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Sébastien Vilain
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
- Correspondence:
| |
Collapse
|
8
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
9
|
Berger C, Rückert C, Blom J, Rabaey K, Kalinowski J, Rosenbaum MA. Estimation of pathogenic potential of an environmental Pseudomonas aeruginosa isolate using comparative genomics. Sci Rep 2021; 11:1370. [PMID: 33446769 PMCID: PMC7809047 DOI: 10.1038/s41598-020-80592-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
The isolation and sequencing of new strains of Pseudomonas aeruginosa created an extensive dataset of closed genomes. Many of the publicly available genomes are only used in their original publication while additional in silico information, based on comparison to previously published genomes, is not being explored. In this study, we defined and investigated the genome of the environmental isolate P. aeruginosa KRP1 and compared it to more than 100 publicly available closed P. aeruginosa genomes. By using different genomic island prediction programs, we could identify a total of 17 genomic islands and 8 genomic islets, marking the majority of the accessory genome that covers ~ 12% of the total genome. Based on intra-strain comparisons, we are able to predict the pathogenic potential of this environmental isolate. It shares a substantial amount of genomic information with the highly virulent PSE9 and LESB58 strains. For both of these, the increased virulence has been directly linked to their accessory genome before. Hence, the integrated use of previously published data can help to minimize expensive and time consuming wetlab work to determine the pathogenetic potential.
Collapse
Affiliation(s)
- Carola Berger
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Rückert
- Center for Biotechnology - CeBiTec, University of Bielefeld, Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Gießen, Giessen, Germany
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, University of Bielefeld, Bielefeld, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
10
|
Azimi S, Roberts AEL, Peng S, Weitz JS, McNally A, Brown SP, Diggle SP. Allelic polymorphism shapes community function in evolving Pseudomonas aeruginosa populations. ISME JOURNAL 2020; 14:1929-1942. [PMID: 32341475 DOI: 10.1038/s41396-020-0652-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the lungs of individuals with cystic fibrosis (CF) by forming antibiotic-resistant biofilms. Emergence of phenotypically diverse isolates within CF P. aeruginosa populations has previously been reported; however, the impact of heterogeneity on social behaviors and community function is poorly understood. Here we describe how this heterogeneity impacts on behavioral traits by evolving the strain PAO1 in biofilms grown in a synthetic sputum medium for 50 days. We measured social trait production and antibiotic tolerance, and used a metagenomic approach to analyze and assess genomic changes over the duration of the evolution experiment. We found that (i) evolutionary trajectories were reproducible in independently evolving populations; (ii) over 60% of genomic diversity occurred within the first 10 days of selection. We then focused on quorum sensing (QS), a well-studied P. aeruginosa trait that is commonly mutated in strains isolated from CF lungs. We found that at the population level, (i) evolution in sputum medium selected for decreased the production of QS and QS-dependent traits; (ii) there was a significant correlation between lasR mutant frequency, the loss of protease, and the 3O-C12-HSL signal, and an increase in resistance to clinically relevant β-lactam antibiotics, despite no previous antibiotic exposure. Overall, our findings provide insights into the effect of allelic polymorphism on community functions in diverse P. aeruginosa populations. Further, we demonstrate that P. aeruginosa population and evolutionary dynamics can impact on traits important for virulence and can lead to increased tolerance to β-lactam antibiotics.
Collapse
Affiliation(s)
- Sheyda Azimi
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aled E L Roberts
- Microbiology & Infectious Diseases Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
11
|
Chai YH, Xu JF. How does Pseudomonas aeruginosa affect the progression of bronchiectasis? Clin Microbiol Infect 2019; 26:313-318. [PMID: 31306794 DOI: 10.1016/j.cmi.2019.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the most common pathogens isolated from respiratory tract specimen in patients with bronchiectasis. It is considered highly responsible for pathogenicity, progression and clinical outcomes of bronchiectasis. AIMS To summarize existing evidence on how different factors of Pseudomonas aeruginosa affect the pathogenicity, progression and clinical outcomes of bronchiectasis, so as to provide possible insights for clinical practice and related research in the future. SOURCES PubMed was searched for studies pertaining to bronchiectasis and P. aeruginosa published to date, with no specific inclusion or exclusion criteria. Reference lists of retrieved reviews were searched for additional articles. CONTENT This review focused on non-cystic fibrosis bronchiectasis and also provided some data on cystic fibrosis when studies in bronchiectasis were limited. We discussed various factors in relation to P. aeruginosa: virulence factors, drug resistance, regulatory systems, genomic diversity and transmission of P. aeruginosa, as well as treatment for P. aeruginosa. Their impacts on bronchiectasis and its management were discussed. IMPLICATIONS The impact of P. aeruginosa on bronchiectasis is definite, although conclusions in some aspects are still vague. Faced with the worrying drug-resistance status and treatment bottleneck, individualized management and novel therapies beyond the classic pathway are most likely to be a future trend. To confirm the independent or integrated impact of various factors of P. aeruginosa on bronchiectasis and to figure out all the problems mentioned, larger randomized control trials are truly needed in the future.
