1
|
Qu M, Zhang Y, Gao Z, Zhang Z, Liu Y, Wan S, Wang X, Yu H, Zhang H, Liu Y, Schneider R, Meyer A, Lin Q. The genetic basis of the leafy seadragon's unique camouflage morphology and avenues for its efficient conservation derived from habitat modeling. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2317-6. [PMID: 37204606 DOI: 10.1007/s11427-022-2317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 05/20/2023]
Abstract
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Collapse
Affiliation(s)
- Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingyi Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiming Wan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Yuhong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Ralf Schneider
- Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China.
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Policarpo M, Bemis KE, Laurenti P, Legendre L, Sandoz JC, Rétaux S, Casane D. Coevolution of the olfactory organ and its receptor repertoire in ray-finned fishes. BMC Biol 2022; 20:195. [PMID: 36050670 PMCID: PMC9438307 DOI: 10.1186/s12915-022-01397-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ray-finned fishes (Actinopterygii) perceive their environment through a range of sensory modalities, including olfaction. Anatomical diversity of the olfactory organ suggests that olfaction is differentially important among species. To explore this topic, we studied the evolutionary dynamics of the four main gene families (OR, TAAR, ORA/VR1 and OlfC/VR2) coding for olfactory receptors in 185 species of ray-finned fishes. Results The large variation in the number of functional genes, between 28 in the ocean sunfish Mola mola and 1317 in the reedfish Erpetoichthys calabaricus, is the result of parallel expansions and contractions of the four main gene families. Several ancient and independent simplifications of the olfactory organ are associated with massive gene losses. In contrast, Polypteriformes, which have a unique and complex olfactory organ, have almost twice as many olfactory receptor genes as any other ray-finned fish. Conclusions We document a functional link between morphology of the olfactory organ and richness of the olfactory receptor repertoire. Further, our results demonstrate that the genomic underpinning of olfaction in ray-finned fishes is heterogeneous and presents a dynamic pattern of evolutionary expansions, simplifications, and reacquisitions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01397-x.
Collapse
Affiliation(s)
- Maxime Policarpo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Katherine E Bemis
- NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C, 20560, USA
| | - Patrick Laurenti
- Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75013, Paris, France
| | - Laurent Legendre
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. .,Université Paris Cité, UFR Sciences du Vivant, 75013, Paris, France.
| |
Collapse
|
3
|
Kowatschew D, Bozorg Nia S, Hassan S, Ustinova J, Weth F, Korsching SI. Spatial organization of olfactory receptor gene choice in the complete V1R-related ORA family of zebrafish. Sci Rep 2022; 12:14816. [PMID: 36045218 PMCID: PMC9433392 DOI: 10.1038/s41598-022-17900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
The vertebrate sense of smell employs four main receptor families for detection of odors, among them the V1R/ORA family, which is unusually small and highly conserved in teleost fish. Zebrafish possess just seven ORA receptors, enabling a comprehensive analysis of the expression patterns of the entire family. The olfactory organ of zebrafish is representative for teleosts, cup-shaped, with lamella covered with sensory epithelium protruding into the cup from a median raphe. We have performed quantitative in situ hybridization on complete series of horizontal cryostat sections of adult zebrafish olfactory organ, and have analysed the location of ora-expressing cells in three dimensions, radial diameter, laminar height, and height-within-the-organ. We report broadly overlapping, but distinctly different distributions for all ora genes, even for ora3a and ora3b, the most recent gene duplication. Preferred positions in different dimensions are independent of each other. This spatial logic is very similar to previous reports for the much larger families of odorant receptor (or) and V2R-related olfC genes in zebrafish. Preferred positions for ora genes tend to be more central and more apical than those we observed for these other two families, consistent with expression in non-canonical sensory neuron types.
