1
|
Lasalle A, Benech-Correa G, Brunet FG, Vizziano-Cantonnet D. hsd17b1 is a key gene for ovarian differentiation of the Siberian sturgeon. Mol Reprod Dev 2024; 91:e23729. [PMID: 38282315 DOI: 10.1002/mrd.23729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
This is the first work using gonads from undifferentiated, genetically-sexed Siberian sturgeon describing expression changes in genes related to steroid synthesis and female and male sex differentiation. One factor identified as relevant for ovarian differentiation was the gene coding for the enzyme Hsd17b1, which converts estrone into estradiol-17β. hsd17b1 was highly activated in female gonads at 2.5 months of age, around the onset of sex differentiation, preceding activation of two other genes involved in estrogen production (cyp19a1 and foxl2). hsd17b1 was also strongly repressed in males. Two known foxl2 paralogs are found in Siberian sturgeon-foxl2 and foxl2l-but only foxl2 appeared to be associated with ovarian differentiation. With regard to the male pathway, neither 11-oxygenated androgens nor classic male genes (amh, dmrt1, sox9, and dhh) were found to be involved in male sex differentiation, leaving open the question of which genes participate in early male gonad development in this ancient fish. Taken together, these results indicate an estrogen-dependence of female sex differentiation and 11-oxygenated androgen-independence of male sex differentiation.
Collapse
Affiliation(s)
- André Lasalle
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Germán Benech-Correa
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon, France
| | - Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| |
Collapse
|
2
|
Li Y, Liu L, Zhang L, Wei H, Wu S, Liu T, Shu Y, Yang Y, Yang Z, Wang S, Bao Z, Zhang L. Dynamic transcriptome analysis reveals the gene network of gonadal development from the early history life stages in dwarf surfclam Mulinia lateralis. Biol Sex Differ 2022; 13:69. [PMID: 36461090 PMCID: PMC9716669 DOI: 10.1186/s13293-022-00479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Gonadal development is driven by a complex genetic cascade in vertebrates. However, related information remains limited in molluscs owing to the long generation time and the difficulty in maintaining whole life cycle in the lab. The dwarf surfclam Mulinia lateralis is considered an ideal bivalve model due to the short generation time and ease to breed in the lab. RESULTS To gain a comprehensive understanding of gonadal development in M. lateralis, we conducted a combined morphological and molecular analysis on the gonads of 30 to 60 dpf. Morphological analysis showed that gonad formation and sex differentiation occur at 35 and 40-45 dpf, respectively; then the gonads go through gametogenic cycle. Gene co-expression network analysis on 40 transcriptomes of 35-60 dpf gonads identifies seven gonadal development-related modules, including two gonad-forming modules (M6, M7), three sex-specific modules (M14, M12, M11), and two sexually shared modules (M15, M13). The modules participate in different biological processes, such as cell communication, glycan biosynthesis, cell cycle, and ribosome biogenesis. Several hub transcription factors including SOX2, FOXZ, HSFY, FOXL2 and HES1 are identified. The expression of top hub genes from sex-specific modules suggests molecular sex differentiation (35 dpf) occurs earlier than morphological sex differentiation (40-45 dpf). CONCLUSION This study provides a deep insight into the molecular basis of gonad formation, sex differentiation and gametogenesis in M. lateralis, which will contribute to a comprehensive understanding of the reproductive regulation network in molluscs.
Collapse
Affiliation(s)
- Yajuan Li
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Liangjie Liu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Lijing Zhang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Huilan Wei
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shaoxuan Wu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Tian Liu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Ya Shu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Yaxin Yang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Zujing Yang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shi Wang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.4422.00000 0001 2152 3263Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenmin Bao
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.4422.00000 0001 2152 3263Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lingling Zhang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
3
|
Brown MS, Evans BS, Afonso LOB. Developmental changes in gene expression and gonad morphology during sex differentiation in Atlantic salmon (Salmo salar). Gene 2022; 823:146393. [PMID: 35248662 DOI: 10.1016/j.gene.2022.146393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
The Atlantic salmon (Salmo salar) is a globally important species for its value in fisheries and aquaculture, and as a research model. In order to characterise aspects of sex differentiation at the morphological and mRNA level in this species, the present study examined developmental changes in gonad morphology and gene expression in males and females between 0 and 79 days post hatch (dph). Morphological differentiation of the ovary (indicated by the formation of germ cell cysts) became apparent from 52 dph. By 79 dph, ovarian phenotype was evident in 100% of genotypic females. Testes remained in an undifferentiated-like state throughout the experiment, containing germ cells dispersed singularly within the gonadal region distal to the mesentery. There were no significant sex-related differences in gonad cross-section size, germ cell number or germ cell diameter during the experiment. The expression of genes involved in teleost sex differentiation (anti-müllerian hormone (amh), cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a), forkhead box L2a (foxl2a), gonadal soma-derived factor (gsdf), r-spondin 1 (rspo1), sexually dimorphic on the Y chromosome (sdY)), retinoic acid-signalling (aldehyde dehydrogenase 1a2 (aldh1a2), cytochrome P450 family 26 a1 (cyp26a1), cytochrome P450 family 26 b1 (cyp26b1), t-box transcription factor 1 (tbx1a)) and neuroestrogen production (cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b)) was investigated. Significant sex-related differences were observed only for the expression of amh, cyp19a1a, gsdf and sdY. In males, amh, gsdf and sdY were upregulated from 34, 59 and 44 dph respectively. In females, cyp19a1a was upregulated from 66 dph. Independent of sex, foxl2a expression was highest at 0 dph and had reduced ∼ 47-fold by the time of morphological sex differentiation at 52 dph. This study provides new insights into the timing and sequence of some physiological changes associated with sex differentiation in Atlantic salmon. These findings also reveal that some aspects of the mRNA sex differentiation pathways in Atlantic salmon are unique compared to other teleost fishes, including other salmonids.
