1
|
Ao X, Rong Y, Han M, Wang X, Xia Q, Shang F, Liu Y, Lv Q, Wang Z, Su R, Zhang Y, Wang R. Combined Genome-Wide Association Study and Haplotype Analysis Identifies Candidate Genes Affecting Growth Traits of Inner Mongolian Cashmere Goats. Vet Sci 2024; 11:428. [PMID: 39330807 PMCID: PMC11435611 DOI: 10.3390/vetsci11090428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, genome-wide association analysis was performed on the growth traits (body height, body length, chest circumference, chest depth, chest width, tube circumference, and body weight) of Inner Mongolian cashmere goats (Erlangshan type) based on resequencing data. The population genetic parameters were estimated, haplotypes were constructed for the significant sites, and association analysis was conducted between the haplotypes and phenotypes. A total of two hundred and eighty-four SNPs and eight candidate genes were identified by genome-wide association analysis, gene annotation, and enrichment analysis. The phenotypes of 16 haplotype combinations were significantly different by haplotype analysis. Combined with the above results, the TGFB2, BAG3, ZEB2, KCNJ12, MIF, MAP2K3, HACD3, and MEGF11 functional candidate genes and the haplotype combinations A2A2, C2C2, E2E2, F2F2, I2I2, J2J2, K2K2, N2N2, O2O2, P2P2, R1R1, T1T1, W1W1, X1X1, Y1Y1, and Z1Z1 affected the growth traits of the cashmere goats and could be used as molecular markers to improve the accuracy of early selection and the economic benefits of breeding.
Collapse
Affiliation(s)
- Xiaofang Ao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Mingxuan Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Xinle Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Qincheng Xia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Yan Liu
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, China
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| |
Collapse
|
2
|
Benfica LF, Brito LF, do Bem RD, de Oliveira LF, Mulim HA, Braga LG, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Detection and characterization of copy number variation in three differentially-selected Nellore cattle populations. Front Genet 2024; 15:1377130. [PMID: 38694873 PMCID: PMC11061390 DOI: 10.3389/fgene.2024.1377130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Nellore cattle (Bos taurus indicus) is the main beef cattle breed raised in Brazil. This breed is well adapted to tropical conditions and, more recently, has experienced intensive genetic selection for multiple performance traits. Over the past 43 years, an experimental breeding program has been developed in the Institute of Animal Science (IZ, Sertaozinho, SP, Brazil), which resulted in three differentially-selected lines known as Nellore Control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). The primary goal of this selection experiment was to determine the response to selection for yearling weight (YW) and residual feed intake (RFI) on Nellore cattle. The main objectives of this study were to: 1) identify copy number variation (CNVs) in Nellore cattle from three selection lines; 2) identify and characterize CNV regions (CNVR) on these three lines; and 3) perform functional enrichment analyses of the CNVR identified. Results: A total of 14,914 unique CNVs and 1,884 CNVRs were identified when considering all lines as a single population. The CNVRs were non-uniformly distributed across the chromosomes of the three selection lines included in the study. The NeT line had the highest number of CNVRs (n = 1,493), followed by the NeS (n = 823) and NeC (n = 482) lines. The CNVRs covered 23,449,890 bp (0.94%), 40,175,556 bp (1.61%), and 63,212,273 bp (2.54%) of the genome of the NeC, NeS, and NeT lines, respectively. Two CNVRs were commonly identified between the three lines, and six, two, and four exclusive regions were identified for NeC, NeS, and NeT, respectively. All the exclusive regions overlap with important genes, such as SMARCD3, SLC15A1, and MAPK1. Key biological processes associated with the candidate genes were identified, including pathways related to growth and metabolism. Conclusion: This study revealed large variability in CNVs and CNVRs across three Nellore lines differentially selected for YW and RFI. Gene annotation and gene ontology analyses of the exclusive CNVRs to each line revealed specific genes and biological processes involved in the expression of growth and feed efficiency traits. These findings contribute to the understanding of the genetic mechanisms underlying the phenotypic differences among the three Nellore selection lines.
Collapse
Affiliation(s)
- Lorena F. Benfica
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ricardo D. do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Larissa G. Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Sarah F. M. Bonilha
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| | - Maria Eugenia Z. Mercadante
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| |
Collapse
|
3
|
Benfica LF, Brito LF, do Bem RD, Mulim HA, Glessner J, Braga LG, Gloria LS, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Genome-wide association study between copy number variation and feeding behavior, feed efficiency, and growth traits in Nellore cattle. BMC Genomics 2024; 25:54. [PMID: 38212678 PMCID: PMC10785391 DOI: 10.1186/s12864-024-09976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.
Collapse
Affiliation(s)
- Lorena F Benfica
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Ricardo D do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Joseph Glessner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larissa G Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Leonardo S Gloria
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | | | | | | |
Collapse
|
4
|
Zhu H, Lu X, Jiang H, Yang Z, Xu T. Descriptive Statistics and Genome-Wide Copy Number Analysis of Milk Production Traits of Jiangsu Chinese Holstein Cows. Animals (Basel) 2023; 14:17. [PMID: 38200748 PMCID: PMC10778490 DOI: 10.3390/ani14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Milk production traits are the most important quantitative economic traits in dairy cow production; improving the yield and quality of milk is an important way to ensure the production efficiency of the dairy industry. This study carried out a series of in-depth statistical genetics studies and molecular analyses on the Chinese Holstein cows in the Jiangsu Province, such as descriptive statistics and copy number variation analysis. A genetic correlation, phenotypic correlation, and descriptive statistical analysis of five milk production traits (milk yield, milk fat percentage, milk fat yield, milk protein percentage, and milk protein yield) of the dairy cows were analyzed using the SPSS and DMU software. Through quality control, 4173 cows and their genomes were used for genomic study. Then, SNPs were detected using DNA chips, and a copy number variation (CNV) analysis was carried out to locate the quantitative trait loci (QTL) of the milk production traits by Perl program software Penn CNV and hidden Markov model (HMM). The phenotypic means of the milk yield, milk fat percentage, milk fat mass, milk protein percentage, and milk protein mass at the first trimester were lower than those at the other trimesters by 8.821%, 1.031%, 0.930%, 0.003%, and 0.826%, respectively. The five milk production traits showed a significant phenotypic positive correlation (p < 0.01) and a high genetic positive correlation among the three parities. Based on the GGPBovine 100 K SNP data, QTL-detecting research on the fist-parity milk performance of dairy cows was carried out via the CNV. We identified 1731 CNVs and 236 CNVRs in the 29 autosomes of 984 Holstein dairy cows, and 19 CNVRs were significantly associated with the milk production traits (p < 0.05). These CNVRs were analyzed via a bioinformatics analysis; a total of 13 gene ontology (GO) terms and 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched (p < 0.05), and these terms and pathways are mainly related to lipid metabolism, amino acid metabolism, and cellular catabolic processes. This study provided a theoretical basis for the molecular-marker-assisted selection of dairy cows by developing descriptive statistics on the milk production traits of dairy cows and by locating the QTL and functional genes that affect the milk production traits of first-born dairy cows. The results describe the basic status of the milk production traits of the Chinese Holstein cows in Jiangsu and locate the QTL and functional genes that affect the milk production traits of the first-born cows, providing a theoretical basis for the molecular-marker-assisted selection of dairy cows.
Collapse
Affiliation(s)
- Hao Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Hui Jiang
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000 Aarhus C, Denmark;
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
5
|
Liu M, Cheng J, Chen Y, Yang L, Raza SHA, Huang Y, Lei C, Liu GE, Lan X, Chen H. Distribution of DGAT1 copy number variation in Chinese goats and its associations with milk production traits. Anim Biotechnol 2023; 34:980-985. [PMID: 34854798 DOI: 10.1080/10495398.2021.2007118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Goat is an important sector for meat and dairy products. Diacylglycerol O-acyltransferase 1 (DGAT1), which is a key gene in milk production, has been recently detected to overlap with a novel copy number variation (CNV) in goats. CNVs could be genetic markers providing new insights into the genetic basis of phenotypic variation. Up to now, there are no reports on the DGAT1-related CNV (DGAT1 CNV) in Chinese goats. This study first detected the distribution of the DGAT1 CNV in Chinese seven goat breeds, finding substantial differences among dairy, meat, and fiber goats (P < 0.01). The association analysis between the DGAT1 CNV and milk production traits revealed significant associations: Xinong Sannen (XS) dairy goat with copy number loss type had higher freezing point depression (FPD) (P < 0.01) and milk solids-not-fat (SNF) content (P < 0.05). Overall, our study unraveled the distribution of DGAT1 CNV in Chinese goats for the first time and found the potential role of this CNV in the marker-assisted selection of dairy goat breeding.
Collapse
Affiliation(s)
- Mei Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Jie Cheng
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Yuhan Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Long Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Wu J, Wu T, Xie X, Niu Q, Zhao Z, Zhu B, Chen Y, Zhang L, Gao X, Niu X, Gao H, Li J, Xu L. Genetic Association Analysis of Copy Number Variations for Meat Quality in Beef Cattle. Foods 2023; 12:3986. [PMID: 37959106 PMCID: PMC10647706 DOI: 10.3390/foods12213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Meat quality is an economically important trait for global food production. Copy number variations (CNVs) have been previously implicated in elucidating the genetic basis of complex traits. In this article, we detected a total of 112,198 CNVs and 10,102 CNV regions (CNVRs) based on the Bovine HD SNP array. Next, we performed a CNV-based genome-wide association analysis (GWAS) of six meat quality traits and identified 12 significant CNV segments corresponding to eight candidate genes, including PCDH15, CSMD3, etc. Using region-based association analysis, we further identified six CNV segments relevant to meat quality in beef cattle. Among these, TRIM77 and TRIM64 within CNVR4 on BTA29 were detected as candidate genes for backfat thickness (BFT). Notably, we identified a 34 kb duplication for meat color (MC) which was supported by read-depth signals, and this duplication was embedded within the keratin gene family including KRT4, KRT78, and KRT79. Our findings will help to dissect the genetic architecture of meat quality traits from the aspects of CNVs, and subsequently improve the selection process in breeding programs.
