1
|
Sun Y, Zhao X, Fan X, Wang M, Li C, Liu Y, Wu P, Yan Q, Sun L. Assessing the impact of sequencing platforms and analytical pipelines on whole-exome sequencing. Front Genet 2024; 15:1334075. [PMID: 38818042 PMCID: PMC11137314 DOI: 10.3389/fgene.2024.1334075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Yanping Sun
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Xiaochao Zhao
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Xue Fan
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Wang
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Chaoyang Li
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Yongfeng Liu
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Ping Wu
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Qin Yan
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Lei Sun
- GeneMind Biosciences Company Limited, Shenzhen, China
| |
Collapse
|
2
|
Long Q, Yuan Y, Li M. RNA-SSNV: A Reliable Somatic Single Nucleotide Variant Identification Framework for Bulk RNA-Seq Data. Front Genet 2022; 13:865313. [PMID: 35846154 PMCID: PMC9279659 DOI: 10.3389/fgene.2022.865313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The usage of expressed somatic mutations may have a unique advantage in identifying active cancer driver mutations. However, accurately calling mutations from RNA-seq data is difficult due to confounding factors such as RNA-editing, reverse transcription, and gap alignment. In the present study, we proposed a framework (named RNA-SSNV, https://github.com/pmglab/RNA-SSNV) to call somatic single nucleotide variants (SSNV) from tumor bulk RNA-seq data. Based on a comprehensive multi-filtering strategy and a machine-learning classification model trained with comprehensively curated features, RNA-SSNV achieved the best precision–recall rate (0.880–0.884) in a testing dataset and robustly retained 0.94 AUC for the precision–recall curve in three validation adult-based TCGA (The Cancer Genome Atlas) datasets. We further showed that the somatic mutations called by RNA-SSNV tended to have a higher functional impact and therapeutic power in known driver genes. Furthermore, VAF (variant allele fraction) analysis revealed that subclonal harboring expressed mutations had evolutional selection advantage and RNA had higher detection power to rescue DNA-omitted mutations. In sum, RNA-SSNV will be a useful approach to accurately call expressed somatic mutations for a more insightful analysis of cancer drive genes and carcinogenic mechanisms.
Collapse
Affiliation(s)
- Qihan Long
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - Yangyang Yuan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
- *Correspondence: Miaoxin Li,
| |
Collapse
|
3
|
Wu W, Lovett JL, Shedden K, Strassmann BI, Vincenz C. Targeted RNA-seq improves efficiency, resolution, and accuracy of allele specific expression for human term placentas. G3 (BETHESDA, MD.) 2021; 11:jkab176. [PMID: 34009305 PMCID: PMC8496276 DOI: 10.1093/g3journal/jkab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 12/30/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in allele-specific expression (ASE) based on the parent of origin. It is known to play a role in the prenatal and postnatal allocation of maternal resources in mammals. ASE detected by whole transcriptome RNA-seq (wht-RNAseq) has been widely used to analyze imprinted genes using reciprocal crosses in mice to generate large numbers of informative SNPs. Studies in humans are more challenging due to the paucity of SNPs and the poor preservation of RNA in term placentas and other tissues. Targeted RNA-seq (tar-RNAseq) can potentially mitigate these challenges by focusing sequencing resources on the regions of interest in the transcriptome. Here, we compared tar-RNAseq and wht-RNAseq in a study of ASE in known imprinted genes in placental tissue collected from a healthy human cohort in Mali, West Africa. As expected, tar-RNAseq substantially improved the coverage of SNPs. Compared to wht-RNAseq, tar-RNAseq produced on average four times more SNPs in twice as many genes per sample and read depth at the SNPs increased fourfold. In previous research on humans, discordant ASE values for SNPs of the same gene have limited the ability to accurately quantify ASE. We show that tar-RNAseq reduces this limitation as it unexpectedly increased the concordance of ASE between SNPs of the same gene, even in cases of degraded RNA. Studies aimed at discovering associations between individual variation in ASE and phenotypes in mammals and flowering plants will benefit from the improved power and accuracy of tar-RNAseq.