Collapse
Affiliation(s)
- Morgan S Brown
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Warrnambool Campus, Warrnambool, Victoria 3280, Australia.
| | - Brad S Evans
- Tassal Operations, Hobart, Tasmania 7000, Australia.
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| |
Collapse
|
4
|
Zhou H, Sun Y, Li X, Zhou Z, Ma K, Guo W, Liang Y, Xie X, Zhang J, Wang Q, Liu Y. A Transcriptomic Analysis of Gonads from the Low-Temperature-Induced Masculinization of Takifugu rubripes. Animals (Basel) 2021; 11:ani11123419. [PMID: 34944196 PMCID: PMC8697924 DOI: 10.3390/ani11123419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Our study analyzed the differentiation of transcriptomes in normal and sex-reverse Takifugu rubripes, and screened out 13 differentially expressed genes related to sex differentiation. This is the first report on the gonadal transcriptome of pseudo-males in Takifugu rubripes. Our results provide an important contribution to the molecular mechanism of masculinization in a cultured fish subject to low-temperature treatment. Abstract The phenotypic sex of fish is usually plastic. Low-temperature treatment induces the masculinization of Takifugu rubripes, resulting in pseudo-males (PM) with the physiological sex of a male (M) and genetic sex of a female (F). For a comparison of gonadal transcriptomes, we collected gonads from three groups of T. rubripes (F, M, and PM) for high-throughput transcriptome sequencing. The results provided 467,640,218 raw reads (70.15 Gb) and a total of 436,151,088 clean reads (65.43 Gb), with an average length of 150 bp. Only 79 differentially expressed genes (DEGs) were identified between F and PM, whereas 12,041 and 11,528 DEGs were identified between F and M, and PM and M, respectively. According to the functional annotation of DEGs, 13 DEGs related to gonadal development were screened (LOC101066759, dgat1, limk1, fbxl3, col6a3, fgfr3, dusp22b, svil, abhd17b, srgap3, tmem88b, bud4, and mustn10) which might participate in formating PM. A quantitative PCR of the DEGs confirmed the reliability of the RNA-seq. Our results provide an important contribution to the genome sequence resources for T. rubripes and insight into the molecular mechanism of masculinization in a cultured fish subject to low-temperature treatment.
Collapse
Affiliation(s)
- He Zhou
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Yuqing Sun
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Xin Li
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Ziyu Zhou
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Kexin Ma
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Wenxuan Guo
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Yuting Liang
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Xingyi Xie
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Jingxian Zhang
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Correspondence: (Q.W.); (Y.L.)
| | - Yang Liu
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Correspondence: (Q.W.); (Y.L.)
| |
Collapse
|
5
|
Dechaud C, Miyake S, Martinez-Bengochea A, Schartl M, Volff JN, Naville M. Clustering of Sex-Biased Genes and Transposable Elements in the Genome of the Medaka Fish Oryzias latipes. Genome Biol Evol 2021; 13:6384576. [PMID: 34623422 PMCID: PMC8633743 DOI: 10.1093/gbe/evab230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Although genes with similar expression patterns are sometimes found in the same genomic regions, almost nothing is known about the relative organization in genomes of genes and transposable elements (TEs), which might influence each other at the regulatory level. In this study, we used transcriptomic data from male and female gonads of the Japanese medaka Oryzias latipes to define sexually biased genes and TEs and analyze their relative genomic localization. We identified 20,588 genes expressed in the adult gonads of O. latipes. Around 39% of these genes are differentially expressed between male and female gonads. We further analyzed the expression of TEs using the program SQuIRE and showed that more TE copies are overexpressed in testis than in ovaries (36% vs. 10%, respectively). We then developed a method to detect genomic regions enriched in testis- or ovary-biased genes. This revealed that sex-biased genes and TEs are not randomly distributed in the genome and a part of them form clusters with the same expression bias. We also found a correlation of expression between TE copies and their closest genes, which increases with decreasing intervening distance. Such a genomic organization suggests either that TEs hijack the regulatory sequences of neighboring sexual genes, allowing their expression in germ line cells and consequently new insertions to be transmitted to the next generation, or that TEs are involved in the regulation of sexual genes, and might therefore through their mobility participate in the rewiring of sex regulatory networks.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Sho Miyake
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | | | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Hsu CW, Chung BC. Evolution, Expression, and Function of Gonadal Somatic Cell-Derived Factor. Front Cell Dev Biol 2021; 9:684352. [PMID: 34307362 PMCID: PMC8292791 DOI: 10.3389/fcell.2021.684352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Fish gonads develop in very diverse ways different from mammalian gonads. This diversity is contributed by species-specific factors. Gonadal somatic cell-derived factor (Gsdf) is one such factor. The gsdf gene exists mostly in teleosts and is absent in many tetrapods, probably as a result of two gene losses during evolution. The gsdf transcript is expressed mainly in gonadal somatic cells, including Sertoli cell in testis and granulosa cells in ovary; however, these gonadal somatic cells can surround many types of germ cells at different developmental stages depending on the fish species. The function of gsdf is also variable. It is involved in germ cell proliferation, testicular formation, ovarian development and even male sex determination. Here, we summarize the common and diverse expression, regulation and functions of gsdf among different fish species with aspect of evolution.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Martínez P, Robledo D, Taboada X, Blanco A, Moser M, Maroso F, Hermida M, Gómez-Tato A, Álvarez-Blázquez B, Cabaleiro S, Piferrer F, Bouza C, Lien S, Viñas AM. A genome-wide association study, supported by a new chromosome-level genome assembly, suggests sox2 as a main driver of the undifferentiatiated ZZ/ZW sex determination of turbot (Scophthalmus maximus). Genomics 2021; 113:1705-1718. [PMID: 33838278 DOI: 10.1016/j.ygeno.2021.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Understanding sex determination (SD) across taxa is a major challenge for evolutionary biology. The new genomic tools are paving the way to identify genomic features underlying SD in fish, a group frequently showing limited sex chromosome differentiation and high SD evolutionary turnover. Turbot (Scophthalmus maximus) is a commercially important flatfish with an undifferentiated ZW/ZZ SD system and remarkable sexual dimorphism. Here we describe a new long-read turbot genome assembly used to disentangle the genetic architecture of turbot SD by combining genomics and classical genetics approaches. RESULTS The new turbot genome assembly consists of 145 contigs (N50 = 22.9 Mb), 27 of them representing >95% of its estimated genome size. A genome wide association study (GWAS) identified a ~ 6.8 Mb region on chromosome 12 associated with sex in 69.4% of the 36 families analyzed. The highest associated markers flanked sox2, the only gene in the region showing differential expression between sexes before gonad differentiation. A single SNP showed consistent differences between Z and W chromosomes. The analysis of a broad sample of families suggested the presence of additional genetic and/or environmental factors on turbot SD. CONCLUSIONS The new chromosome-level turbot genome assembly, one of the most contiguous fish assemblies to date, facilitated the identification of sox2 as a consistent candidate gene putatively driving SD in this species. This chromosome SD system barely showed any signs of differentiation, and other factors beyond the main QTL seem to control SD in a certain proportion of families.