Collapse
Affiliation(s)
- Jiayuan Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Tianyi Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xueyuan Xie
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qunhao Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Zhida Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Bo Zhu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Yan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Lupei Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xue Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xiaoyan Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Huijiang Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Junya Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Lingyang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| |
Collapse
|
7
|
Qian R, Xie F, Zhang W, Kong J, Zhou X, Wang C, Li X. Genome-wide detection of CNV regions between Anqing six-end-white and Duroc pigs. Mol Cytogenet 2023; 16:12. [PMID: 37400846 PMCID: PMC10316616 DOI: 10.1186/s13039-023-00646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Anqing six-end-white pig is a native breed in Anhui Province. The pigs have the disadvantages of a slow growth rate, low proportion of lean meat, and thick back fat, but feature the advantages of strong stress resistance and excellent meat quality. Duroc pig is an introduced pig breed with a fast growth rate and high proportion of lean meat. With the latter breed featuring superior growth characteristics but inferior meat quality traits, the underlying molecular mechanism that causes these phenotypic differences between Chinese and foreign pigs is still unclear. RESULTS In this study, copy number variation (CNV) detection was performed using the re-sequencing data of Anqing Six-end-white pigs and Duroc pigs, A total of 65,701 CNVs were obtained. After merging the CNVs with overlapping genomic positions, 881 CNV regions (CNVRs) were obtained. Based on the obtained CNVR information combined with their positions on the 18 chromosomes, a whole-genome map of the pig CNVs was drawn. GO analysis of the genes in the CNVRs showed that they were primarily involved in the cellular processes of proliferation, differentiation, and adhesion, and primarily involved in the biological processes of fat metabolism, reproductive traits, and immune processes. CONCLUSION The difference analysis of the CNVs between the Chinese and foreign pig breeds showed that the CNV of the Anqing six-end-white pig genome was higher than that of the introduced pig breed Duroc. Six genes related to fat metabolism, reproductive performance, and stress resistance were found in genome-wide CNVRs (DPF3, LEPR, MAP2K6, PPARA, TRAF6, NLRP4).
Collapse
Affiliation(s)
- Rong Qian
- Institue of Agricultural Economics and Information, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Fei Xie
- College of Animal Science, Anhui Science and Technology University, Fengyang County, 233100, Anhui Province, China
| | - Wei Zhang
- Institue of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - JuanJuan Kong
- Institue of Agricultural Economics and Information, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Xueli Zhou
- Institue of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Chonglong Wang
- Institue of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Fengyang County, 233100, Anhui Province, China.
| |
Collapse
|
8
|
Hu L, Zhang L, Li Q, Liu H, Xu T, Zhao N, Han X, Xu S, Zhao X, Zhang C. Genome-wide analysis of CNVs in three populations of Tibetan sheep using whole-genome resequencing. Front Genet 2022; 13:971464. [PMID: 36160022 PMCID: PMC9490000 DOI: 10.3389/fgene.2022.971464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
Copy number variation (CNV), an important source of genomic structural variation, can disturb genetic structure, dosage, regulation and expression, and is associated with phenotypic diversity and adaptation to local environments in mammals. In the present study, 24 resequencing datasets were used to characterize CNVs in three ecotypic populations of Tibetan sheep and assess CNVs related to domestication and adaptation in Qinghai-Tibetan Plateau. A total of 87,832 CNV events accounting for 0.3% of the sheep genome were detected. After merging the overlapping CNVs, 2777 CNV regions (CNVRs) were obtained, among which 1098 CNVRs were shared by the three populations. The average length of these CNVRs was more than 3 kb, and duplication events were more frequent than deletions. Functional analysis showed that the shared CNVRs were significantly enriched in 56 GO terms and 18 KEGG pathways that were mainly concerned with ABC transporters, olfactory transduction and oxygen transport. Moreover, 188 CNVRs overlapped with 97 quantitative trait loci (QTLs), such as growth and carcass QTLs, immunoglobulin QTLs, milk yield QTLs and fecal egg counts QTLs. PCDH15, APP and GRID2 overlapped with body weight QTLs. Furthermore, Vst analysis showed that RUNX1, LOC101104348, LOC105604082 and PAG11 were highly divergent between Highland-type Tibetan Sheep (HTS) and Valley-type Tibetan sheep (VTS), and RUNX1 and LOC101111988 were significantly differentiated between VTS and Oura-type Tibetan sheep (OTS). The duplication of RUNX1 may facilitate the hypoxia adaptation of OTS and HTS in Qinghai-Tibetan Plateau, which deserves further research in detail. In conclusion, for the first time, we represented the genome-wide distribution characteristics of CNVs in Tibetan sheep by resequencing, and provided a valuable genetic variation resource, which will facilitate the elucidation of the genetic basis underlying the distinct phenotypic traits and local adaptation of Tibetan sheep.
Collapse
Affiliation(s)
- Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qi Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Hongjin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tianwei Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Na Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xueping Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Technology Extension Service of Animal Husbandry of Qinghai, Xining, China
| | - Shixiao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- *Correspondence: Cunfang Zhang,
| |
Collapse
|
9
|
Zhang Z, Peng M, Wen Y, Chai Y, Liang J, Yang P, Liu X, Li J, Huang Y, Li L, Huang W, Qi Z, Yang G, Chen F, Shi Q, Li Z, Ru B, Lei C, Wang E, Huang Y. Copy number variation of
EIF4A2
loci related to phenotypic traits in Chinese cattle. Vet Med Sci 2022; 8:2147-2156. [PMID: 36052549 PMCID: PMC9514498 DOI: 10.1002/vms3.875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan People's Republic of China
| | - Mengyang Peng
- College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Yifan Wen
- College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Yanan Chai
- Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan People's Republic of China
| | - Juntong Liang
- College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Peng Yang
- College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station Zhengzhou Henan People's Republic of China
| | - Jungang Li
- Jiaxian Animal Husbandry Bureau Jiaxian Henan People's Republic of China
| | - Yajun Huang
- Jiaxian Animal Husbandry Bureau Jiaxian Henan People's Republic of China
| | - Lijuan Li
- Jiaxian Animal Husbandry Bureau Jiaxian Henan People's Republic of China
| | - Weihong Huang
- Jiaxian Animal Husbandry Bureau Jiaxian Henan People's Republic of China
| | - Zengfang Qi
- Jiaxian Animal Husbandry Bureau Jiaxian Henan People's Republic of China
| | - Guojie Yang
- Jiaxian Animal Husbandry Bureau Jiaxian Henan People's Republic of China
| | - Fuying Chen
- Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan People's Republic of China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station Zhengzhou Henan People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station Zhengzhou Henan People's Republic of China
| | - Chuzhao Lei
- Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| |
Collapse
|
10
|
Zhang Z, Chu M, Bao Q, Bao P, Guo X, Liang C, Yan P. Two Different Copy Number Variations of the SOX5 and SOX8 Genes in Yak and Their Association with Growth Traits. Animals (Basel) 2022; 12:ani12121587. [PMID: 35739923 PMCID: PMC9219506 DOI: 10.3390/ani12121587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Copy number variation (CNV) is a structural variant with significant impact on genetic diversity. CNV has been widely used in breeding for growth traits, meat production or quality, and coat color. SRY-like box genes (SOXs) are a class of transcription factors that play a regulatory role in cell fate specification and differentiation. SOX5 and SOX8 belong to subgroups D and E of the SOXs, respectively. Previous studies have shown that SOX5 and SOX8 are essential in the development of bones. In this study, we explored the association between the growth traits and CNVs of SOX5 and SOX8 in 326 Ashidan yaks and detected mRNA expression levels in different tissues. Our results illustrated that CNVs of SOX5 and SOX8 were significantly associated with withers height at 18 months of age and chest girth at 30 months of age (p < 0.05). The CNV combination of SOX5 and SOX8 was significantly associated with withers height at 18 months of age (p < 0.01). SOX5 expression in the lung was significantly higher than in the heart, spleen, kidney, and muscle (p < 0.05). SOX8 expression in the lung was significantly higher than in the liver and muscle (p < 0.05). Our results provide evidence that the CNVs of SOX5 and SOX8 genes could be used as new markers for the selection of yak growth traits.
Collapse
Affiliation(s)
- Zhilong Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Qi Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (C.L.); (P.Y.)
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (C.L.); (P.Y.)
| |
Collapse
|
11
|
Guo X, Pei J, Wu X, Bao P, Ding X, Xiong L, Chu M, Lan X, Yan P. Detection of InDel and CNV of SPAG17 gene and their associations with bovine growth traits. Anim Biotechnol 2022; 33:440-447. [PMID: 32820682 DOI: 10.1080/10495398.2020.1803342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sperm-associated antigen 17 (SPAG17) gene encodes a central pair protein, which is involved in flagellar motility, male fertility and skeletal growth in ruminants. The insertions/deletions (indels) and copy number variations (CNVs) influence phenotypic traits by altering the sequences and copy numbers of functional genes, respectively. This study identified a novel 8-bp indel of SPAG17 gene in 1520 individuals from eight different cattle breeds, as well as a novel CNV region in 355 animals. The correlation analysis of indel showed that the individuals of ID genotype had superior performance traits such as body height (p = 0.038) and body slanting length (p = 0.041) as compared to other genotypes in Xianan cattle. For the CNV, different copy numbers were closely related to the body height in Qinchuan (p = 0.045) and body weight in Xianan (p = 0.036) breeds. Importantly, significant difference was observed between the 8-bp indel and the copy number loss in Xianan breed (p < 0.01). These findings indicated that the variations within the bovine SPAG17 gene can be considered as an effective DNA molecular marker for beef cattle breeding.
Collapse
Affiliation(s)
- Xian Guo
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Jie Pei
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Pengjia Bao
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xuezhi Ding
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Lin Xiong
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Min Chu
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Yan
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Wang J, Wen Y, Xu J, Yue B, Zhong J, Zheng L, Lei C, Chen H, Huang Y. Circ RIMKLB promotes myoblast proliferation and inhibits differentiation by sponging miR-29c to release KCNJ12. Epigenetics 2022; 17:1686-1700. [PMID: 35348434 PMCID: PMC9621043 DOI: 10.1080/15592294.2022.2058211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Muscle development is a complex process that was regulated by many factors, among which non-coding RNAs (ncRNAs) play a vital role in regulating multiple life activities of muscle cells. Circular RNA (circRNA), a type of non-coding RNA with closed-loop structure, has been reported to affect multiple life processes. However, the roles of circRNAs on muscle development have not been fully elucidated. The present study aimed to determine whether and how circRIMKLB affects muscle development. Our study revealed that circRIMKLB promoted myoblast proliferation and inhibited differentiation. Besides, miR-29c was proved as a downstream target of circRIMKLB using dual-luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay. Also, potassium inwardly rectifying channel subfamily J member 12 (KCNJ12) was identified as a novel target of miR-29c via dual-luciferase reporter assay, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and western blot. CircRIMKLB and KCNJ12 were both proved to regulate cell cycle on muscle regeneration after injury in vivo. In conclusion, we demonstrated that circRIMKLB sponged miR-29c, releasing KCNJ12 to regulate myoblast proliferation and differentiation and regulating cell cycle during muscle regeneration after injury in vivo.