Collapse
Affiliation(s)
- Y-H Chai
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - J-F Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Kim BO, Chung IY, Cho YH. Differential expression of the major catalase, KatA in the two wild type Pseudomonas aeruginosa strains, PAO1 and PA14. J Microbiol 2019; 57:704-710. [PMID: 31187416 DOI: 10.1007/s12275-019-9225-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
Abstract
KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is governed by its dual promoters (katAp1 and katAp2). Here, we observed that KatA was not required for acute virulence in another wild type P. aeruginosa strain, PAO1, but that PAO1 exhibited higher KatA expression than PA14 did. This was in a good agreement with the observation that PAO1 was more resistant than PA14 to H2O2 as well as to the antibiotic peptide, polymyxin B (PMB), supposed to involve reactive oxygen species (ROS) for its antibacterial activity. The higher KatA expression in PAO1 than in PA14 was attributed to both katAp1 and katAp2 transcripts, as assessed by S1 nuclease mapping. In addition, it was confirmed that the PMB resistance is attributed to both katAp1 and katAp2 in a complementary manner in PA14 and PAO1, by exploiting the promoter mutants for each -10 box (p1m, p2m, and p1p2m). These results provide an evidence that the two widely used P. aeruginosa strains display different virulence mechanisms associated with OxyR and Anr, which need to be further characterized for better understanding of the critical virulence pathways that may differ in various P. aeruginosa strains.
Collapse
Affiliation(s)
- Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
13
|
Zhang J, Zhao T, Yang R, Siridechakorn I, Wang S, Guo Q, Bai Y, Shen HC, Lei X. De novo synthesis, structural assignment and biological evaluation of pseudopaline, a metallophore produced by Pseudomonas aeruginosa. Chem Sci 2019; 10:6635-6641. [PMID: 31367316 PMCID: PMC6625496 DOI: 10.1039/c9sc01405e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
Pseudopaline is an opine carboxylate metallophore produced by Pseudomonas aeruginosa for harvesting divalent metals. However, the structure of pseudopaline is not fully elucidated. Herein, we report the first de novo total synthesis and isolation of pseudopaline, which allows unambiguous determination and confirmation of both the absolute and the relative configuration of the natural product. The synthesis highlights an efficient and stereocontrolled route using the asymmetric Tsuji-Trost reaction as the key step. The preliminary structure-activity relationship study indicated that one pseudopaline derivative shows comparable activity to pseudopaline. Moreover, a pseudopaline-fluorescein conjugate was prepared and evaluated, which confirmed that pseudopaline could be transported in the bacteria. Since the metal acquisition by P. aeruginosa is crucial for its ability to cause diseases, our extensive structural and functional studies of pseudopaline may pave the way for developing new therapeutic strategies such as the "Trojan horse" antibiotic conjugate against P. aeruginosa.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Synthetic and Functional Biomolecules Center , Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China .
| | - Tianhu Zhao
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Synthetic and Functional Biomolecules Center , Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China .
| | - Rongwen Yang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Synthetic and Functional Biomolecules Center , Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China .
| | - Ittipon Siridechakorn
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Synthetic and Functional Biomolecules Center , Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China .
| | - Sanshan Wang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Synthetic and Functional Biomolecules Center , Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China .
| | - Qianqian Guo
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Synthetic and Functional Biomolecules Center , Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China .
| | - Yingjie Bai
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Synthetic and Functional Biomolecules Center , Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China .