Collapse
Affiliation(s)
- Paulino Martínez
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - Xoana Taboada
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Andrés Blanco
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - Michel Moser
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Francesco Maroso
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Miguel Hermida
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - Antonio Gómez-Tato
- Departament of Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Blanca Álvarez-Blázquez
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Cabo Estay-Canido, 36280 Vigo, Spain.
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira, 15695 A Coruña, Spain.
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain.
| | - Carmen Bouza
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Ana M Viñas
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
9
|
Wei H, Li W, Liu T, Li Y, Liu L, Shu Y, Zhang L, Wang S, Xing Q, Zhang L, Bao Z. Sexual Development of the Hermaphroditic Scallop Argopecten irradians Revealed by Morphological, Endocrine and Molecular Analysis. Front Cell Dev Biol 2021; 9:646754. [PMID: 33796533 PMCID: PMC8007870 DOI: 10.3389/fcell.2021.646754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Simultaneous or functional hermaphrodites possessing both ovary and testis at the same time are good materials for studying sexual development. However, previous research on sex determination and differentiation was mainly conducted in gonochoristic species and studies on simultaneous hermaphrodites are still limited. In this study, we conducted a combined morphological, endocrine and molecular study on the gonadal development of a hermaphroditic scallop Argopecten irradians aged 2–10 month old. Morphological analysis showed that sex differentiation occurred at 6 months of age. By examining the dynamic changes of progesterone, testosterone and estradiol, we found testosterone and estradiol were significantly different between the ovaries and testes almost throughout the whole process, suggesting the two hormones may be involved in scallop sex differentiation. In addition, we identified two critical sex-related genes FoxL2 and Dmrt1L, and investigated their spatiotemporal expression patterns. Results showed that FoxL2 and Dmrt1L were female- and male-biased, respectively, and mainly localized in the germ cells and follicular cells, indicating their feasibility as molecular markers for early identification of sex. Further analysis on the changes of FoxL2 and Dmrt1L expression in juveniles showed that significant sexual dimorphic expression of FoxL2 occurred at 2 months of age, earlier than that of Dmrt1L. Moreover, FoxL2 expression was significantly correlated with estradiol/testosterone ratio (E2/T). All these results indicated that molecular sex differentiation occurs earlier than morphological sex differentiation, and FoxL2 may be a key driver that functions through regulating sex steroid hormones in the scallop. This study will deepen our understanding of the molecular mechanism underlying sex differentiation and development in spiralians.
Collapse
Affiliation(s)
- Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Tian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Liangjie Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ya Shu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Lijing Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
10
|
Imarazene B, Beille S, Jouanno E, Branthonne A, Thermes V, Thomas M, Herpin A, Rétaux S, Guiguen Y. Primordial Germ Cell Migration and Histological and Molecular Characterization of Gonadal Differentiation in Pachón Cavefish Astyanax mexicanus. Sex Dev 2021; 14:80-98. [PMID: 33691331 DOI: 10.1159/000513378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
The genetic regulatory network governing vertebrate gonadal differentiation appears less conserved than previously thought. Here, we investigated the gonadal development of Astyanax mexicanus Pachón cavefish by looking at primordial germ cells (PGCs) migration and proliferation, gonad histology, and gene expression patterns. We showed that PGCs are first detected at the 80% epiboly stage and then reach the gonadal primordium at 1 day post-fertilization (dpf). However, in contrast to the generally described absence of PGCs proliferation during their migration phase, PGCs number in cavefish doubles between early neurula and 8-9 somites stages. Combining both gonadal histology and vasa (germ cell marker) expression patterns, we observed that ovarian and testicular differentiation occurs around 65 dpf in females and 90 dpf in males, respectively, with an important inter-individual variability. The expression patterns of dmrt1, gsdf, and amh revealed a conserved predominant male expression during cavefish gonadal development, but none of the ovarian differentiation genes, i. e., foxl2a, cyp19a1a, and wnt4b displayed an early sexually dimorphic expression, and surprisingly all these genes exhibited predominant expression in adult testes. Altogether, our results lay the foundation for further research on sex determination and differentiation in A. mexicanus and contribute to the emerging picture that the vertebrate sex differentiation downstream regulatory network is less conserved than previously thought, at least in teleost fishes.