Collapse
Affiliation(s)
- Jian Wang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Yifan Wen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Jiawei Xu
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Binglin Yue
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Jialin Zhong
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Li Zheng
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Zhou J, Liu L, Reynolds E, Huang X, Garrick D, Shi Y. Discovering Copy Number Variation in Dual-Purpose XinJiang Brown Cattle. Front Genet 2022; 12:747431. [PMID: 35222511 PMCID: PMC8873982 DOI: 10.3389/fgene.2021.747431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Copy number variants (CNVs), which are a class of structural variant, can be important in relating genomic variation to phenotype. The primary aims of this study were to discover the common CNV regions (CNVRs) in the dual-purpose XinJiang-Brown cattle population and to detect differences between CNVs inferred using the ARS-UCD 1.2 (ARS) or the UMD 3.1 (UMD) genome assemblies based on the 150K SNP (Single Nucleotide Polymorphisms) Chip. PennCNV and CNVPartition methods were applied to calculate the deviation of the standardized signal intensity of SNPs markers to detect CNV status. Following the discovery of CNVs, we used the R package HandyCNV to generate and visualize CNVRs, compare CNVs and CNVRs between genome assemblies, and identify consensus genes using annotation resources. We identified 38 consensus CNVRs using the ARS assembly with 1.95% whole genome coverage, and 33 consensus CNVRs using the UMD assembly with 1.46% whole genome coverage using PennCNV and CNVPartition. We identified 37 genes that intersected 13 common CNVs (>5% frequency), these included functionally interesting genes such as GBP4 for which an increased copy number has been negatively associated with cattle stature, and the BoLA gene family which has been linked to the immune response and adaption of cattle. The ARS map file of the GGP Bovine 150K Bead Chip maps the genomic position of more SNPs with increased accuracy compared to the UMD map file. Comparison of the CNVRs identified between the two reference assemblies suggests the newly released ARS reference assembly is better for CNV detection. In spite of this, different CNV detection methods can complement each other to generate a larger number of CNVRs than using a single approach and can highlight more genes of interest.
Collapse
Affiliation(s)
- Jinghang Zhou
- School of Agriculture, Ningxia University, Yinchuan, China
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | - Liyuan Liu
- School of Agriculture, Ningxia University, Yinchuan, China
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | - Edwardo Reynolds
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Dorian Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
- *Correspondence: Yuangang Shi, ; Dorian Garrick, mailto:
| | - Yuangang Shi
- School of Agriculture, Ningxia University, Yinchuan, China
- *Correspondence: Yuangang Shi, ; Dorian Garrick, mailto:
| |
Collapse
|
14
|
Rafter P, Gormley IC, Parnell AC, Naderi S, Berry DP. The Contribution of Copy Number Variants and Single Nucleotide Polymorphisms to the Additive Genetic Variance of Carcass Traits in Cattle. Front Genet 2021; 12:761503. [PMID: 34795696 PMCID: PMC8593468 DOI: 10.3389/fgene.2021.761503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relative contributions of both copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) to the additive genetic variance of carcass traits in cattle is not well understood. A detailed understanding of the relative importance of CNVs in cattle may have implications for study design of both genomic predictions and genome-wide association studies. The first objective of the present study was to quantify the relative contributions of CNV data and SNP genotype data to the additive genetic variance of carcass weight, fat, and conformation for 945 Charolais, 923 Holstein-Friesian, and 974 Limousin sires. The second objective was to jointly consider SNP and CNV data in a least absolute selection and shrinkage operator (LASSO) regression model to identify genomic regions associated with carcass weight, fat, and conformation within each of the three breeds separately. A genomic relationship matrix (GRM) based on just CNV data did not capture any variance in the three carcass traits when jointly evaluated with a SNP-derived GRM. In the LASSO regression analysis, a total of 987 SNPs and 18 CNVs were associated with at least one of the three carcass traits in at least one of the three breeds. The quantitative trait loci (QTLs) corresponding to the associated SNPs and CNVs overlapped with several candidate genes including previously reported candidate genes such as MSTN and RSAD2, and several potential novel candidate genes such as ACTN2 and THOC1. The results of the LASSO regression analysis demonstrated that CNVs can be used to detect associations with carcass traits which were not detected using the set of SNPs available in the present study. Therefore, the CNVs and SNPs available in the present study were not redundant forms of genomic data.
Collapse
Affiliation(s)
- Pierce Rafter
- Animal & Grassland Research and Innovation Centre, Fermoy, Ireland.,School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | | | | | - Saeid Naderi
- Irish Cattle Breeding Federation, Bandon, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Fermoy, Ireland
| |
Collapse
|
15
|
Rafter P, Gormley IC, Purfield D, Parnell AC, Naderi S, Berry DP. Genome-wide association analyses of carcass traits using copy number variants and raw intensity values of single nucleotide polymorphisms in cattle. BMC Genomics 2021; 22:757. [PMID: 34688258 PMCID: PMC8542340 DOI: 10.1186/s12864-021-08075-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The carcass value of cattle is a function of carcass weight and quality. Given the economic importance of carcass merit to producers, it is routinely included in beef breeding objectives. A detailed understanding of the genetic variants that contribute to carcass merit is useful to maximize the efficiency of breeding for improved carcass merit. The objectives of the present study were two-fold: firstly, to perform genome-wide association analyses of carcass weight, carcass conformation, and carcass fat using copy number variant (CNV) data in a population of 923 Holstein-Friesian, 945 Charolais, and 974 Limousin bulls; and secondly to perform separate association analyses of carcass traits on the same population of cattle using the Log R ratio (LRR) values of 712,555 single nucleotide polymorphisms (SNPs). The LRR value of a SNP is a measure of the signal intensity of the SNP generated during the genotyping process. RESULTS A total of 13,969, 3,954, and 2,805 detected CNVs were tested for association with the three carcass traits for the Holstein-Friesian, Charolais, and Limousin, respectively. The copy number of 16 CNVs and the LRR of 34 SNPs were associated with at least one of the three carcass traits in at least one of the three cattle breeds. With the exception of three SNPs, none of the quantitative trait loci detected in the CNV association analyses or the SNP LRR association analyses were also detected using traditional association analyses based on SNP allele counts. Many of the CNVs and SNPs associated with the carcass traits were located near genes related to the structure and function of the spliceosome and the ribosome; in particular, U6 which encodes a spliceosomal subunit and 5S rRNA which encodes a ribosomal subunit. CONCLUSIONS The present study demonstrates that CNV data and SNP LRR data can be used to detect genomic regions associated with carcass traits in cattle providing information on quantitative trait loci over and above those detected using just SNP allele counts, as is the approach typically employed in genome-wide association analyses.
Collapse
Affiliation(s)
- Pierce Rafter
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Cork, Fermoy, Ireland
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Isobel Claire Gormley
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Deirdre Purfield
- Department of Biological Sciences, Munster Technological University Institute, Cork, Bishopstown, Ireland
| | - Andrew C Parnell
- Hamilton Institute, Insight Centre for Data Analytics, Maynooth University, Kildare, Ireland
| | - Saeid Naderi
- Irish Cattle Breeding Federation, Cork, Bandon, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Cork, Fermoy, Ireland.
| |
Collapse
|
16
|
Strillacci MG, Moradi-Shahrbabak H, Davoudi P, Ghoreishifar SM, Mokhber M, Masroure AJ, Bagnato A. A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes. BMC Genomics 2021; 22:305. [PMID: 33902439 PMCID: PMC8077898 DOI: 10.1186/s12864-021-07604-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In Iran, river buffalo is of great importance. It plays an important role in the economy of the Country, because its adaptation to harsh climate conditions and long productive lifespan permitting its farming across the Country and to convert low-quality feed into valuable milk. The genetic variability in Iranian buffalo breeds have been recently studied using SNPs genotyping data, but a whole genome Copy Number Variants (CNVs) mapping was not available. The aim of this study was to perform a genome wide CNV scan in 361 buffaloes of the three Iranian river breeds (Azeri, Khuzestani and Mazandarani) through the analysis of data obtained using the Axiom® Buffalo Genotyping Array 90 K. RESULTS CNVs detection resulted in a total of 9550 CNVs and 302 CNVRs identified in at least 5% of samples within breed, covering around 1.97% of the buffalo genome. and A total of 22 CNVRs were identified in all breeds and a different proportion of regions were in common among the three populations. Within the more represented CNVRs (n = 302) mapped a total of 409 buffalo genes, some of which resulted associated with morphological, healthy, milk, meat and reproductive traits, according to Animal Genome Cattle database. CONCLUSIONS This work provides a step forward in the interpretation of genomic variation within and among the buffalo populations, releasing a first map of CNVs and providing insights about their recent selection and adaptation to environment. The presence of the set of genes and QTL traits harbored in the CNVRs could be possibly linked with the buffalo's natural adaptive history together to a recent selection for milk used as primary food source from this species.
Collapse
Affiliation(s)
- Maria G. Strillacci
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167 Iran
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3 Canada
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167 Iran
| | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agriculture and Natural resources, Urmia University, 11Km Sero Road, P. O. Box: 165, Urmia, 57561-51818 Iran
| | - Anoar Jamai Masroure
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| |
Collapse
|
17
|
Berton MP, de Antunes Lemos MV, Seleguim Chud TC, Bonvino Stafuzza N, Kluska S, Amorim ST, Silva Ferlin Lopes L, Cravo Pereira AS, Bickhart D, Liu G, Galvão de Albuquerque L, Baldi F. Genome-wide association study between copy number variation regions and carcass- and meat-quality traits in Nellore cattle. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context
Indicine breeds are the main source of beef products in tropical and subtropical regions. However, genetic improvement for carcass- and meat-quality traits in zebu cattle have been limited and genomics studies concerning structural variations that influence these traits are essential.