Collapse
Affiliation(s)
- Daniel Kowatschew
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Shahrzad Bozorg Nia
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Shahzaib Hassan
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Jana Ustinova
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Franco Weth
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
4
|
Remarkable diversity of vomeronasal type 2 receptor (OlfC) genes of basal ray-finned fish and its evolutionary trajectory in jawed vertebrates. Sci Rep 2022; 12:6455. [PMID: 35440756 PMCID: PMC9018814 DOI: 10.1038/s41598-022-10428-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
The vomeronasal type 2 receptor (V2R, also called OlfC) multigene family is found in a broad range of jawed vertebrates from cartilaginous fish to tetrapods. V2Rs encode receptors for food-related amino acids in teleost fish, whereas for peptide pheromones in mammals. In addition, V2Rs of teleost fish are phylogenetically distinct from those of tetrapods, implying a drastic change in the V2R repertoire during terrestrial adaptation. To understand the process of diversification of V2Rs in vertebrates from "fish-type" to "tetrapod-type", we conducted an exhaustive search for V2Rs in cartilaginous fish (chimeras, sharks, and skates) and basal ray-finned fish (reedfish, sterlet, and spotted gar), and compared them with those of teleost, coelacanth, and tetrapods. Phylogenetic and synteny analyses on 1897 V2Rs revealed that basal ray-finned fish possess unexpectedly higher number of V2Rs compared with cartilaginous fish, implying that V2R gene repertoires expanded in the common ancestor of Osteichthyes. Furthermore, reedfish and sterlet possessed various V2Rs that belonged to both "fish-type" and "tetrapod-type", suggesting that the common ancestor of Osteichthyes possess "tetrapod-type" V2Rs although they inhabited underwater environments. Thus, the unexpected diversity of V2Rs in basal ray-finned fish may provide insight into how the olfaction of osteichthyan ancestors adapt from water to land.
Collapse
|
5
|
Sakuma A, Zhang Z, Suzuki E, Nagasawa T, Nikaido M. A transcriptomic reevaluation of the accessory olfactory organ in Bichir (Polypterus senegalus). ZOOLOGICAL LETTERS 2022; 8:5. [PMID: 35135614 PMCID: PMC8822828 DOI: 10.1186/s40851-022-00189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Fish possess one olfactory organ called the olfactory epithelium (OE), by which various chemical substances are detected. On the other hand, tetrapods possess two independent olfactory organs called the main olfactory epithelium (MOE) and vomeronasal organ (VNO), each of which mainly detects general odorants and pheromones, respectively. Traditionally, the VNO, so-called concentrations of vomeronasal neurons, was believed to have originated in tetrapods. However, recent studies have identified a primordial VNO in lungfish, implying that the origin of the VNO was earlier than traditionally expected. In this study, we examined the presence/absence of the VNO in the olfactory organ of bichir (Polypterus senegalus), which is the most ancestral group of extant bony vertebrates. In particular, we conducted a transcriptomic evaluation of the accessory olfactory organ (AOO), which is anatomically separated from the main olfactory organ (MOO) in bichir. As a result, several landmark genes specific to the VNO and MOE in tetrapods were both expressed in the MOO and AOO, suggesting that these organs were not functionally distinct in terms of pheromone and odorant detection. Instead, differentially expressed gene (DEG) analysis showed that DEGs in AOO were enriched in genes for cilia movement, implying its additional and specific function in efficient water uptake into the nasal cavity other than chemosensing. This transcriptomic study provides novel insight into the long-standing question of AOO function in bichir and suggests that VNO originated in the lineage of lobe-finned fish during vertebrate evolution.
Collapse
Affiliation(s)
- Atsuhiro Sakuma
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Zicong Zhang
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Eri Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tatsuki Nagasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
6
|
|
7
|
Dieris M, Kowatschew D, Korsching SI. Olfactory function in the trace amine-associated receptor family (TAARs) evolved twice independently. Sci Rep 2021; 11:7807. [PMID: 33833329 PMCID: PMC8032801 DOI: 10.1038/s41598-021-87236-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Olfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fish. In lamprey, an ancestral gene expanded to generate a large family of olfactory receptors, while the sister gene in jawed vertebrates did not expand and is not expressed in olfactory sensory neurons. Both clades do not exhibit the defining TAAR motif, and we suggest naming them taar-like receptors (tarl). We have identified the evolutionary origin of both taar and tarl genes in a duplication of the serotonergic receptor 4 that occurred in the most recent common ancestor of vertebrates. We infer two ancestral genes in bony fish (TAAR12, TAAR13) which gave rise to the complete repertoire of mammalian olfactory taar genes and to class II of the taar repertoire of teleost fish. We follow their evolution in seventy-one bony fish genomes and report a high evolutionary dynamic, with many late gene birth events and both early and late gene death events.