Collapse
Affiliation(s)
- Boudjema Imarazene
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France.,Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Séverine Beille
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Elodie Jouanno
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Adéle Branthonne
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Violette Thermes
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Manon Thomas
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Amaury Herpin
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Yann Guiguen
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France,
| |
Collapse
|
11
|
Dong J, Li J, Hu J, Sun C, Tian Y, Li W, Yan N, Sun C, Sheng X, Yang S, Shi Q, Ye X. Comparative Genomics Studies on the dmrt Gene Family in Fish. Front Genet 2020; 11:563947. [PMID: 33281869 PMCID: PMC7689362 DOI: 10.3389/fgene.2020.563947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023] Open
Abstract
Doublesex and mab-3-related transcription factor (dmrt) genes are widely distributed across various biological groups and play critical roles in sex determination and neural development. Here, we applied bioinformatics methods to exam cross-species changes in the dmrt family members and evolutionary relationships of the dmrt genes based on genomes of 17 fish species. All the examined fish species have dmrt1-5 while only five species contained dmrt6. Most fish harbored two dmrt2 paralogs (dmrt2a and dmrt2b), with dmrt2b being unique to fish. In the phylogenetic tree, 147 DMRT are categorized into eight groups (DMRT1-DMRT8) and then clustered in three main groups. Selective evolutionary pressure analysis indicated purifying selections on dmrt1-3 genes and the dmrt1-3-2(2a) gene cluster. Similar genomic conservation patterns of the dmrt1-dmrt3-dmrt2(2a) gene cluster with 20-kb upstream/downstream regions in fish with various sex-determination systems were observed except for three regions with remarkable diversity. Synteny analysis revealed that dmrt1, dmrt2a, dmrt2b, and dmrt3-5 were relatively conserved in fish during the evolutionary process. While dmrt6 was lost in most species during evolution. The high conservation of the dmrt1-dmrt3-dmrt2(2a) gene cluster in various fish genomes suggests their crucial biological functions while various dmrt family members and sequences across fish species suggest different biological roles during evolution. This study provides a molecular basis for fish dmrt functional analysis and may serve as a reference for in-depth phylogenomics.
Collapse
Affiliation(s)
- Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI Group, Shenzhen, China
| | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Ningning Yan
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chengxi Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xihui Sheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI Group, Shenzhen, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
12
|
Wang Q, Liu K, Feng B, Zhang Z, Wang R, Tang L, Li W, Li Q, Piferrer F, Shao C. Transcriptome of Gonads From High Temperature Induced Sex Reversal During Sex Determination and Differentiation in Chinese Tongue Sole, Cynoglossus semilaevis. Front Genet 2019; 10:1128. [PMID: 31824559 PMCID: PMC6882949 DOI: 10.3389/fgene.2019.01128] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
The sex of Chinese tongue sole (Cynoglossus semilaevis) is determined by both genetic sex determination (GSD) and environmental sex determination (ESD), making it an ideal model to study the relationship between sex-determination and temperature. In the present study, transcriptomes of undifferentiated gonads from genetic females and males, as well as differentiated gonads from males, females, and pseudomales under high and normal temperature treatments were generated for comparative transcriptomic analysis. A mean of 68.24 M high-quality clean reads was obtained for each library. Differentially expressed genes (DEGs) between different sexes and environmental treatments were identified, revealing that the heat shock protein gene family was involved in the high temperature induced sex reversal. The Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were enriched in pseudomale and genetic female comparison included neuroactive ligand-receptor interaction, cortisol synthesis and secretion, and steroid hormone biosynthesis. Furthermore, weighted gene co-expression network analyses were conducted on all samples, and two modules were positive correlated with pseudomale under high temperature. An illustrated protein-protein interaction map of the module identified a hub gene, hsc70. These findings provide insights into the genetic network that is involved in sex determination and sexual differentiation, and improve our understanding of genes involved in sex reversal under high temperature.
Collapse
Affiliation(s)
- Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhihua Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Renkai Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lili Tang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Qiye Li
- BGI-Shenzhen, Shenzhen, China
| | - Francesc Piferrer
- Institut de Ciències del Mar (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
13
|
Jeng SR, Wu GC, Yueh WS, Kuo SF, Dufour S, Chang CF. Dmrt1 (doublesex and mab-3-related transcription factor 1) expression during gonadal development and spermatogenesis in the Japanese eel. Gen Comp Endocrinol 2019; 279:154-163. [PMID: 30902612 DOI: 10.1016/j.ygcen.2019.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Dmrt1, doublesex- and mab-3-related transcription factor-1, has been suggested to play critical roles in male gonadogenesis, testicular differentiation and development, including spermatogenesis, among different vertebrates. Vasa is a putative molecular marker of germ cells in vertebrates. In this study, we cloned the full-length dmrt1 cDNA from Japanese eel, and the protein comprised 290 amino acids and presented an extremely conserved Doublesex and Mab-3 (DM) domain. Vasa proteins were expressed in gonadal germ cells in a stage-specific manner, and were expressed at high levels in PGC and spermatogonia, low levels in spermatocytes, and were absent in spermatids and spermatozoa of Japanese eels. Dmrt1 proteins were abundantly expressed in spermatogonia B cells, spermatocytes, spermatids, but not in spermatozoa, spermatogonia A and Sertoli cells. To our knowledge, this study is the first to show a restricted expression pattern for the Dmrt1 protein in spermatogonia B cells, but not spermatogonia A cells, of teleosts. Therefore, Dmrt1 might play vital roles at the specific stages during spermatogenesis from spermatogonia B cells to spermatids in the Japanese eel. Moreover, the Dmrt1 protein exhibited a restricted localization in differentiating oogonia in the early differentiating gonad (ovary-like structure) of male Japanese eels and in E2-induced feminized Japanese eels. We proposed that dmrt1 may be not only required for spermatogenesis but might also play a role in oogenesis in the Japanese eel.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Museum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
14
|
Wang F, Yang QW, Zhao WJ, Du QY, Chang ZJ. Effects of short-time exposure to atrazine on miRNA expression profiles in the gonad of common carp (Cyprinus carpio). BMC Genomics 2019; 20:587. [PMID: 31315571 PMCID: PMC6636164 DOI: 10.1186/s12864-019-5896-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Atrazine is widely used in agriculture and is a known endocrine disrupting chemical. Atrazine can seep into the water body through surface, posing a potential threat to the aquatic ecological environment and human drinking water source. In vertebrate, studies have shown that it can affect reproduction and development seriously, but its molecular mechanism for aquatic animals is unknown. Aquaculture is very common in China, especially common carp, whose females grow faster than males. However, the effects of atrazine on the reproduction of carp, especially miRNA, have not been investigated. RESULTS In this study, common carp (Cyprinus carpio) at two key developmental stages were exposed to atrazine in vitro. Sex ratio was observed to analyze the effect of atrazine on the sex. MiRNA expression profiles were analysed to identify miRNAs related to gonad development and to reveal the atrazine mechanisms interfering with gonad differentiation. The results showed that the sex ratio was biased towards females. Atrazine exposure caused significant alteration of multiple miRNAs. Predicted targets of differently-expressed miRNAs were involved in many reproductive biology signalling pathways. CONCLUSIONS Our results indicate that atrazine promoted the expression of female-biased genes by decreasing miRNAs in primordial gonad. In addition, our results indicate that atrazine can up-regulate aromatase expression through miRNAs, which supports the hypothesis that atrazine has endocrine-disrupting activity by altering the gene expression profile of the Hypothalamus-Pituitary-Gonad axis through its corresponding miRNAs.