Aim
The aim of this study was to perform a genome-wide association study between copy number variation regions (CNVRs) and carcass- and meat quality-traits in Nellore cattle.
Methods
In total, 3794 animals, males and females included, were genotyped using a 777962 single-nucleotide polymorphism platform of BovineHD BeadChip (777k; Illumina Inc.). Of these, 1751 Nellore bulls were slaughtered at 24 months of age for further carcass beef analysis. The following traits were studied: beef tenderness, marbling, rib-eye area, backfat thickness and meat colour (lightness, redness and yellowness). The CNV detection was conducted through PennCNV software. The association analyses were performed using CNVRuler software.
Key results
Several identified genomic regions were linked to quantitative trait loci associated with fat deposition (FABP7) and lipid metabolism (PPARA; PLA2 family; BCHE), extracellular matrix (INS; COL10A1), contraction (SLC34A3; TRDN) and muscle development (CAPZP). The gene-enrichment analyses highlighted biological mechanisms directly related to the metabolism and synthesis of lipids and fatty acids.
Conclusions
The large number of potential candidate genes identified within the CNVRs, as well as the functions and pathways identified, should help better elucidate the genetic mechanisms involved in the expression of beef and carcass traits in Nellore cattle. Several CNVRs harboured genes that might have a functional impact to improve the beef and carcass traits.
Implications
The results obtained contribute to upgrade the sensorial and organoleptic attributes of Nellore cattle and make feasible the genetic improvement of carcass- and meat-quality traits.
Collapse
|
18
|
Xu J, Fu Y, Hu Y, Yin L, Tang Z, Yin D, Zhu M, Yu M, Li X, Zhou Y, Zhao S, Liu X. Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features. J Anim Sci Biotechnol 2020; 11:115. [PMID: 33292532 PMCID: PMC7713148 DOI: 10.1186/s40104-020-00520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Background A large number of pig breeds are distributed around the world, their features and characteristics vary among breeds, and they are valuable resources. Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved pig breeds. Results In this study, we performed GWAS using a standard mixed linear model with three types of genome variants (SNP, InDel, and CNV) that were identified from public, whole-genome, sequencing data sets. We used 469 pigs of 57 breeds, and we identified and analyzed approximately 19 million SNPs, 1.8 million InDels, and 18,016 CNVs. We defined six biological phenotypes by the characteristics of breed features to identify the associated genome variants and candidate genes, which included coat color, ear shape, gradient zone, body weight, body length, and body height. A total of 37 candidate genes was identified, which included 27 that were reported previously (e.g., PLAG1 for body weight), but the other 10 were newly detected candidate genes (e.g., ADAMTS9 for coat color). Conclusion Our study indicated that using GWAS across a modest number of breeds with high density genome variants provided efficient mapping of complex traits. Supplementary Information Supplementary information accompanies this paper at 10.1186/s40104-020-00520-8.
Collapse
Affiliation(s)
- Jingya Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Dong Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
19
|
Kang X, Li M, Liu M, Liu S, Pan MG, Wiggans GR, Rosen BD, Liu GE. Copy number variation analysis reveals variants associated with milk production traits in dairy goats. Genomics 2020; 112:4934-4937. [PMID: 32898641 DOI: 10.1016/j.ygeno.2020.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022]
Abstract
Copy number variation (CNV) is a major type of genomic structural variation. We investigated their impacts on goat dairy traits using the CaprineSNP50 array. From 120 samples of five dairy goat breeds, we totally identified 42 CNVs ranging from 56,044 bp to 4,337,625 bp. We found significant associations between two CNVs (CNV5 and CNV25) and two milk production traits (mean of milk fat yield and mean of milk protein yield) after false discovery rate (FDR) correction (P < 0.05). CNV5 overlaps the ADAMTS20 gene, which is involved in the differentiation of mammary cell and plays a crucial role in lactogenic activity of bovine mammary epithelial cells. CNV25 overlaps with PAPPA2, which has been found to be associated with bovine reproduction and milk production traits. Our results revealed that CNVs overlapped with ADAMTS20 and PAPPA2 could be involved in goat dairy traits and function as candidate markers for further genetic selection.
Collapse
Affiliation(s)
- Xiaolong Kang
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, USA; College of Agriculture, Ningxia University, Yinchuan, China
| | - Mingxun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, USA; College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mei Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, USA; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Michael G Pan
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, USA
| | | | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, USA.
| |
Collapse
|
20
|
Cheng J, Cao X, Hanif Q, Pi L, Hu L, Huang Y, Lan X, Lei C, Chen H. Integrating Genome-Wide CNVs Into QTLs and High Confidence GWAScore Regions Identified Positional Candidates for Sheep Economic Traits. Front Genet 2020; 11:569. [PMID: 32655616 PMCID: PMC7325882 DOI: 10.3389/fgene.2020.00569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Copy number variations (CNVs) are important source of genetic variation, which can affect diverse economic traits through a variety of mechanisms. In addition, genome scan can identify many quantitative trait loci (QTLs) for the economic traits, while genome-wide association studies (GWAS) can localize genetic variants associated with the phenotypic variations. Here, we developed a method called GWAScore which collected GWAS summary data to identify potential candidates, and integrated CNVs into QTLs and high confidence GWAScore regions to detect crucial CNV markers for sheep growth traits. We got 197 candidate genes which were overlapping with the candidate CNVs. Some crucial genes (MYLK3, TTC29, HERC6, ABCG2, RUNX1, etc.) showed significantly elevated GWAScore peaks than other candidate genes. In this study, we developed the GWAScore method to excavate the potential value of candidate genes as markers for the sheep molecular breeding.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Computational Biology Lab, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Li Pi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Hao D, Wang X, Thomsen B, Kadarmideen HN, Wang X, Lan X, Huang Y, Qi X, Chen H. Copy Number Variations and Expression Levels of Guanylate-Binding Protein 6 Gene Associated with Growth Traits of Chinese Cattle. Animals (Basel) 2020; 10:E566. [PMID: 32230930 PMCID: PMC7222342 DOI: 10.3390/ani10040566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/16/2022] Open
Abstract
Association studies have indicated profound effects of copy number variations (CNVs) on various phenotypes in different species. In this study, we identified the CNV distributions and expression levels of guanylate-binding protein 6 (GBP6) associated with the growth traits of Chinese cattle. The results showed that the phenotypic values of body size and weight of Xianan (XN) cattle were higher than those of Nanyang (NY) cattle. The medium CNV types were mostly identified in the XN and NY breeds, but their CNV distributions were significantly different (adjusted p < 0.05). The association analysis revealed that the body weight, cannon circumference and chest circumference of XN cattle had significantly different values in different CNV types (p < 0.05), with CNV gain types (Log22-ΔΔCt > 0.5) displaying superior phenotypic values. We also found that transcription levels varied in different tissues (p < 0.001) and the CNV gain types showed the highest relative gene expression levels in the muscle tissue, consistent with the highest phenotypic values of body weight and cannon circumference among the three CNV types. Consequently, our results suggested that CNV gain types of GBP6 could be used as the candidate markers in the cattle-breeding program for growth traits.
Collapse
Affiliation(s)
- Dan Hao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark;
| | - Xiao Wang
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.W.); (H.N.K.)
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark;
| | - Haja N. Kadarmideen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.W.); (H.N.K.)
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang 463700, Henan, China;
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
| |
Collapse
|
22
|
A KARTHIKEYAN, KUMAR AMIT, CHAUDHARY RAJNI, WARA AAMIRBASHIR, SINGH AKANSHA, SAHOO NR, BAQIR MOHD, MISHRA BP. Genome-wide association study of birth weight and pre-weaning body weight of crossbred pigs. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i2.98781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In piggery, birth weight and body weight remains most vital economic trait as they directly influence on the production performance of the farm. Implementing the genomic selection would pay way for rapid genetic gain along with increased accuracy than conventional breeding. Prior to genomic selection, genome wide association study (GWAS) has to be conducted in order to find informative SNPs associated with the traits of interest in a given population. Under this study 96 crossbred pigs were genotyped using double digest genotype by sequencing (GBS) technique using Hiseq platform. Raw FASTQ data were processed using dDOCENT Pipeline on Reference based method and variants were called using Free Bayes (version 1.1.0-3). Using Plink (v1.09b), variants having MAF>0.01, HWE<0.001 and genotyping rate >80% were filtered out and 20,467 SNPs were retained after quality control, for ascertaining GWAS in 96 pigs. Before conducting association studies, the data were adjusted for significant nongenetic factors affecting the traits of interest. GWAS was performed using Plink software (v1.9b) identified 9, 11, 12, 23, 28, 24, 30, 33 and 42 SNPs significantly (adjusted P<0.001) associated with birth weight, body weight at weekly interval from 1st week to 8th week, respectively. A large proportion of significant (adjusted P<0.001) SNPs were located on SSC10, SSC6, SSC13, SSC8 and SSC1. One genome wide significant SNP and four genome wide suggestive SNPs were identified. Two common SNPs affecting all body weight at different weeks were located on SSC5:40197442 and SSC13:140562 base pair position. This study helps to identify the genome wide scattered significant SNPs associated with traits of interest which could be used for genomic selection, but further validation studies of these loci in larger population are recommended.
Collapse
|
23
|
Li L, Yang P, Shi S, Zhang Z, Shi Q, Xu J, He H, Lei C, Wang E, Chen H, Huang Y. Association Analysis to Copy Number Variation (CNV) of Opn4 Gene with Growth Traits of Goats. Animals (Basel) 2020; 10:ani10030441. [PMID: 32155759 PMCID: PMC7143651 DOI: 10.3390/ani10030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Copy number variation is a common genetic polymorphism and is mainly represented by submicroscopic levels of deletion and duplication which are caused by rearrangement of the genome. It is well known that copy number variations of genes are associated with growth traits of livestock. In this study, we detected the correlation between the copy number variation of the Opn4 gene and growth traits of Guizhou goats. We found that the copy number variation of the Opn4 gene had a significant influence on the body length and body weight of Guizhou goats. The results may provide preliminary suggestions into Guizhou goat breeding and new insights into the future of CNV as a new promising molecular marker in animal breeding. Abstract Extensive research has been carried out regarding the correlation between the growth traits of livestock and genetic polymorphisms, including single nucleotide polymorphisms and copy number variations (CNV). The purpose of this study was to analyze the CNV and its genetic effects of the Opn4 gene in 284 Guizhou goats (Guizhou black goat: n = 186, Guizhou white goat: n = 98). We used qPCR to detect the CNV of the Opn4 gene in Guizhou goats, and the classification results were correlated with the corresponding individual growth traits by SPSS software. The results showed that the Opn4 gene had a superior effect on growth traits with multiple copy variants in Guizhou black goats, and there was a significant correlation between copy number variation sites and body length traits. Contrary to the former conclusion, in Guizhou white goats, individuals with the Normal copy number type showed superior growth traits and copy number variant sites were significantly associated with body weight traits. Therefore, the CNV of the Opn4 gene can be used as a candidate molecular genetic marker to improve goat growth traits, speeding up the breeding process of goat elite varieties.