Collapse
Affiliation(s)
- Milan Dieris
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Daniel Kowatschew
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Sigrun I Korsching
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
8
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
9
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
10
|
Nikaido M. Evolution of V1R pheromone receptor genes in vertebrates: diversity and commonality. Genes Genet Syst 2019; 94:141-149. [PMID: 31474650 DOI: 10.1266/ggs.19-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The vomeronasal organ (VNO) plays a key role in sensing pheromonal cues, which elicit innate responses and induce social and sexual behaviors. The vomeronasal receptor 1 genes, V1Rs, encode members of a pheromone receptor family that are mainly expressed in the VNO. Previous studies have revealed that the V1R family shows extraordinary variety among mammalian species owing to successive gene gains and losses. Because species-specific pheromonal interaction may facilitate species-specific reproductive behaviors, understanding the evolution of V1Rs in terms of their origin, repertoire and phylogeny should provide insight into the mechanisms of animal diversification. Here I summarize recent studies about the V1R family from its initial discovery in the rat genome to extensive comparative analyses among vertebrates. I further introduce our recent findings for V1Rs in a broad range of vertebrates, which reveal unexpected diversity as well as shared features common among lineages.
Collapse
Affiliation(s)
- Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
11
|
Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M. Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes. Proc Biol Sci 2019; 286:20191828. [PMID: 31506057 DOI: 10.1098/rspb.2019.1828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying convergent evolution. Their sense of smell tends to degenerate, but this process has not been explored by comparing fully aquatic species with their amphibious relatives in an evolutionary context. Here, we sequenced the genomes of fully aquatic and amphibious sea snakes and identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess large numbers of the olfactory receptor (OR) genes and the type-2 vomeronasal receptor (V2R) genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of OR genes has decreased in sea snakes, and fully aquatic species lost MOS which is responsible for detecting airborne odours. By contrast, sea snakes including fully aquatic species retain a number of V2R genes and a well-developed VNS for smelling underwater. This study suggests that the sense of smell also degenerated in sea snakes, particularly in fully aquatic species, but their residual olfactory capability is distinct from that of other fully aquatic amniotes. Amphibious species show an intermediate status between terrestrial and fully aquatic snakes, implying their importance in understanding the process of aquatic adaptation.
Collapse
Affiliation(s)
- Takushi Kishida
- Wildlife Research Center, Kyoto University, 2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-8203, Japan
| | - Yasuhiro Go
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Shoji Tatsumoto
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Kaori Tatsumi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
12
|
Hecker N, Lächele U, Stuckas H, Giere P, Hiller M. Convergent vomeronasal system reduction in mammals coincides with convergent losses of calcium signalling and odorant-degrading genes. Mol Ecol 2019; 28:3656-3668. [PMID: 31332871 DOI: 10.1111/mec.15180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
The vomeronasal system (VNS) serves crucial functions for detecting olfactory clues often related to social and sexual behaviour. Intriguingly, two of the main components of the VNS, the vomeronasal organ (VNO) and the accessory olfactory bulb, are regressed in aquatic mammals, several bats and primates, likely due to adaptations to different ecological niches. To detect genomic changes that are associated with the convergent reduction of the VNS, we performed the first systematic screen for convergently inactivated protein-coding genes associated with convergent VNS reduction, considering 106 mammalian genomes. Extending previous studies, our results support that Trpc2, a cation channel that is important for calcium signalling in the VNO, is a predictive molecular marker for the presence of a VNS. Our screen also detected the convergent inactivation of the calcium-binding protein S100z, the aldehyde oxidase Aox2 that is involved in odorant degradation, and the uncharacterized Mslnl gene that is expressed in the VNO and olfactory epithelium. Furthermore, we found that Trpc2 and S100z or Aox2 are also inactivated in otters and Phocid seals for which no morphological data about the VNS are available yet. This predicts a VNS reduction in these semi-aquatic mammals. By examining the genomes of 115 species in total, our study provides a detailed picture of how the convergent reduction of the VNS coincides with gene inactivation in placental mammals. These inactivated genes provide experimental targets for studying the evolution and biological significance of the olfactory system under different environmental conditions.