| | - Hong C Shen
- Roche Innovation Center Shanghai , Roche Pharma Research & Early Development , Shanghai 201203 , China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Synthetic and Functional Biomolecules Center , Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China .
| |
Collapse
|
14
|
Prezioso SM, Duong DM, Kuiper EG, Deng Q, Albertí S, Conn GL, Goldberg JB. Trimethylation of Elongation Factor-Tu by the Dual Thermoregulated Methyltransferase EftM Does Not Impact Its Canonical Function in Translation. Sci Rep 2019; 9:3553. [PMID: 30837495 PMCID: PMC6401129 DOI: 10.1038/s41598-019-39331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 11/28/2022] Open
Abstract
The Pseudomonas aeruginosa methyltransferase EftM trimethylates elongation factor-Tu (EF-Tu) on lysine 5 to form a post-translational modification important for initial bacterial adherence to host epithelial cells. EftM methyltransferase activity is directly temperature regulated. The protein stability of EftM is tuned with a melting temperature (Tm) around 37 °C such that the enzyme is stable and active at 25 °C, but is completely inactivated by protein unfolding at higher temperatures. This leads to higher observable levels of EF-Tu trimethylation at the lower temperature. Here we report an additional layer of thermoregulation resulting in lower eftM mRNA transcript level at 37 °C compared to 25 °C and show that this regulation occurs at the level of transcription initiation. To begin to define the impact of this system on P. aeruginosa physiology, we demonstrate that EF-Tu is the only observable substrate for EftM. Further, we interrogated the proteome of three different wild-type P. aeruginosa strains, their eftM mutants, and these mutants complemented with eftM and conclude that trimethylation of EF-Tu by EftM does not impact EF-Tu’s canonical function in translation. In addition to furthering our knowledge of this Pseudomonas virulence factor, this study provides an intriguing example of a protein with multiple layers of thermoregulation.
Collapse
Affiliation(s)
- Samantha M Prezioso
- Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.,Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, 30322, USA
| | - Emily G Kuiper
- Biochemistry, Cell and Developmental Biology (BCDB) Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Qiudong Deng
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, 30322, USA
| | - Sebastián Albertí
- Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Emory Antibiotic Resistance Center, Atlanta, GA, 30322, USA
| | - Joanna B Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Emory Antibiotic Resistance Center, Atlanta, GA, 30322, USA. .,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Abstract
Detection of mucoid Pseudomonas aeruginosa, characterized by the overproduction of alginate, is correlated with the establishment of a chronic pulmonary infection and disease progression in people with cystic fibrosis (CF). In addition to the overproduction of alginate, loss of O antigen lipopolysaccharide production is also selected for in chronic infection isolates. In this study, we have identified the regulatory network that inversely regulates O antigen and alginate production. Understanding the regulation of these chronic phenotypes will elucidate mechanisms that are important for the establishment of a long-term P. aeruginosa lung infection and ultimately provide an opportunity for intervention. Preventing P. aeruginosa from chronically adapting to the CF lung environment could provide a better outcome for people who are infected. Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in people with cystic fibrosis (CF). Chronic P. aeruginosa isolates generally do not express O antigen and often have a mucoid phenotype, which is characterized by the overproduction of the exopolysaccharide alginate. Therefore, O antigen expression and the mucoid phenotype may be coordinately regulated upon chronic adaption to the CF lung. Here we demonstrate that PDO300, a mucoid strain derived from the nonmucoid laboratory isolate PAO1, does not produce very long O antigen due to decreased expression of Wzz2, the very long O antigen chain length control protein, and that mucoid clinical isolates express reduced levels of Wzz2 compared to nonmucoid isolates. Further, we show that forcing the expression of very long O antigen by PDO300, by providing wzz2 in trans, does not alter alginate production, suggesting that sugar precursors are not limited between the two biosynthesis pathways. Moreover, we confirm that AmrZ, a transcription factor highly expressed in mucoid strains, is a negative regulator of wzz2 promoter activity and very long O antigen expression. These experiments identify the first transcriptional regulator of O antigen chain length in P. aeruginosa and support a model where transition to a chronic mucoid phenotype is correlated with downregulation of very long O antigen through decreased Wzz2 production.