Collapse
Affiliation(s)
- Fang Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qian-Wen Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Wen-Jie Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qi-Yan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhong-Jie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
15
|
Duangkaew R, Jangprai A, Ichida K, Yoshizaki G, Boonanuntanasarn S. Characterization and expression of a vasa homolog in the gonads and primordial germ cells of the striped catfish (Pangasianodon hypophthalmus). Theriogenology 2019; 131:61-71. [DOI: 10.1016/j.theriogenology.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 10/27/2022]
|
16
|
Liu J, Liu X, Jin C, Du X, He Y, Zhang Q. Transcriptome Profiling Insights the Feature of Sex Reversal Induced by High Temperature in Tongue Sole Cynoglossus semilaevis. Front Genet 2019; 10:522. [PMID: 31191622 PMCID: PMC6548826 DOI: 10.3389/fgene.2019.00522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Sex reversal induced by temperature change is a common feature in fish. Usually, the sex ratio shift occurs when temperature deviates too much from normal during embryogenesis or sex differentiation stages. Despite decades of work, the mechanism of how temperature functions during early development and sex reversal remains mysterious. In this study, we used Chinese tongue sole as a model to identify features from gonad transcriptomic and epigenetic mechanisms involved in temperature induced masculinization. Some of genetic females reversed to pseudomales after high temperature treatment which caused the sex ratio imbalance. RNA-seq data showed that the expression profiles of females and males were significantly different, and set of genes showed sexually dimorphic expression. The general transcriptomic feature of pesudomales was similar with males, but the genes involved in spermatogenesis and energy metabolism were differentially expressed. In gonads, the methylation level of cyp19a1a promoter was higher in females than in males and pseudomales. Furthermore, high-temperature treatment increased the cyp19a1a promoter methylation levels of females. We observed a significant negative correlation between methylation levels and expression of cyp19ala. In vitro study showed that CpG within the cAMP response element (CRE) of the cyp19a1a promoter was hypermethylated, and DNA methylation decreased the basal and forskolin-induced activities of cyp19a1a promoter. These results suggested that epigenetic change, i.e., DNA methylation, which regulate the expression of cyp19a1a might be the mechanism for the temperature induced masculinization in tongue sole. It may be a common mechanism in teleost that can be induced sex reversal by temperature.
Collapse
Affiliation(s)
- Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Yang Y, Liu Q, Xiao Y, Xu S, Wang X, Yang J, Song Z, You F, Li J. High temperature increases the gsdf expression in masculinization of genetically female Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2019; 274:17-25. [PMID: 30594590 DOI: 10.1016/j.ygcen.2018.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/25/2023]
Abstract
In teleosts, sex is plastic and is influenced by environmental factors. Elevated temperatures have masculinizing effects on the phenotypic sex of certain sensitive species. In this study, we reared genetic XX Japanese flounder at a high temperature (27.5 ± 0.5 °C) and obtained a population of sex-reversal XX males (male ratio, 95.24%). We comparatively analyzed the dynamic characteristics of germ cells and gsdf (gonadal soma-derived factor) expression during sexual differentiation for the experimental (27.5 ± 0.5 °C) and control (18 °C ± 0.5 °C) groups. The results revealed that the germ cell proliferation inhibited and gsdf expression up-regulated in the experimental group, and the gsdf mRNA and proteins expressed in somatic cells that had direct contact with germline stem cells (with Nanos 2 protein expression) including spermatogonia and oogonia by ISH (in situ hybridization) and IHC (immunohistochemistry). In addition, we also overexpressed the gsdf in XX flounders, and the germ cell number of XX flounders bearing gsdf gene significantly decreased and sometimes disappeared completely, which was consistent with the results from high-temperature induction. Therefore, based on all the results, we speculated that the high expression of gsdf might inhibit germ cell proliferation during sex differentiation, and eventually cause sex reversal in the high-temperature induced masculinization of XX Japanese flounder.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qinghua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Yongshuang Xiao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Shihong Xu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xueying Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingkun Yang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai 264200, China
| | - Feng You
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
18
|
Li R, Zhang L, Li W, Zhang Y, Li Y, Zhang M, Zhao L, Hu X, Wang S, Bao Z. FOXL2 and DMRT1L Are Yin and Yang Genes for Determining Timing of Sex Differentiation in the Bivalve Mollusk Patinopecten yessoensis. Front Physiol 2018; 9:1166. [PMID: 30246781 PMCID: PMC6113668 DOI: 10.3389/fphys.2018.01166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/03/2018] [Indexed: 01/24/2023] Open
Abstract
Sex determination and differentiation have long been a research hotspot in metazoans. However, little is known about when and how sex differentiation occurs in most mollusks. In this study, we conducted a combined morphological and molecular study on sex differentiation in the Yesso scallop Patinopecten yessoensis. Histological examination on gonads from 5- to 13-month-old juveniles revealed that the morphological sex differentiation occurred at 10 months of age. To determine the onset of molecular sex differentiation, molecular markers were screened for early identification of sex. The gonadal expression profiles of eight candidate genes for sex determination or differentiation showed that only two genes displayed sexually dimorphic expression, with FOXL2 being abundant in ovaries and DMRT1L in testes. In situ hybridization revealed that both of them were detected in germ cells and follicle cells. We therefore developed LOG10(DMRT1L/FOXL2) for scallop sex identification and confirmed its feasibility in differentiated individuals. By tracing its changes in 5- to 13-month-old juveniles, molecular sex differentiation time was determined: some scallops differentiate early in September when they are 7 months old, and some do late in December when they are 10 months old. Two kinds of coexpression patterns were found between FOXL2 and DMRT1L: expected antagonism after differentiation and unexpected coordination before differentiation. Our results revealed that scallop sex differentiation co-occurs with the formation of follicles, and molecular sex differentiation is established prior to morphological sex differentiation. Our study will assist in a better understanding of the molecular mechanism underlying bivalve sex differentiation.