Collapse
Affiliation(s)
- LiJuan Li
- Institute of Bijie Test Area, Guizhou University of Engineering Science, Bijie, Guizhou 551700, China; (L.L.)
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ShuYue Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ZiJing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - QiaoTing Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - JiaWei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - Hua He
- Institute of Bijie Test Area, Guizhou University of Engineering Science, Bijie, Guizhou 551700, China; (L.L.)
- College of Veterinary Medicine, Northwest A&F University, Yangling Shaanxi 712100, China
| | - ChuZhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ErYao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - YongZhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
- Correspondence: ; Tel.: +86-29-87092102; Fax: +86-29-87092164
| |
Collapse
|
24
|
Genome-wide CNV analysis revealed variants associated with growth traits in African indigenous goats. Genomics 2020; 112:1477-1480. [DOI: 10.1016/j.ygeno.2019.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 11/24/2022]
|
25
|
Zhang Y, Hu Y, Wang X, Jiang Q, Zhao H, Wang J, Ju Z, Yang L, Gao Y, Wei X, Bai J, Zhou Y, Huang J. Population Structure, and Selection Signatures Underlying High-Altitude Adaptation Inferred From Genome-Wide Copy Number Variations in Chinese Indigenous Cattle. Front Genet 2020; 10:1404. [PMID: 32117428 PMCID: PMC7033542 DOI: 10.3389/fgene.2019.01404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Copy number variations (CNVs) have been demonstrated as crucial substrates for evolution, adaptation and breed formation. Chinese indigenous cattle breeds exhibit a broad geographical distribution and diverse environmental adaptability. Here, we analyzed the population structure and adaptation to high altitude of Chinese indigenous cattle based on genome-wide CNVs derived from the high-density BovineHD SNP array. We successfully detected the genome-wide CNVs of 318 individuals from 24 Chinese indigenous cattle breeds and 37 yaks as outgroups. A total of 5,818 autosomal CNV regions (683 bp-4,477,860 bp in size), covering ~14.34% of the bovine genome (UMD3.1), were identified, showing abundant CNV resources. Neighbor-joining clustering, principal component analysis (PCA), and population admixture analysis based on these CNVs support that most Chinese cattle breeds are hybrids of Bos taurus taurus (hereinafter to be referred as Bos taurus) and Bos taurus indicus (Bos indicus). The distribution patterns of the CNVs could to some extent be related to the geographical backgrounds of the habitat of the breeds, and admixture among cattle breeds from different districts. We analyzed the selective signatures of CNVs positively involved in high-altitude adaptation using pairwise Fst analysis within breeds with a strong Bos taurus background (taurine-type breeds) and within Bos taurus×Bos indicus hybrids, respectively. CNV-overlapping genes with strong selection signatures (at top 0.5% of Fst value), including LETM1 (Fst = 0.490), TXNRD2 (Fst = 0.440), and STUB1 (Fst = 0.420) within taurine-type breeds, and NOXA1 (Fst = 0.233), RUVBL1 (Fst = 0.222), and SLC4A3 (Fst=0.154) within hybrids, were potentially involved in the adaptation to hypoxia. Thus, we provide a new profile of population structure from the CNV aspects of Chinese indigenous cattle and new insights into high-altitude adaptation in cattle.
Collapse
Affiliation(s)
- Yaran Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Han Zhao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaping Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaochao Wei
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiachen Bai
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,Engineering Center of Animal Breeding and Reproduction, Jinan, China
| |
Collapse
|
26
|
Ventura RV, Brito LF, Oliveira GA, Daetwyler HD, Schenkel FS, Sargolzaei M, Vandervoort G, Fonseca e Silva F, Miller SP, Carvalho ME, Santana MHA, Mattos EC, Fonseca P, Eler JP, Ferraz JBS. A comprehensive comparison of high-density SNP panels and an alternative ultra-high-density panel for genomic analyses in Nellore cattle. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is evidence that some genotyping platforms might not work very well for Zebu cattle when compared with Taurine breeds. In addition, the availability of panels with low to moderate number of overlapping markers is a limitation for combining datasets for genomic evaluations, especially when animals are genotyped using different SNP panels. In the present study, we compared the performance of medium- and high-density (HD) commercially available panels and investigated the feasibility of developing an ultra-HD panel (SP) containing markers from an Illumina (HD_I) and an Affymetrix (HD_A) panels. The SP panel contained 1123442 SNPs. After performing SNP pruning on the basis of linkage disequilibrium, HD_A, HD_I and SP contained 429624, 365225 and 658770 markers distributed across the whole genome. The overall mean proportion of markers pruned out per chromosome for HD_A, HD_I and SP was 15.17%, 43.18%, 38.63% respectively. The HD_I panel presented the highest mean number of runs-of-homozygosity segments per animal (45.48%, an increment of 5.11% compared with SP) and longer segments, on average (3057.95 kb per segment), than did both HD_A and SP. HD_I also showed the highest mean number of SNPs per run-of-homozygosity segment. Consequently, the majority of animals presented the highest genomic inbreeding levels when genotyped using HD_I. The visual examination of marker distribution along the genome illustrated uncovered regions among the different panels. Haplotype-block comparison among panels and the average haplotype size constructed on the basis of HD_A were smaller than those from HD_I. The average number of SNPs per haplotype was different between HD_A and HD_I. Both HD_A and HD_I panels achieved high imputation accuracies when used as the lower-density panels for imputing to SP. However, imputation accuracy from HD_A to SP was greater than was imputation from HD_I to SP. Imputation from one HD panel to the other is also feasible. Low- and medium-density panels, composed of markers that are subsets of both HD_A and HD_I panels, should be developed to achieve better imputation accuracies to both HD levels. Therefore, the genomic analyses performed in the present study showed significant differences among the SNP panels used.
Collapse
|
27
|
|
28
|
Sun T, Hanif Q, Chen H, Lei C, Dang R. Copy Number Variations of Four Y-Linked Genes in Swamp Buffaloes. Animals (Basel) 2019; 10:ani10010031. [PMID: 31877875 PMCID: PMC7023270 DOI: 10.3390/ani10010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The amplification of the male-specific region of the Y chromosome was a unique phenomenon during mammalian sex chromosome evolution. The Y-linked copy number variations of many species have been confirmed. However, the Y-linked copy number variations (CNVs) in water buffalo are still unknown. In this study, we investigated the copy number variations of four Y-linked genes (SRY, UTY, DBY, and OFD1Y) in buffalo. Our results showed that UTY was a single-copy gene in buffalo, while DBY, OFD1Y, and SRY exhibited copy number variations in buffalo. Abstract Copy number variation (CNV), a significant source of genetic diversity in the mammalian Y chromosome, is associated with the development of many complex phenotypes, such as spermatogenesis and male fertility. The contribution of Y-linked CNVs has been studied in various species, however, water buffalo has not been explored in this area and the genetic information still remains unknown. The aim of the current study was to investigate the CNVs of four Y-linked genes, including, sex determining Region of Y-Chromosome (SRY), ubiquitously transcribed tetratricopeptide repeat gene protein on the chromosome Y (UTY), DEAD-box helicase 3 Y-linked (DDX3Y, also known as DBY), and oral-facial-digital syndrome 1 Y-linked (OFD1Y) in 254 swamp buffaloes from 15 populations distributed across China, Vietnam, and Laos using quantitative real-time PCR (qPCR). Our results revealed the prevalence of a single-copy UTY gene in buffaloes. The DBY and OFD1Y represented CNVs among and within different buffalo breeds. The SRY showed CNVs only in Vietnamese and Laotian buffaloes. In conclusion, this study indicated that DBY, OFD1Y, and SRY showed CNVs, while the UTY was a single-copy gene in swamp buffaloes.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad 577, Pakistan
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-153-8862-7637
| |
Collapse
|
29
|
Differential Expression of KCNJ12 Gene and Association Analysis of Its Missense Mutation with Growth Traits in Chinese Cattle. Animals (Basel) 2019; 9:ani9050273. [PMID: 31137608 PMCID: PMC6562504 DOI: 10.3390/ani9050273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
Simple Summary A central goal of livestock genomic study is to find causal genes underlying economic traits and identify effective variations which can be used as molecular markers for livestock breeding. The cattle KCNJ12 gene is an important candidate gene. To date, however, there have been no reports about the use of its missense mutation as a marker in cattle stature. In this study, missense mutation in KCNJ12 was firstly verified, which led to a change in its protein sequence. Further, a significant association was detected between the mutation of KCNJ12 and cattle stature, and we determined that the mutation in KCNJ12 could be used as a molecular marker in beef breeding programs. In addition, expression analysis of the KCNJ12 gene revealed high abundance in muscle and potential roles in bovine myocyte differentiation, which may be the subject of our future research. Abstract The potassium inwardly rectifying channel, subfamily J, member 12 (KCNJ12) gene is a promising candidate for economic traits because of its crucial roles in myoblast development. Here, a missense mutation (Cys > Arg) was first detected to be located in exon 3 of KCNJ12 from three Chinese cattle breeds by DNA-pool sequencing. Then, we performed an association analysis of this single-nucleotide polymorphism (SNP) with stature in three Chinese cattle populations (n = 820). A significantly positive correlation was revealed by a reduced animal general linear model and the CC genotype was the most favorable in three breeds. Further, we measured the expression profile of the KCNJ12 gene in various cattle tissues and primary bovine skeletal muscle cells. Ubiquitous expression with high abundance in muscle was observed. Further, in primary bovine skeletal muscle cells, the KCNJ12 mRNA expression was gradually up-regulated in differentiation medium (DM) compared with that in growth medium (GM), suggesting that the KCNJ12 gene is involved in bovine myocyte differentiation. Conclusively, the KCNJ12 gene is a functional candidate gene which can be used as a molecular marker for cattle breeding.