Collapse
|
16
|
Wang Y, Xiao D, Liu Q, Zhang Y, Hu C, Sun J, Yang C, Xu P, Ma C, Gao C. Two NAD-independent l-lactate dehydrogenases drive l-lactate utilization in Pseudomonas aeruginosa PAO1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:569-575. [PMID: 30066495 DOI: 10.1111/1758-2229.12666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Pseudomonas aeruginosa often establishes a chronic infection in the airways of patients with cystic fibrosis (CF). l-Lactate is the most abundant carbon source in the CF sputum, and l-lactate utilization may be important for P. aeruginosa to survive in the lungs of CF patients. In this study, the key enzymes involved in l-lactate utilization by P. aeruginosa PAO1 were characterized using the synthetic CF sputum medium (SCFM). A highly conserved membrane-bound NAD-independent l-lactate dehydrogenase (l-iLDH) encoded by lldD (PA4771) and a novel flavin-containing membrane-bound l-iLDH encoded by lldA (PA2382) were both found to contribute to l-lactate utilization by P. aeruginosa PAO1. In addition, an lldD and lldA double mutant was incapable of growing in a medium containing l-lactate as the sole carbon source. This study clarifies the mechanism and importance of l-lactate catabolism, and demonstrates the first Pseudomonas spp. expressing two l-lactate-oxidizing enzymes.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Qiuyuan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Yipeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunxia Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Jinkai Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
17
|
Doustdar F, Karimi F, Abedinyfar Z, Amoli FA, Goudarzi H. Genetic features of Pseudomonas aeruginosa isolates associated with eye infections referred to Farabi Hospital, Tehran, Iran. Int Ophthalmol 2018; 39:1581-1587. [PMID: 29982958 DOI: 10.1007/s10792-018-0980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pseudomonas is the most common cause of microbial keratitis especially in people who use contact lens. The virulence of Pseudomonas aeruginosa in different eye infections is associated with different virulence factors . METHODS In this study, 54 P. aeruginosa isolates including 39 isolates from keratitis and 15 isolates from conjunctivitis were evaluated for their ability to form biofilm, production of protease, elastase, alkaline protease and their antibiotic-resistant patterns. The distribution of the exoS and exoU genes in the test strains were determined using PCR assays. RESULTS Most of the eye infections (90.74%) were seen in people who used contact lenses, and in most of patients (72.22%), the infection was presented as keratitis. None of the isolates were resistant to a single antibiotic as tested. Multidrug resistance (MDR) was detected in two isolates (3.5%) which were resistant to more than one category of antibiotics. The exoU+/exoS+ isolates were in majority although in total, compared to exoS, there were more exoU in a greater number of samples. Most of the strains produce elastase but among all of ocular isolates, only 5.8% of the strains showed alkaline protease activity. Most of the ocular isolates were not capable of producing biofilm. CONCLUSIONS In our study, a high prevalence of virulence factors was observed in P. aeruginosa isolates from contact lens wearer with keratitis. As the P. aeruginosa isolates from different infection origins and different geographic region may have different virulence factors, having a better perception of these differences could help to improve development of clinical instructions for the control of keratitis.
Collapse
Affiliation(s)
- Farahnoosh Doustdar
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Karimi
- Department of Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Zohreh Abedinyfar
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Asadi Amoli
- Department of Pathology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
19
|
Chaves L, Tomich LM, Salomão M, Leite GC, Ramos J, Martins RR, Rizek C, Neves P, Batista MV, Amigo U, Guimaraes T, Levin AS, Costa SF. High mortality of bloodstream infection outbreak caused by carbapenem-resistant P. aeruginosa producing SPM-1 in a bone marrow transplant unit. J Med Microbiol 2017; 66:1722-1729. [PMID: 29095142 DOI: 10.1099/jmm.0.000631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Carbapenem resistance in P. aeruginosa is increasing worldwide. In Brazil, SPM-1 is the main P. aeruginosa carbapenemase identified. Little is known about the virulence factor in SPM-1 clones.Methodolgy. We describe a carbapenem-resistant P. aeruginosa bloodstream infection (CRPa-BSI) outbreak in a bone marrow transplant Unit (BMT). Twenty-nine CRPa-BSI cases were compared to 58 controls. Microbiological characteristics of isolates, such as sensitivity, carbapenemase gene PCR for P. aeruginosa, and PFGE are described, as well as the whole-genome sequence (WGS) of three strains.Results/Key findings. The cultures from environmental and healthcare workers were negative. Some isolates harboured KPC and SPM. The WGS showed that the 03 strains belonged to ST277, presented the same mutations in outer membrane protein, efflux pump, and virulence genes such as those involved in adhesion, biofilm, quorum-sensing and the type III secretion system, but differ regarding the carbapenemase profile. A predominant clone-producing SPM harbouring Tn 4371 was identified and showed cross-transmission; no common source was found. Overall mortality rate among cases was 79 %. The first multivariate analysis model showed that neutropenia (P=0.018), GVHD prophylaxis (P=0.016) and prior use of carbapenems (P=0.0089) were associated with CRPa-BSI. However, when MASCC>21 points and platelets were added in the final multivariate analysis, only prior use of carbapenems remained as an independent risk factor for CRPa-BSI (P=0.043). CONCLUSIONS The predominant clone belonging to ST277 showed high mortality. Carbapenem use was the only risk factor associated with CRPa-BSI. This finding is a wake-up call for the need to improve management in BMT units.