Collapse
Affiliation(s)
- Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Maroso F, Hermida M, Millán A, Blanco A, Saura M, Fernández A, Dalla Rovere G, Bargelloni L, Cabaleiro S, Villanueva B, Bouza C, Martínez P. Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly. DNA Res 2018; 25:439-450. [PMID: 29897548 PMCID: PMC6105115 DOI: 10.1093/dnares/dsy015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/05/2018] [Indexed: 12/26/2022] Open
Abstract
Highly dense linkage maps enable positioning thousands of landmarks useful for anchoring the whole genome and for analysing genome properties. Turbot is the most important cultured flatfish worldwide and breeding programs in the fifth generation of selection are targeted to improve growth rate, obtain disease resistant broodstock and understand sex determination to control sex ratio. Using a Restriction-site Associated DNA approach, we genotyped 18,214 single nucleotide polymorphism in 1,268 turbot individuals from 31 full-sibling families. Individual linkage maps were combined to obtain a male, female and species consensus maps. The turbot consensus map contained 11,845 markers distributed across 22 linkage groups representing a total normalised length of 3,753.9 cM. The turbot genome was anchored to this map, and scaffolds representing 96% of the assembly were ordered and oriented to obtain the expected 22 megascaffolds according to its karyotype. Recombination rate was lower in males, especially around centromeres, and pairwise comparison of 44 individual maps suggested chromosome polymorphism at specific genomic regions. Genome comparison across flatfish provided new evidence on karyotype reorganisations occurring across the evolution of this fish group.
Collapse
Affiliation(s)
| | - M Hermida
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - A Blanco
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - M Saura
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - A Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - S Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira, Spain
| | - B Villanueva
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - C Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - P Martínez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
20
|
Schlicht K, Krattenmacher N, Lugert V, Schulz C, Thaller G, Tetens J. Genetic analysis of production traits in turbot (Scophthalmus maximus)
using random regression models based on molecular relatedness. J Anim Breed Genet 2018. [DOI: 10.1111/jbg.12337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Kristina Schlicht
- Institute of Animal Breeding and Husbandry; Christian-Albrechts-University of Kiel; Kiel Germany
| | - Nina Krattenmacher
- Institute of Animal Breeding and Husbandry; Christian-Albrechts-University of Kiel; Kiel Germany
| | - Vincent Lugert
- Institute of Animal Breeding and Husbandry; Christian-Albrechts-University of Kiel; Kiel Germany
- College of the Marshall Islands; Majuro Marshall Islands
| | - Carsten Schulz
- Institute of Animal Breeding and Husbandry; Christian-Albrechts-University of Kiel; Kiel Germany
- GMA - Gesellschaft für Marine Aquakultur mbH; Büsum Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry; Christian-Albrechts-University of Kiel; Kiel Germany
| | - Jens Tetens
- Department of Animal Sciences; Functional Breeding Group; Georg-August-University Göttingen; Göttingen Germany
| |
Collapse
|
21
|
Zhao J, Wang B, Yu H, Wang Y, Liu X, Zhang Q. tdrd1 is a germline-specific and sexually dimorphically expressed gene in Paralichthys olivaceus. Gene 2018; 673:61-69. [PMID: 29920365 DOI: 10.1016/j.gene.2018.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023]
Abstract
Tudor domain containing protein 1 (tdrd1) is a member of the Tudor family and has shown essential functions during embryogenesis and gametogenesis. In this study, we cloned the full length cDNA of Paralichthys olivaceus tdrd1 (Potdrd1). PoTDRD1 is a multidomain protein with an N-terminal MYND zinc finger domain, followed by four tandem extended Tudor domains. Sequence comparison, genomic structure, phylogenetic analyses and synteny analyses showed that Potdrd1 was homologous to those of other teleosts. In adult individuals, the expression of Potdrd1 was higher in testis than in ovary, demonstrating a sexually dimorphic gene expression pattern. In situ hybridization (ISH) showed that Potdrd1 mRNA was detected in oogonia and oocytes of ovary as well as in spermatogonia and spermatocytes of testis. In juveniles during gonad differentiation its expression level increased rapidly from 30 dph to 100 dph and showed obvious sexual dimorphism that was in accordance with the expression of anti-Mullerian hormone (amh). Potdrd1 mRNA was consistently detected during embryogenesis, and its level was higher from unfertilzed eggs to the blastula stage and subsequently decreased until hatching. When chimeric RNA containing green fluorescent protein (GFP) and 3' untranslated regions (UTR) of Potdrd1 was microinjected into zebrafish fertilized eggs, the green fluorescence could be visualized only in putative PGCs. These results indicated that Potdrd1 is a germline specific and sexually dimorphic factor that potentially functionate in germline development and gametogenesis in Japanese flounder.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
22
|
Tao W, Chen J, Tan D, Yang J, Sun L, Wei J, Conte MA, Kocher TD, Wang D. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genomics 2018; 19:363. [PMID: 29764377 PMCID: PMC5952695 DOI: 10.1186/s12864-018-4756-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/02/2018] [Indexed: 11/20/2022] Open
Abstract