Collapse
|
30
|
Peng SJ, Cao XK, Dong D, Liu M, Hao D, Shen XM, Huang YZ, Lei CZ, Ma Y, Bai YY, Hu LY, Qi XL, Chaogetu B, Chen H. Integrative analysis of APOL3 gene CNV for adult cattle stature. Anim Biotechnol 2019; 31:440-446. [PMID: 31104559 DOI: 10.1080/10495398.2019.1615933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copy number variations (CNVs) have been identified as another important structural variation of genome. In recent years, a large amount of CNVRs have been identified in humans and animals. However, association and dosage effects studies of CNVs are very limited. Apolipoprotein L3 (APOL3) gene plays a central role in modulating gene transcription and is located within a CNVR that encompasses quantitative trait locis (QTLs) for economic traits like meat quality. Herein, we analyzed the CNV polymorphism of APOL3 in 421 individuals from five distinct cattle breeds, and then correlated their genotypes with growth traits. Association analysis revealed that the APOL3 CNV was significantly associated with hip height and cannon circumference of Xianan (XN) cattle (P < .01), and visibly associated with body slanting length and hucklebone width of Pinan (PN) cattle (P < .05). Overall, the data provide evidence for the functional role of APOL3 CNV and a basis for future applications in cattle breeding.
Collapse
Affiliation(s)
- Shu-Jun Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiu-Kai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dong Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dan Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xue-Mei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong-Zhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chu-Zhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
| | - Yue-Yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, China
| | - Lin-Yong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xing-Lei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, China
| | - Buren Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Jia C, Wang H, Li C, Wu X, Zan L, Ding X, Guo X, Bao P, Pei J, Chu M, Liang C, Yan P. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genomics 2019; 20:376. [PMID: 31088363 PMCID: PMC6518677 DOI: 10.1186/s12864-019-5759-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 01/29/2023] Open
Abstract
Background Copy number variations (CNVs), which are genetic variations present throughout mammalian genomes, are a vital source of phenotypic variation that can lead to the development of unique traits. In this study we used the Illunima BovineHD BeadChip to conduct genome-wide detection of CNVs in 215 polled yaks. Results A total of 1066 CNV regions (CNVRs) were detected with a total length of 181.6 Mb, comprising ~ 7.2% of the bovine autosomal genome. The size of these CNVRs ranged from 5.53 kb to 1148.45 kb, with an average size of 170.31 kb. Eight out of nine randomly chosen CNVRs were successfully validated by qPCR. A functional enrichment analysis of the CNVR-associated genes indicated their relationship to a number of molecular adaptations that enable yaks to thrive at high altitudes. One third of the detected CNVRs were mapped to QTLs associated with six classes of economically important traits, indicating that these CNVRs may play an important role in variations of these traits. Conclusions Our genome-wide yak CNV map may thus provide valuable insights into both the molecular mechanisms of high altitude adaptation and the potential genomic basis of economically important traits in yak. Electronic supplementary material The online version of this article (10.1186/s12864-019-5759-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Congjun Jia
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chen Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
32
|
Copy number variation of bovine SHH gene is associated with body conformation traits in Chinese beef cattle. J Appl Genet 2019; 60:199-207. [PMID: 30997664 DOI: 10.1007/s13353-019-00496-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Sonic Hedgehog (Shh) regulates many key developmental processes during vertebrate limb development, fat formation, and skeletal tissue regeneration. Current whole genome sequencing data have identified a copy number variation mapping to bovine Sonic Hedgehog gene (SHH-CNV). The object of this study was to characterize the SHH-CNV distributions in 648 individuals from 11 Chinese cattle populations and further to investigate the associations of the copy number changes with gene expression and cattle growth traits. The SHH-CNV showed a high variance within Chinese indigenous yellow cattle. Compared to yak and dairy cattle, the beef cattle like Luxi and Xianan breed had significantly higher median copy numbers, suggesting the diversity of SHH-CNV in beef cattle selections. The negative correlation of SHH-CNV with SHH transcriptional level in adult adipose tissue (P < 0.01) indicated the dosage effects of SHH-CNV related to bovine fat formation. Association analysis of SHH-CNV and body size traits was conducted in five breeds. The results revealed that the copy number gain type of SHH-CNV exhibited significantly better chest depth in 24 months old Qinchuan cattle, and better body weight, body length, and chest girth in 18 months old Nanyang cattle, whereas the normal copy number had superior chest girth and body weight in adult Jinnan cattle (P < 0.05 or P < 0.01). In summary, this research uncovered meaningful effects of SHH-CNV on gene expression and cattle phenotypic traits, indicating its potential applications for genetic improvement of beef cattle.
Collapse
|
33
|
Liu M, Fang L, Liu S, Pan MG, Seroussi E, Cole JB, Ma L, Chen H, Liu GE. Array CGH-based detection of CNV regions and their potential association with reproduction and other economic traits in Holsteins. BMC Genomics 2019; 20:181. [PMID: 30845913 PMCID: PMC6407259 DOI: 10.1186/s12864-019-5552-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number variations (CNVs) are structural variants consisting of large-scale insertions and deletions of genomic fragments. Exploring CNVs and estimating their effects on phenotypes are useful for genome selection but remain challenging in the livestock. RESULTS We identified 1043 CNV regions (CNVRs) from array comparative genomic hybridization (CGH) data of 47 Holstein bulls. Using a probe-based CNV association approach, we detected 87 CNVRs significantly (Bonferroni-corrected P value < 0.05) associated with at least one out of 41 complex traits. Within them, 39 CNVRs were simultaneously associated with at least 2 complex traits. Notably, 24 CNVRs were markedly related to daughter pregnancy rate (DPR). For example, CNVR661 containing CYP4A11 and CNVR213 containing CTR9, respectively, were associated with DPR and other traits related to reproduction, production, and body conformation. CNVR758 was also significantly related to DPR, with a nearby gene CAPZA3, encoding one of F-actin-capping proteins which play a role in determining sperm architecture and male fertility. We corroborated these CNVRs by examining their overlapped quantitative trait loci and comparing with previously published CNV results. CONCLUSION To our knowledge, this is one of the first genome-wide association studies based on CNVs called by array CGH in Holstein cattle. Our results contribute substantial information about the potential CNV impacts on reproduction, health, production, and body conformation traits, which lay the foundation for incorporating CNV into the future dairy cattle breeding program.
Collapse
Affiliation(s)
- Mei Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, 712100 Shaanxi China
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Lingzhao Fang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD USA
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Michael G. Pan
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Eyal Seroussi
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, Department of Quantitative and Molecular Genetics, HaMaccabim Road, P.O.B 15159, 7528809 Rishon LeTsiyon, Israel
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD USA
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, 712100 Shaanxi China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
34
|
Wang X, Lebarbier E, Aubert J, Robin S. Variational Inference for Coupled Hidden Markov Models Applied to the Joint Detection of Copy Number Variations. Int J Biostat 2019; 15:/j/ijb.ahead-of-print/ijb-2018-0023/ijb-2018-0023.xml. [PMID: 30779702 DOI: 10.1515/ijb-2018-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/21/2018] [Indexed: 02/04/2023]
Abstract
Hidden Markov models provide a natural statistical framework for the detection of the copy number variations (CNV) in genomics. In this context, we define a hidden Markov process that underlies all individuals jointly in order to detect and to classify genomics regions in different states (typically, deletion, normal or amplification). Structural variations from different individuals may be dependent. It is the case in agronomy where varietal selection program exists and species share a common phylogenetic past. We propose to take into account these dependencies inthe HMM model. When dealing with a large number of series, maximum likelihood inference (performed classically using the EM algorithm) becomes intractable. We thus propose an approximate inference algorithm based on a variational approach (VEM), implemented in the CHMM R package. A simulation study is performed to assess the performance of the proposed method and an application to the detection of structural variations in plant genomes is presented.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai,Shandong, China
| | - Emilie Lebarbier
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Julie Aubert
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Stéphane Robin
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| |
Collapse
|
35
|
Xu L, Yang L, Wang L, Zhu B, Chen Y, Gao H, Gao X, Zhang L, Liu GE, Li J. Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle. BMC Genomics 2019; 20:31. [PMID: 30630414 PMCID: PMC6327516 DOI: 10.1186/s12864-018-5403-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Average daily gain (ADG) is an important trait that contributes to the production efficiency and economic benefits in the beef cattle industry. The molecular mechanisms of ADG have not yet been fully explored because most recent association studies for ADG are based on SNPs or haplotypes. We reported a systematic CNV discovery and association analysis for ADG in Chinese Simmental beef cattle. RESULTS Our study identified 4912 nonredundant CNVRs with a total length of ~ 248.7 Mb, corresponding to ~ 8.9% of the cattle genome. Using probe-based CNV association, we identified 24 and 12 significant SNP probes within five deletions and two duplications for ADG, respectively. Among them, we found one common deletion with 89 kb imbedded in LHFPL Tetraspan Subfamily Member 6 (LHFPL6) at 22.9 Mb on BTA12, which has high frequency (12.9%) dispersing across population. CNV selection test using VST statistic suggested this common deletion may be under positive selection in Chinese Simmental cattle. Moreover, this deletion was not overlapped with any candidate SNP for ADG compared with previous SNPs-based association studies, suggesting its important role for ADG. In addition, we identified one rare deletion near gene Growth Factor Receptor-bound Protein 10 (GRB10) at 5.1 Mb on BTA4 for ADG using both probe-based association and region-based approaches. CONCLUSIONS Our results provided some valuable insights to elucidate the genetic basis of ADG in beef cattle, and these findings offer an alternative perspective to understand the genetic mechanism of complex traits in terms of copy number variations in farm animals.