Collapse
Affiliation(s)
- Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennie L Lovett
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Beverly I Strassmann
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, USA
| | - Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, USA
| |
Collapse
|
4
|
A Missense Mutation in OPA1 Causes Dominant Optic Atrophy in a Chinese Family. J Ophthalmol 2019; 2019:1424928. [PMID: 31781369 PMCID: PMC6875404 DOI: 10.1155/2019/1424928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 11/21/2022] Open
Abstract
Background To investigate the genetic causes and clinical characteristics of dominant optic atrophy (DOA) in a Chinese family. Methods A 5-generation pedigree of 35 family members including 12 individuals affected with DOA was recruited from Shenzhen Eye Hospital, China. Four affected family members and one unaffected family member were selected for whole exome sequencing. Sanger sequencing was used to confirm and screen the identified mutation in 18 members of the family. The disease-causing mutation was identified by bioinformatics analysis and confirmed by segregation analysis. The clinical characteristics of the family members were analyzed. Results A heterozygous missense mutation (c.1313A>G, p.D438G) in optic atrophy 1 (OPA1) was identified in 10 individuals affected with DOA in this family. None of the unaffected family members had the mutation. Patients in this family had vision loss since they were children or adolescence. The visual acuity decreased progressively to hand movement, except for one patient (IV-12) who had relatively good vision of 20/30 and 20/28. The fundus typically manifested as optic disc pallor. The visual fields, optical coherence tomography, and visual evoked potential suggested variable degree of abnormality in patients. Patients who had a history of cigarette smoking and alcohol drinking had more severe clinical manifestations. Conclusions Our results suggest that the p.D438G mutation in OPA1 causes optic atrophy in this family. The patients who carried the mutation demonstrated heterogeneous clinical manifestations in this family. This is the first report on the c.1313A>G (p.D438G) mutation of OPA1 in a Chinese family affected with DOA.
Collapse
|
5
|
Wollison BM, Thai E, Mckinney A, Ward A, Clapp A, Clinton C, Nag A, Thorner AR, Gastier-Foster JM, Crompton BD. Blood collection in cell-stabilizing tubes does not impact germline DNA quality for pediatric patients. PLoS One 2017; 12:e0188835. [PMID: 29206863 PMCID: PMC5716571 DOI: 10.1371/journal.pone.0188835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Liquid biopsy technologies allow non-invasive tumor profiling for patients with solid tumor malignancies by sequencing circulating tumor DNA. These studies may be useful in risk-stratification, monitoring for relapse, and understanding tumor evolution. The quality of DNA obtained for these studies is improved when blood samples are collected in tubes that stabilizing white blood cells (WBC). However, ongoing germline research in pediatric oncology generally requires obtaining blood samples in EDTA tubes, which do not contain a WBC-stabilizing preservative. In this study, we explored whether blood samples collected in WBC-stabilizing tubes could be used for both liquid biopsy and germline studies simultaneously, minimizing blood collection volumes for pediatric patients. METHODS Blood was simultaneously collected from three patients in both EDTA and Streck Cell-Free DNA BCT® tubes. Germline DNA was extracted from all blood samples and subjected to whole-exome sequencing and microarray profiling. RESULTS Quality control metrics of DNA quality, sequencing library preperation and whole-exome sequencing alignment were virtually identical regardless of the sample collection method. There was no discernable difference in patterns of variant calling for paired samples by either whole-exome sequencing or microarray analysis. CONCLUSION Our study demonstrates that high-quality genomic studies may be performed from germline DNA obtained in Streck tubes. Therefore, these tubes may be used to simultaneously obtain samples for both liquid biopsy and germline studies in pediatric patients when the volume of blood available for research studies may be limited.
Collapse
Affiliation(s)
- Bruce M. Wollison
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Edwin Thai
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Aimee Mckinney
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Abigail Ward
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, United States of America
| | - Andrea Clapp
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Catherine Clinton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, United States of America
| | - Anwesha Nag
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Aaron R. Thorner
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Julie M. Gastier-Foster
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Brian D. Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, United States of America
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|