Background The factors determining sex in teleosts are diverse. Great efforts have been made to characterize the underlying genetic network in various species. However, only seven master sex-determining genes have been identified in teleosts. While the function of a few genes involved in sex determination and differentiation has been studied, we are far from fully understanding how genes interact to coordinate in this process. Results To enable systematic insights into fish sexual differentiation, we generated a dynamic co-expression network from tilapia gonadal transcriptomes at 5, 20, 30, 40, 90, and 180 dah (days after hatching), plus 45 and 90 dat (days after treatment) and linked gene expression profiles to both development and sexual differentiation. Transcriptomic profiles of female and male gonads at 5 and 20 dah exhibited high similarities except for a small number of genes that were involved in sex determination, while drastic changes were observed from 90 to 180 dah, with a group of differently expressed genes which were involved in gonadal differentiation and gametogenesis. Weighted gene correlation network analysis identified changes in the expression of Borealin, Gtsf1, tesk1, Zar1, Cdn15, and Rpl that were correlated with the expression of genes previously known to be involved in sex differentiation, such as Foxl2, Cyp19a1a, Gsdf, Dmrt1, and Amh. Conclusions Global gonadal gene expression kinetics during sex determination and differentiation have been extensively profiled in tilapia. These findings provide insights into the genetic framework underlying sex determination and sexual differentiation, and expand our current understanding of developmental pathways during teleost sex determination. Electronic supplementary material The online version of this article (10.1186/s12864-018-4756-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jinlin Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Jeng SR, Wu GC, Yueh WS, Kuo SF, Dufour S, Chang CF. Gonadal development and expression of sex-specific genes during sex differentiation in the Japanese eel. Gen Comp Endocrinol 2018; 257:74-85. [PMID: 28826812 DOI: 10.1016/j.ygcen.2017.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 02/08/2023]
Abstract
The process of gonadal development and mechanism involved in sex differentiation in eels are still unclear. The objectives were to investigate the gonadal development and expression pattern of sex-related genes during sex differentiation in the Japanese eel, Anguilla japonica. For control group, the elvers of 8-10cm were reared for 8months; and for feminization, estradiol-17β (E2) was orally administered to the elvers of 8-10cm for 6months. Only males were found in the control group, suggesting a possible role of environmental factors in eel sex determination. In contrast, all differentiated eels in E2-treated group were female. Gonad histology revealed that control male eels seem to differentiate through an intersexual stage, while female eels (E2-treated) would differentiate directly from an undifferentiated gonad. Tissue distribution and sex-related genes expression during gonadal development were analyzed by qPCR. The vasa, figla and sox3 transcripts in gonads were significantly increased during sex differentiation. High vasa expression occurred in males; figla and sox3 were related to ovarian differentiation. The transcripts of dmrt1 and sox9a were significantly increased in males during testicular differentiation and development. The cyp19a1 transcripts were significantly increased in differentiating and differentiated gonads, but did not show a differential expression between the control and E2-treated eels. This suggests that cyp19a1 is involved both in testicular differentiation and development in control males, and in the early stage of ovarian differentiation in E2-treated eels. Importantly, these results also reveal that cyp19a1 is not a direct target for E2 during gonad differentiation in the eel.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan.
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan
| | - Sylvie Dufour
- Sorbonne Universités, Muséum National d'Histoire Naturelle, UPMC Univ Paris 06, UNICAEN, UA, CNRS 7208, IRD 207, Biology of Aquatic Organisms and Ecosystems (BOREA), 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
24
|
Taboada X, Viñas A, Adrio F. Comparative expression patterns ofSox2andSox19genes in the forebrain of developing and adult turbot (Scophthalmus maximus). J Comp Neurol 2017; 526:899-919. [DOI: 10.1002/cne.24374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xoana Taboada
- Department of Zoology; Genetics and Physical Anthropology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Ana Viñas
- Department of Zoology; Genetics and Physical Anthropology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Fátima Adrio
- Department of Functional Biology, CIBUS, Faculty of Biology; Universidade de Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
25
|
Yan YL, Desvignes T, Bremiller R, Wilson C, Dillon D, High S, Draper B, Buck CL, Postlethwait J. Gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Dev Dyn 2017; 246:925-945. [PMID: 28856758 PMCID: PMC5761338 DOI: 10.1002/dvdy.24579] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aberrant signaling between germ cells and somatic cells can lead to reproductive disease and depends on diffusible signals, including transforming growth factor-beta (TGFB) -family proteins. The TGFB-family protein Gsdf (gonadal soma derived factor) controls sex determination in some fish and is a candidate for mediating germ cell/soma signaling. RESULTS Zebrafish expressed gsdf in somatic cells of bipotential gonads and expression continued in ovarian granulosa cells and testicular Sertoli cells. Homozygous gsdf knockout mutants delayed leaving the bipotential gonad state, but then became a male or a female. Mutant females ovulated a few oocytes, then became sterile, accumulating immature follicles. Female mutants stored excess lipid and down-regulated aromatase, gata4, insulin receptor, estrogen receptor, and genes for lipid metabolism, vitellogenin, and steroid biosynthesis. Mutant females contained less estrogen and more androgen than wild-types. Mutant males were fertile. Genomic analysis suggests that Gsdf, Bmp15, and Gdf9, originated as paralogs in vertebrate genome duplication events. CONCLUSIONS In zebrafish, gsdf regulates ovarian follicle maturation and expression of genes for steroid biosynthesis, obesity, diabetes, and female fertility, leading to ovarian and extra-ovarian phenotypes that mimic human polycystic ovarian syndrome (PCOS), suggesting a role for a related TGFB signaling molecule in the etiology of PCOS. Developmental Dynamics 246:925-945, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Ruth Bremiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Danielle Dillon
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - Samantha High
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California
| | - Charles Loren Buck
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | | |
Collapse
|
26
|