Collapse
Affiliation(s)
- Lingyang Xu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liu Yang
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Wang
- Beijing Genecast Biotechnology Co., Beijing, 100191, China
| | - Bo Zhu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Chen
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - George E Liu
- U.S. Department of Agriculture-Agricultural Research Services, Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA.
| | - Junya Li
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
36
|
Goshu HA, Chu M, Wu X, Pengjia B, Ding XZ, Yan P. Association study and expression analysis of GPC1 gene copy number variation in Chinese Datong yak ( Bos grunniens) breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1586456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Habtamu Abera Goshu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
- Animal Science Department, Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Bao Pengjia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xue Zhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| |
Collapse
|
37
|
Zheng L, Xu JW, Li JC, Wang DH, An QM, Xu LN, Ma YL, Wang J, Peng SJ, Lei CZ, Lan XY, Chen H, Huo LJ, Huang YZ. Distribution and association study in copy number variation of KCNJ12 gene across four Chinese cattle populations. Gene 2018; 689:90-96. [PMID: 30572095 DOI: 10.1016/j.gene.2018.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
Copy number variation is a large genome variation which usually happens in the noncoding-region, and it may occur at the locus associated with the functional gene to further influence the phenotype. Potassium inwardly-rectifying channel, subfamily J 12 (KCNJ12) gene expressed widely in cardiomyocytes and neurons, plays an important role in tumor therapy and muscle movement regulation. In this study, we detected the distribution of CNVs for KCNJ12 gene in 404 individuals belonging to four Chinese cattle breeds (NY, JX, JA and GF). We also investigated the KCNJ12 gene expression in different tissues of JX cattle. Additionally, we examined the association of two CNV regions (CNV1: 1,600 bp, intron 1; CNV2: 4,800 bp, intergenic) with growth traits. The statistical analyses indicated that the CNV1 is associated with the body length, rump length and weight in JX cattle population (P < 0.05); and there has a significant association with the body length, chest circumference, and body weight in GF cattle (P < 0.05).The CNV2 had a significant effect on the body length and body weight in JX cattle (P < 0.05); the body length, chest circumference, rump length and body weight in GF cattle (P < 0.01 or P < 0.05). The copy numbers of KCNJ12 gene presented the negative correlations with the transcript level of gene in skeletal muscles (P < 0.05). Our results provide evidence that CNV1 and CNV 2 in KCNJ12 are associated with growth traits in two cattle populations and may be used as candidates for marker-assisted selection and breeding management in cattle.
Collapse
Affiliation(s)
- Li Zheng
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, People's Republic of China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jia-Wei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ji-Chao Li
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, People's Republic of China
| | - Da-Hui Wang
- College of Agriculture and Forestry Engineering, Tongren Unviersity, Tongren, Guizhou 554300, People's Republic of China
| | - Qing-Ming An
- College of Agriculture and Forestry Engineering, Tongren Unviersity, Tongren, Guizhou 554300, People's Republic of China
| | - Lin-Na Xu
- Gansu Animal Husbandry Industry Administration, Lanzhou, Gansu 730000, People's Republic of China
| | - Yi-Lei Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shu-Jun Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
38
|
Aguiar TS, Torrecilha RBP, Milanesi M, Utsunomiya ATH, Trigo BB, Tijjani A, Musa HH, Lopes FL, Ajmone-Marsan P, Carvalheiro R, Neves HHDR, do Carmo AS, Hanotte O, Sonstegard TS, Garcia JF, Utsunomiya YT. Association of Copy Number Variation at Intron 3 of HMGA2 With Navel Length in Bos indicus. Front Genet 2018; 9:627. [PMID: 30581455 PMCID: PMC6292862 DOI: 10.3389/fgene.2018.00627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/23/2018] [Indexed: 01/07/2023] Open
Abstract
Navel injuries caused by friction against the pasture can promote infection, reproductive problems and costly treatments in beef cattle raised in extensive systems. A haplotype-based genome-wide association study (GWAS) was performed for visual scores of navel length at yearling in Nellore cattle (Bos indicus) using data from 2,016 animals and 503,088 single nucleotide polymorphism (SNP) markers. The strongest signal (p = 1.01 × 10-9) was found on chromosome 5 spanning positions 47.9-48.2 Mbp. This region contains introns 3 and 4 and exons 4 and 5 of the high mobility group AT-hook 2 gene (HMGA2). Further inspection of the region with whole genome sequence data of 21 Nellore bulls revealed correlations between counts of the significant haplotype and copy number gains of a ∼6.2 kbp segment of intron 3 of HMGA2. Analysis of genome sequences from five African B. indicus and four European Bos taurus breeds revealed that the copy number variant (CNV) is indicine-specific. This intronic CNV was then validated through quantitative polymerase chain reaction (qPCR) using Angus animals as copy neutral controls. Importantly, the CNV was not detectable by means of conventional SNP-based GWAS or SNP probe intensity analyses. Given that HMGA2 affects the expression of the insulin-like growth factor 2 gene (IGF2) together with the pleomorphic adenoma gene 1 (PLAG1), and that the latter has been repeatedly shown to be associated with quantitative traits of economic importance in cattle, these findings highlight the emerging role of variants impacting the insulin-like growth factor pathway to cattle breeding.
Collapse
Affiliation(s)
- Tamíris Sayuri Aguiar
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, Brazil.,Collaborating Centre on Animal Genomics and Bioinformatics, International Atomic Energy Agency, Araçatuba, Brazil
| | - Rafaela Beatriz Pintor Torrecilha
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, Brazil.,Collaborating Centre on Animal Genomics and Bioinformatics, International Atomic Energy Agency, Araçatuba, Brazil
| | - Marco Milanesi
- Collaborating Centre on Animal Genomics and Bioinformatics, International Atomic Energy Agency, Araçatuba, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil.,Department of Animal Science Food and Nutrition and Biodiversity and Ancient DNA Research Center - BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adam Taiti Harth Utsunomiya
- Collaborating Centre on Animal Genomics and Bioinformatics, International Atomic Energy Agency, Araçatuba, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil
| | - Beatriz Batista Trigo
- Collaborating Centre on Animal Genomics and Bioinformatics, International Atomic Energy Agency, Araçatuba, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil
| | - Abdulfatai Tijjani
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hassan Hussein Musa
- Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Flávia Lombardi Lopes
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil
| | - Paolo Ajmone-Marsan
- Department of Animal Science Food and Nutrition and Biodiversity and Ancient DNA Research Center - BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, Brazil
| | | | | | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene - CTLGH, International Livestock Research Institute, Addis Ababa, Ethiopia
| | | | - José Fernando Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, Brazil.,Collaborating Centre on Animal Genomics and Bioinformatics, International Atomic Energy Agency, Araçatuba, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil
| | - Yuri Tani Utsunomiya
- Collaborating Centre on Animal Genomics and Bioinformatics, International Atomic Energy Agency, Araçatuba, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil
| |
Collapse
|
39
|
Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM, Kingan SB, Hiendleder S, Williams JL, Smith TPL, Phillippy AM. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol 2018; 36:nbt.4277. [PMID: 30346939 PMCID: PMC6476705 DOI: 10.1038/nbt.4277] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Complex allelic variation hampers the assembly of haplotype-resolved sequences from diploid genomes. We developed trio binning, an approach that simplifies haplotype assembly by resolving allelic variation before assembly. In contrast with prior approaches, the effectiveness of our method improved with increasing heterozygosity. Trio binning uses short reads from two parental genomes to first partition long reads from an offspring into haplotype-specific sets. Each haplotype is then assembled independently, resulting in a complete diploid reconstruction. We used trio binning to recover both haplotypes of a diploid human genome and identified complex structural variants missed by alternative approaches. We sequenced an F1 cross between the cattle subspecies Bos taurus taurus and Bos taurus indicus and completely assembled both parental haplotypes with NG50 haplotig sizes of >20 Mb and 99.998% accuracy, surpassing the quality of current cattle reference genomes. We suggest that trio binning improves diploid genome assembly and will facilitate new studies of haplotype variation and inheritance.
Collapse
Affiliation(s)
- Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Brian P. Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Alexander T. Dilthey
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
- Institute of Medical Microbiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, North Rhine-Westphalia, Germany
| | - Derek M. Bickhart
- Cell Wall Biology and Utilization Laboratory, ARS USDA, Madison, Wisconsin, USA
| | | | - Stefan Hiendleder
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide SA, Australia
| | - John L. Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA, Australia
| | | | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Copy Number Variations of KLF6 Modulate Gene Transcription and Growth Traits in Chinese Datong Yak (Bos Grunniens). Animals (Basel) 2018; 8:ani8090145. [PMID: 30134528 PMCID: PMC6162419 DOI: 10.3390/ani8090145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023] Open
Abstract
Copy number variation (CNV) is a significant marker of the genetic and phenotypic diversity among individuals that accounts for complex quantitative traits of phenotype and diseases via modulating gene dosage and disrupting coding regions in the genome. Biochemically, Kruppel-like factor 6 (KLF6) genes plays a significant role in the regulation of cell differentiation and proliferation and muscle development. The aim of this study was to detect the distributions of KLF6 copy number variations (CNVs) in five breeds of domestic yak and to explore their effect on growth traits and gene expression. The data were analyzed by real-time quantitative PCR (qPCR). Our results elucidated that a decreased CNV in the KLF6 gene is more highly associated (p < 0.05) with various growth traits than increased or normal CNVs in six-month-old and five-year-old Datong yak. Nevertheless, negative correlations between the DNA copy number and KLF6 gene expression were observed in the skeletal muscle of adult Datong yak. These results suggest that CNVs of the KLF6 gene could be crucial genomic markers for growth phenotypes of Chinese Datong yak breeds and this finding constitutes the first evidence of the biological role of KLF6 CNVs in Chinese Datong yak breeds.