Collapse
Affiliation(s)
- Lucas Chaves
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lísia Moura Tomich
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matias Salomão
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Gleice Cristina Leite
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Jessica Ramos
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberta Ruedas Martins
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camila Rizek
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Patricia Neves
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Marjorie Vieira Batista
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ulysses Amigo
- Bone Marrow Transplantation Unit, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Thais Guimaraes
- Infection Control Committee, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Anna Sara Levin
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Silvia Figueiredo Costa
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil.,Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Weinert LA, Welch JJ. Why Might Bacterial Pathogens Have Small Genomes? Trends Ecol Evol 2017; 32:936-947. [PMID: 29054300 DOI: 10.1016/j.tree.2017.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
Bacteria that cause serious disease often have smaller genomes, and fewer genes, than their nonpathogenic, or less pathogenic relatives. Here, we review evidence for the generality of this association, and summarise the various reasons why the association might hold. We focus on the population genetic processes that might lead to reductive genome evolution, and show how several of these could be connected to pathogenicity. We find some evidence for most of the processes having acted in bacterial pathogens, including several different modes of genome reduction acting in the same lineage. We argue that predictable processes of genome evolution might not reflect any common underlying process.
Collapse
Affiliation(s)
- Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
21
|
Robinson JL, Jaslove JM, Murawski AM, Fazen CH, Brynildsen MP. An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa. Metab Eng 2017; 41:67-81. [PMID: 28363762 DOI: 10.1016/j.ymben.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/21/2016] [Accepted: 03/27/2017] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2-) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3-) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO3-→NO2-→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O2, NO2-, and NO3- in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3-, which was relieved upon O2 depletion. As cell growth depleted dissolved O2 levels, NO3- was converted to NO2- at near-stoichiometric levels, whereas NO2- consumption did not coincide with NO or NO3- accumulation. Assimilatory NO2- reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Allison M Murawski
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Christopher H Fazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
22
|
Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol 2017; 7:39. [PMID: 28261568 PMCID: PMC5310132 DOI: 10.3389/fcimb.2017.00039] [Citation(s) in RCA: 834] [Impact Index Per Article: 119.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance and avoiding the spreading of resistant strains.
Collapse
Affiliation(s)
| | | | - Bernd H. A. Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
| |
Collapse
|
23
|
Woo TE, Duong J, Jervis NM, Rabin HR, Parkins MD, Storey DG. Virulence adaptations of Pseudomonas aeruginosa isolated from patients with non-cystic fibrosis bronchiectasis. MICROBIOLOGY-SGM 2016; 162:2126-2135. [PMID: 27902425 DOI: 10.1099/mic.0.000393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa is a major pathogen in chronic lung diseases such as cystic fibrosis (CF) and non-cystic fibrosis bronchiectasis (nCFB). Much of our understanding regarding infections in nCFB patients is extrapolated from findings in CF with little direct investigation on the adaptation of P. aeruginosa in nCFB patients. As such, we investigated whether the adaptation of P. aeruginosa was indeed similar between nCFB and CF. From our prospectively collected biobank, we identified 40 nCFB patients who had repeated P. aeruginosa isolates separated by ≥6 months and compared these to a control population of 28 CF patients. A total of 84 nCFB isolates [40 early (defined as the earliest isolate in the biobank) and 41 late (defined as the last available isolate in the biobank)] were compared to 83 CF isolates (39 early and 44 late). We assessed the isolates for protease, lipase and elastase production; mucoid phenotype; swarm and swim motility; biofilm production; and the presence of the lasR mutant phenotype. Overall, we observed phenotypic heterogeneity in both nCFB and CF isolates and found that P. aeruginosa adapted to the nCFB lung environment similarly to the way observed in CF isolates in terms of protease and elastase expression, motility and biofilm formation. However, significant differences between nCFB and CF isolates were observed in lipase expression, which may allude to distinct characteristics found in the lung environment of nCFB patients. We also sought to determine virulence potential over time in nCFB P. aeruginosa isolates and found that virulence decreased over time, similar to CF.