Collapse
Affiliation(s)
- Nikolai Hecker
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Ulla Lächele
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Heiko Stuckas
- Population Genetics, Senckenberg Natural History Collections Dresden, Dresden, Germany.,Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Michael Hiller
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
13
|
Sharma K, Syed AS, Ferrando S, Mazan S, Korsching SI. The Chemosensory Receptor Repertoire of a True Shark Is Dominated by a Single Olfactory Receptor Family. Genome Biol Evol 2019; 11:398-405. [PMID: 30649300 PMCID: PMC6368271 DOI: 10.1093/gbe/evz002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2019] [Indexed: 11/22/2022] Open
Abstract
Throughout the animal kingdom chemical senses are one of the primary means by which organisms make sense of their environment. To achieve perception of complex chemosensory stimuli large repertoires of olfactory and gustatory receptors are employed in bony vertebrates, which are characterized by high evolutionary dynamics in receptor repertoire size and composition. However, little is known about their evolution in earlier diverging vertebrates such as cartilaginous fish, which include sharks, skates, rays, and chimeras. Recently, the olfactory repertoire of a chimera, elephant shark, was found to be curiously reduced in odorant receptor number. Elephant sharks rely heavily on electroreception to localize prey; thus, it is unclear how representative their chemosensory receptor repertoire sizes would be for cartilaginous fishes in general. Here, we have mined the genome of a true shark, Scyliorhinus canicula (catshark) for olfactory and gustatory receptors, and have performed a thorough phylogenetic study to shed light on the evolution of chemosensory receptors in cartilaginous fish. We report the presence of several gustatory receptors of the TAS1R family in catshark and elephant shark, whereas TAS2R receptors are absent. The catshark olfactory repertoire is dominated by V2R receptors, with 5–8 receptors in the other three families (OR, ORA, TAAR). Species-specific expansions are mostly limited to the V2R family. Overall, the catshark chemosensory receptor repertoires are generally similar in size to those of elephant shark, if somewhat larger, showing similar evolutionary tendencies across over 400 Myr of separate evolution between catshark and elephant shark.
Collapse
Affiliation(s)
- Kanika Sharma
- Department of Biology, Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674, Cologne, Germany
| | - Adnan S Syed
- Department of Biology, Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674, Cologne, Germany
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Italy
| | - Sylvie Mazan
- CNRS-UPMC-Sorbonne Universités, UMR 7232, Banyuls sur Mer, France
| | - Sigrun I Korsching
- Department of Biology, Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674, Cologne, Germany
| |
Collapse
|
14
|
Holy TE. The Accessory Olfactory System: Innately Specialized or Microcosm of Mammalian Circuitry? Annu Rev Neurosci 2018; 41:501-525. [DOI: 10.1146/annurev-neuro-080317-061916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the accessory olfactory system is a distinct circuit that has received attention for its role in detecting and responding to pheromones. While the neuroscientific investigation of this system is comparatively new, recent advances and its compact size have made it an attractive model for developing an end-to-end understanding of such questions as regulation of essential behaviors, plasticity, and individual recognition. Recent discoveries have indicated a need to reevaluate our conception of this system, suggesting that ( a) physical principles—rather than biological necessity—play an underappreciated role in its raison d'être and that ( b) the anatomy of downstream projections is not dominated by unique specializations but instead consists of an abbreviated cortical/basal ganglia motif reminiscent of other sensorimotor systems. These observations suggest that the accessory olfactory system distinguishes itself primarily by the physicochemical properties of its ligands, but its architecture is otherwise a microcosm of mammalian neurocircuitry.
Collapse
Affiliation(s)
- Timothy E. Holy
- Department of Neuroscience, Washington University, St. Louis, Missouri 63132, USA
| |
Collapse
|
15
|
Coelacanth-specific adaptive genes give insights into primitive evolution for water-to-land transition of tetrapods. Mar Genomics 2018; 38:89-95. [DOI: 10.1016/j.margen.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
|
16
|
Zhong L, Wang W. Homoeologous Recombination of the V1r1-V1r2 Gene Cluster of Pheromone Receptors in an Allotetraploid Lineage of Teleosts. Genes (Basel) 2017; 8:genes8110334. [PMID: 29160813 PMCID: PMC5704247 DOI: 10.3390/genes8110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
In contrast to other olfactory receptor families that exhibit frequent lineage-specific expansions, the vomeronasal type 1 receptor (V1R) family exhibits a canonical six-member repertoire in teleosts. V1r1 and V1r2 are present in no more than one copy in all examined teleosts, including salmons, which are ancient polyploids, implying strict evolutionary constraints. However, recent polyploids have not been examined. Here, we identified a young allotetraploid lineage of weatherfishes and investigated their V1r1-V1r2 cluster. We found a novel pattern that the parental V1r1-V1r2 clusters had recombined in the tetraploid genome and that the recombinant was nearly fixed in the tetraploid population. Subsequent analyses suggested strong selective pressure, for both a new combination of paralogs and homogeneity among gene duplicates, acting on the V1r1-V1r2 pair.
Collapse
Affiliation(s)
- Lei Zhong
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding of Ministry of Agriculture/Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weimin Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding of Ministry of Agriculture/Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|