Collapse
|
41
|
Genomic predictions combining SNP markers and copy number variations in Nellore cattle. BMC Genomics 2018; 19:441. [PMID: 29871610 PMCID: PMC5989480 DOI: 10.1186/s12864-018-4787-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 05/14/2018] [Indexed: 11/26/2022] Open
Abstract
Background Due to the advancement in high throughput technology, single nucleotide polymorphism (SNP) is routinely being incorporated along with phenotypic information into genetic evaluation. However, this approach often cannot achieve high accuracy for some complex traits. It is possible that SNP markers are not sufficient to predict these traits due to the missing heritability caused by other genetic variations such as microsatellite and copy number variation (CNV), which have been shown to affect disease and complex traits in humans and other species. Results In this study, CNVs were included in a SNP based genomic selection framework. A Nellore cattle dataset consisting of 2230 animals genotyped on BovineHD SNP array was used, and 9 weight and carcass traits were analyzed. A total of six models were implemented and compared based on their prediction accuracy. For comparison, three models including only SNPs were implemented: 1) BayesA model, 2) Bayesian mixture model (BayesB), and 3) a GBLUP model without polygenic effects. The other three models incorporating both SNP and CNV included 4) a Bayesian model similar to BayesA (BayesA+CNV), 5) a Bayesian mixture model (BayesB+CNV), and 6) GBLUP with CNVs modeled as a covariable (GBLUP+CNV). Prediction accuracies were assessed based on Pearson’s correlation between de-regressed EBVs (dEBVs) and direct genomic values (DGVs) in the validation dataset. For BayesA, BayesB and GBLUP, accuracy ranged from 0.12 to 0.62 across the nine traits. A minimal increase in prediction accuracy for some traits was noticed when including CNVs in the model (BayesA+CNV, BayesB+CNV, GBLUP+CNV). Conclusions This study presents the first genomic prediction study integrating CNVs and SNPs in livestock. Combining CNV and SNP marker information proved to be beneficial for genomic prediction of some traits in Nellore cattle. Electronic supplementary material The online version of this article (10.1186/s12864-018-4787-6) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Mary N, Ferchaud S, Barasc H, Calgaro A, Bonnet N, Ducos A, Pinton A. Intraindividual Variation of Meiotic Recombination Parameters in Pig Spermatocytes: A Preliminary Study. Cytogenet Genome Res 2018; 154:229-233. [PMID: 29788002 DOI: 10.1159/000488789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination parameters like crossover (CO) rate or synaptonemal complex (SC) length are known to vary strongly between individuals and between cells from the same individual. The origins of this variability remain elusive, and little is known about the variations that might occur between different samples and/or over time within the same individual. To document this question, pachytene cells from 3 boars of the Large White breed were analyzed twice, at a 1-year interval, using immunocytological techniques. CO rate, SC length, and MLH1 inter-foci distances varied significantly between the 3 individuals. CO rate and SC length differed significantly between the 2 sampling periods for 1 individual. However, no significant differences were observed between the 2 samples for CO distribution and inter-foci distances in the 3 boars studied.
Collapse
|
43
|
Integrating CNVs into meta-QTL identified GBP4 as positional candidate for adult cattle stature. Funct Integr Genomics 2018; 18:559-567. [PMID: 29737453 DOI: 10.1007/s10142-018-0613-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 02/03/2023]
Abstract
Copy number variation (CNV) of DNA sequences, functionally significant but yet fully ascertained, is believed to confer considerable increments in unexplained heritability of quantitative traits. Identification of phenotype-associated CNVs (paCNVs) therefore is a pressing need in CNV studies to speed up their exploitation in cattle breeding programs. Here, we provided a new avenue to achieve this goal that is to project the published CNV data onto meta-quantitative trait loci (meta-QTL) map which connects causal genes with phenotypes. Any CNVs overlapping meta-QTL therefore will be potential paCNVs. This study reported potential paCNVs in Bos taurus autosome 3 (BTA3). Notably, overview indexes and CNVs both highlighted a narrower region (BTA3 54,500,000-55,000,000 bp, named BTA3_INQTL_6) within one constructed meta-QTL. Then, we ascertained guanylate-binding protein 4 (GBP4) among the nine positional candidate genes was significantly associated with adult cattle stature, including body weight (BW, P < 0.05) and withers height (WHT, P < 0.05), fitting GBP4 CNV either with three levels or with six levels in the model. Although higher copy number downregulated the mRNA levels of GBP2 (P < 0.05) and GBP4 (P < 0.05) in 1-Mb window (54.0-55.0 Mb) in muscle and adipose, additional analyses will be needed to clarify the causality behind the ascertained association.
Collapse
|
44
|
Zhou Y, Connor EE, Wiggans GR, Lu Y, Tempelman RJ, Schroeder SG, Chen H, Liu GE. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle. BMC Genomics 2018; 19:314. [PMID: 29716533 PMCID: PMC5930521 DOI: 10.1186/s12864-018-4699-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been applied in livestock, although few studies have focused on Holstein cattle. RESULTS We describe 191 CNV detected using intensity data from over 700,000 SNP genotypes generated with the BovineHD Genotyping BeadChip (Illumina, San Diego, CA) in 528 Holstein cows. The CNV were used for GWAS analysis of 10 important production traits of 473 cattle related to feed intake, milk quality, and female fertility, as well as 2 composite traits of net merit and productive life. In total, we detected 57 CNV associated (P < 0.05 after false discovery rate correction) with at least one of the 10 phenotypes. Focusing on feed efficiency and intake-related phenotypes of residual feed intake and dry matter intake, we detected a single CNV associated with both traits which overlaps a predicted olfactory receptor gene OR2A2 (LOC787786). Additionally, 2 CNV within the RXFP4 (relaxin/insulin like family peptide receptor 4) and 2 additional olfactory receptor gene regions, respectively, were associated with residual feed intake. The RXFP4 gene encodes a receptor for an orexigenic peptide, insulin-like peptide 5 produced by intestinal L cells, which is expressed by enteric neurons. Olfactory receptors are critical for transmitting the effects of odorants, contributing to the sense of smell, and have been implicated in participating in appetite regulation. CONCLUSIONS Our results identify CNV for genomic evaluation in Holstein cattle, and provide candidate genes, such as RXFP4, contributing to variation in feed efficiency and feed intake-related traits. These results indicate potential novel targets for manipulating feed intake-related traits of livestock.
Collapse
Affiliation(s)
- Yang Zhou
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA.,Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Erin E Connor
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA
| | - George R Wiggans
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA
| | - Yongfang Lu
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert J Tempelman
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA
| | - Hong Chen
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, 10300 Baltimore Avenue, Bldg. 306, BARC-East, Beltsville, MD, 20705, USA.
| |
Collapse
|
45
|
Miao J, Wang X, Bao J, Jin S, Chang T, Xia J, Yang L, Zhu B, Xu L, Zhang L, Gao X, Chen Y, Li J, Gao H. Multimarker and rare variants genomewide association studies for bone weight in Simmental cattle. J Anim Breed Genet 2018; 135:159-169. [DOI: 10.1111/jbg.12326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
- J. Miao
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
- College of Animal Sciences; Fujian Agriculture and Forestry University; Fujian China
| | - X. Wang
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - J. Bao
- Veterinary Bureau of Wulagai Precinct in Xilin Gol League; Wulagai China
| | - S. Jin
- Veterinary Bureau of Wulagai Precinct in Xilin Gol League; Wulagai China
| | - T. Chang
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - J. Xia
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - L. Yang
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - B. Zhu
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - L. Xu
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - L. Zhang
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - X. Gao
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Y. Chen
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - J. Li
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - H. Gao
- Laboratory of Molecular Biology and Bovine Breeding; Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| |
Collapse
|
46
|
Association study between copy number variation and beef fatty acid profile of Nellore cattle. J Appl Genet 2018. [DOI: 10.1007/s13353-018-0436-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Zhao H, Wu M, Wang S, Yu X, Li Z, Dang R, Sun X. Identification of a novel 24 bp insertion–deletion (indel) of the androgen receptor gene and its association with growth traits in four indigenous cattle breeds. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-71-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. During the past decades, insertions and deletions (indels) have become
increasingly popular in animal breeding for understanding the relationship
between genotypes and phenotypes. The androgen receptor (AR) plays the
vital role of a bridge on the function of the androgen and has sexual size
dimorphism. For this reason, the objective of this study was to explore the
novel indel variants within the cattle AR gene and to detect their
effects on growth traits in four breeds of Chinese yellow cattle. Herein, we
first confirmed a novel 24 bp indel (AC_000187.1g.4187270-4187293delAATTTATTGGGAGATTATTGAATT) within the intron of
the cattle AR gene. This is consistent with the results predicted
from the NCBI SNP database. The distribution of the indel genotypes of four
Chinese yellow cattle were significantly different from each other
(P < 0.01). After significant correlation analysis, many remarkable
phenotypic differences among the three genotypes were found (P < 0.05).
In conclusion, a novel 24 bp indel within the AR gene
significantly affected growth traits, suggesting that this indel may be a
useful DNA marker for the elimination or selection of excellent individuals for
cattle breeding.
Collapse
|
48
|
Antunes de Lemos MV, Berton MP, Ferreira de Camargo GM, Peripolli E, de Oliveira Silva RM, Ferreira Olivieri B, Cesar AS, Pereira ASC, de Albuquerque LG, de Oliveira HN, Tonhati H, Baldi F. Copy number variation regions in Nellore cattle: Evidences of environment adaptation. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Yang L, Xu L, Zhu B, Niu H, Zhang W, Miao J, Shi X, Zhang M, Chen Y, Zhang L, Gao X, Gao H, Li L, Liu GE, Li J. Genome-wide analysis reveals differential selection involved with copy number variation in diverse Chinese Cattle. Sci Rep 2017; 7:14299. [PMID: 29085051 PMCID: PMC5662686 DOI: 10.1038/s41598-017-14768-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) are defined as deletions, insertions, and duplications between two individuals of a species. To investigate the diversity and population-genetic properties of CNVs and their diverse selection patterns, we performed a genome-wide CNV analysis using high density SNP array in Chinese native cattle. In this study, we detected a total of 13,225 CNV events and 3,356 CNV regions (CNVRs), overlapping with 1,522 annotated genes. Among them, approximately 71.43 Mb of novel CNVRs were detected in the Chinese cattle population for the first time, representing the unique genomic resources in cattle. A new V i statistic was proposed to estimate the region-specific divergence in CNVR for each group based on unbiased estimates of pairwise V ST . We obtained 12 and 62 candidate CNVRs at the top 1% and top 5% of genome-wide V i value thresholds for each of four groups (North, Northwest, Southwest and South). Moreover, we identified many lineage-differentiated CNV genes across four groups, which were associated with several important molecular functions and biological processes, including metabolic process, response to stimulus, immune system, and others. Our findings provide some insights into understanding lineage-differentiated CNVs under divergent selection in the Chinese native cattle.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hong Niu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wengang Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Miao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xinping Shi
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, 20705, USA
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
50
|
Huang J, Li R, Zhang X, Huang Y, Dang R, Lan X, Chen H, Lei C. Copy number veriation regions detection in Qinchuan cattle. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|