Collapse
Affiliation(s)
- Taylor E Woo
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jessica Duong
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Nicole M Jervis
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.,Department of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.,Department of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Douglas G Storey
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.,Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Metabolic flux analyses of Pseudomonas aeruginosa cystic fibrosis isolates. Metab Eng 2016; 38:251-263. [PMID: 27637318 DOI: 10.1016/j.ymben.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/07/2016] [Accepted: 09/11/2016] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is a metabolically versatile wide-ranging opportunistic pathogen. In humans P. aeruginosa causes infections of the skin, urinary tract, blood, and the lungs of Cystic Fibrosis patients. In addition, P. aeruginosa's broad environmental distribution, relatedness to biotechnologically useful species, and ability to form biofilms have made it the focus of considerable interest. We used 13C metabolic flux analysis (MFA) and flux balance analysis to understand energy and redox production and consumption and to explore the metabolic phenotypes of one reference strain and five strains isolated from the lungs of cystic fibrosis patients. Our results highlight the importance of the oxidative pentose phosphate and Entner-Doudoroff pathways in P. aeruginosa growth. Among clinical strains we report two divergent metabolic strategies and identify changes between genetically related strains that have emerged during a chronic infection of the same patient. MFA revealed that the magnitude of fluxes through the glyoxylate cycle correlates with growth rates.
Collapse
|
25
|
Reen FJ, Flynn S, Woods DF, Dunphy N, Chróinín MN, Mullane D, Stick S, Adams C, O'Gara F. Bile signalling promotes chronic respiratory infections and antibiotic tolerance. Sci Rep 2016; 6:29768. [PMID: 27432520 PMCID: PMC4949476 DOI: 10.1038/srep29768] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/17/2016] [Indexed: 12/29/2022] Open
Abstract
Despite aggressive antimicrobial therapy, many respiratory pathogens persist in the lung, underpinning the chronic inflammation and eventual lung decline that are characteristic of respiratory disease. Recently, bile acid aspiration has emerged as a major comorbidity associated with a range of lung diseases, shaping the lung microbiome and promoting colonisation by Pseudomonas aeruginosa in Cystic Fibrosis (CF) patients. In order to uncover the molecular mechanism through which bile modulates the respiratory microbiome, a combination of global transcriptomic and phenotypic analyses of the P. aeruginosa response to bile was undertaken. Bile responsive pathways responsible for virulence, adaptive metabolism, and redox control were identified, with macrolide and polymyxin antibiotic tolerance increased significantly in the presence of bile. Bile acids, and chenodeoxycholic acid (CDCA) in particular, elicited chronic biofilm behaviour in P. aeruginosa, while induction of the pro-inflammatory cytokine Interleukin-6 (IL-6) in lung epithelial cells by CDCA was Farnesoid X Receptor (FXR) dependent. Microbiome analysis of paediatric CF sputum samples demonstrated increased colonisation by P. aeruginosa and other Proteobacterial pathogens in bile aspirating compared to non-aspirating patients. Together, these data suggest that bile acid signalling is a leading trigger for the development of chronic phenotypes underlying the pathophysiology of chronic respiratory disease.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Stephanie Flynn
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Niall Dunphy
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | - David Mullane
- Paediatric Cystic Fibrosis Unit, Cork University Hospital, Cork, Ireland
| | | | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.,Telethon Kids Institute, Perth, Western Australia.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|