Robledo D, Rubiolo JA, Cabaleiro S, Martínez P, Bouza C. Differential gene expression and SNP association between fast- and slow-growing turbot (Scophthalmus maximus). Sci Rep 2017; 7:12105. [PMID: 28935875 PMCID: PMC5608734 DOI: 10.1038/s41598-017-12459-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Growth is among the most important traits for animal breeding. Understanding the mechanisms underlying growth differences between individuals can contribute to improving growth rates through more efficient breeding schemes. Here, we report a transcriptomic study in muscle and brain of fast- and slow-growing turbot (Scophthalmus maximus), a relevant flatfish in European and Asian aquaculture. Gene expression and allelic association between the two groups were explored. Up-regulation of the anaerobic glycolytic pathway in the muscle of fast-growing fish was observed, indicating a higher metabolic rate of white muscle. Brain expression differences were smaller and not associated with major growth-related genes, but with regulation of feeding-related sensory pathways. Further, SNP variants showing frequency differences between fast- and slow-growing fish pointed to genomic regions likely involved in growth regulation, and three of them were individually validated through SNP typing. Although different mechanisms appear to explain growth differences among families, general mechanisms seem also to be involved, and thus, results provide a set of useful candidate genes and markers to be evaluated for more efficient growth breeding programs and to perform comparative genomic studies of growth in fish and vertebrates.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Juan A Rubiolo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira, 15695, Spain
| | - Paulino Martínez
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Carmen Bouza
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
27
|
Identification, characterization and functional analysis of regulatory region of nanos gene from half-smooth tongue sole ( Cynoglossus semilaevis ). Gene 2017; 617:8-16. [DOI: 10.1016/j.gene.2017.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 01/04/2023]
|
28
|
Wang F, Jia Y, Wang P, Yang Q, Du Q, Chang Z. Identification and profiling of Cyprinus carpio microRNAs during ovary differentiation by deep sequencing. BMC Genomics 2017; 18:333. [PMID: 28454515 PMCID: PMC5410099 DOI: 10.1186/s12864-017-3701-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate gene expression by targeting specific mRNAs. However, the possible role of miRNAs in the ovary differentiation and development of fish is not well understood. In this study, we examined the expression profiles and differential expression of miRNAs during three key stages of ovarian development and different developmental stages in common carp Cyprinus carpio. Results A total of 8765 miRNAs were identified, including 2155 conserved miRNAs highly conserved among various species, 145 miRNAs registered in miRBase for common carp, and 6505 novel miRNAs identified in common carp for the first time. Comparison of miRNA expression profiles among the five libraries identified 714 co-expressed and 2382 specific expressed miRNAs. Overall, 150, 628, and 431 specifically expressed miRNAs were identified in primordial gonad, juvenile ovary, and adult ovary, respectively. MiR-6758-3p, miR-3050-5p, and miR-2985-3p were highly expressed in primordial gonad, miR-3544-5p, miR-6877-3p, and miR-9086-5p were highly expressed in juvenile ovary, and miR-154-3p, miR-5307-5p, and miR-3958-3p were highly expressed in adult ovary. Predicted target genes of specific miRNAs in primordial gonad were involved in many reproductive biology signaling pathways, including transforming growth factor-β, Wnt, oocyte meiosis, mitogen-activated protein kinase, Notch, p53, and gonadotropin-releasing hormone pathways. Target-gene prediction revealed upward trends in miRNAs targeting male-bias genes, including dmrt1, atm, gsdf, and sox9, and downward trends in miRNAs targeting female-bias genes including foxl2, smad3, and smad4. Other sex-related genes such as sf1 were also predicted to be miRNA target genes. Conclusions This comprehensive miRNA transcriptome analysis demonstrated differential expression profiles of miRNAs during ovary development in common carp. These results could facilitate future exploitation of the sex-regulatory roles and mechanisms of miRNAs, especially in primordial gonads, while the specifically expressed miRNAs represent candidates for studying the mechanisms of ovary determination in Yellow River carp. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3701-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| | - Yongfang Jia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Po Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qianwen Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - QiYan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - ZhongJie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| |
Collapse
|
29
|
Wang H, Wang B, Liu X, Liu Y, Du X, Zhang Q, Wang X. Identification and expression of piwil2 in turbot Scophthalmus maximus, with implications of the involvement in embryonic and gonadal development. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:84-93. [PMID: 28438683 DOI: 10.1016/j.cbpb.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 04/17/2017] [Indexed: 11/17/2022]
Abstract
Piwil2, a member of the Argonaute family, is involved in the biogenesis of PIWI-interacting RNAs (piRNAs) and plays an important role in regulating gametogenesis. In the present study, we identified turbot Scophthalmus maximus piwil2 gene, named Smpiwil2, which contained a PAZ domain and a PIWI domain. Sequence comparison, genomic structure and phylogenetic analyses showed that Smpiwil2 is homologous to that of teleosts and tetrapods. The Smpiwil2 transcript showed higher expression in the ovary than in the testis, demonstrating a sexually dimorphic gene expression pattern. In situ hybridization (ISH) showed that Smpiwil2 was expressed in the oogonia and all the stages of oocytes in the ovary as well as in spermatogonia and spermatocytes in the testis. Embryonic expression profile revealed that Smpiwil2 was maternally inherited, and its level was higher from the zygote to the blastula stage and subsequently decreased until hatching. Moreover, a CpG island was predicted to locate in the 5'-flanking region of Smpiwil2 gene, and its methylation levels detected by sodium bisulfite sequencing showed significant disparity between females and males, implying that the sexually dimorphic expression of Smpiwil2 might be regulated by methylation. These results indicated that Smpiwil2 had potentially vital functions in embryonic and gonadal development in this species. In addition, the temporal and sex differences in Smpiwil2 expression indicated that this gene may play different roles in gonadal development of different sexes.
Collapse
Affiliation(s)
- Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - XuBo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China.
| |
Collapse
|