1
|
Alibardi L. Immunolocalization of cell proliferation and tumor markers in the regenerating tail of the lizard Podarcis muralis likely involved in cell proliferation control. Tissue Cell 2025; 93:102782. [PMID: 39938428 DOI: 10.1016/j.tice.2025.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
PURPOSE The lizard blastema expresses typical genes present in cancer cells, and CD44 and S100A4 markers are known to be associated with metastasis, a process that is absent during tail regeneration in lizard. METHOD The present immunohistochemical study analyzes the distribution of hyaluronate, its main receptor CD44, and S100A4 (metastasin-1) in relation to proliferating cells in the early regenerating tail of the lizard Podarcis muralis. RESULTS The regenerating blastema contains sparse proliferating cells immersed in a hyaluronate-rich extracellular matrix and these cells show a diffuse labeling for CD44 and S100A4. These proteins are more intensely localized in the apical regenerating (wound) epidermis and ependymal ampulla (regenerating spinal cord), two tissues essential for the stimulation of tail regeneration in lizards. Both markers generally show a cytoplasmic localization, but also a nuclear labeling is present in basal cells of the regenerating epidermis in the blastema, especially for S100A4. The latter protein is highly expressed in differentiating epidermis of regenerating scales, especially in the forming beta-layer. CONCLUSIONS The expression of these two marker oncoproteins, however, like others previously studied, is not associated with metastasis in the lizard blastema that instead develops into a new tail. The activation of cancer marker genes and proteins in the regenerating blastema does not determine degeneration into a tumor outgrowth. This process remains so far unexplained but is worth of a detailed molecular and cellular analysis aiming to find key processes on this physiological mechanism of tumor self-remission.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; PAM, University of Bologna, Italy.
| |
Collapse
|
2
|
Liu Q, Zhao RM, Wang DY, Li P, Qu YF, Ji X. Genome-wide characterization of the TGF-β gene family and their expression in different tissues during tail regeneration in the Schlegel's Japanese gecko Gekko japonicus. Int J Biol Macromol 2024; 255:128127. [PMID: 37984573 DOI: 10.1016/j.ijbiomac.2023.128127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The transforming growth factor-β (TGF-β) gene family is unique to animals and is involved in various important processes including tissue regeneration. Here, we identified 52 TGF-β family genes based on genome sequences of the gecko (Gekko japonicus), compared TGF-β genes between G. japonicus and other four reptilian species, and evaluated the expression of 14 randomly selected genes in muscle, kidney, liver, heart, and brain during tail regeneration to investigate whether their expression was tissue-dependent. We detected 23 conserved domains, 13 in the TGF-β ligand subfamily, and 10 in the receptor subfamily. The pattern of higher genetic variation in the ligand subfamily than in the receptor subfamily in vertebrates might result from the precise localization of agonists and antagonists in the cell surface and intracellular compartment. TGF-β genes were unevenly distributed across 15 chromosomes in G. japonicus, presumably resulting from gene losses and gains during evolution. Genes in the TGF-β receptor subfamily (ACVR2A, ACVR2B, ACVR1, BMPR1A, ACVRL1, BMPR2 and TGFBR1) played a vital role in the TGF-β signal pathway. The expression of all 14 randomly selected TGF-β genes was tissue-specific. Our study supports the speculation that some TGF-β family genes are involved in the early stages of tail regeneration.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ru-Meng Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan-Yan Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Xu C, Hutchins ED, Eckalbar W, Pendarvis K, Benson DM, Lake DF, McCarthy FM, Kusumi K. Comparative proteomic analysis of tail regeneration in the green anole lizard, Anolis carolinensis. NATURAL SCIENCES (WEINHEIM, GERMANY) 2024; 4:e20210421. [PMID: 38505006 PMCID: PMC10947082 DOI: 10.1002/ntls.20210421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As amniote vertebrates, lizards are the most closely related organisms to humans capable of appendage regeneration. Lizards can autotomize, or release their tails as a means of predator evasion, and subsequently regenerate a functional replacement. Green anoles (Anolis carolinensis) can regenerate their tails through a process that involves differential expression of hundreds of genes, which has previously been analyzed by transcriptomic and microRNA analysis. To investigate protein expression in regenerating tissue, we performed whole proteomic analysis of regenerating tail tip and base. This is the first proteomic data set available for any anole lizard. We identified a total of 2,646 proteins - 976 proteins only in the regenerating tail base, 796 only in the tail tip, and 874 in both tip and base. For over 90% of these proteins in these tissues, we were able to assign a clear orthology to gene models in either the Ensembl or NCBI databases. For 13 proteins in the tail base, 9 proteins in the tail tip, and 10 proteins in both regions, the gene model in Ensembl and NCBI matched an uncharacterized protein, confirming that these predictions are present in the proteome. Ontology and pathways analysis of proteins expressed in the regenerating tail base identified categories including actin filament-based process, ncRNA metabolism, regulation of phosphatase activity, small GTPase mediated signal transduction, and cellular component organization or biogenesis. Analysis of proteins expressed in the tail tip identified categories including regulation of organelle organization, regulation of protein localization, ubiquitin-dependent protein catabolism, small GTPase mediated signal transduction, morphogenesis of epithelium, and regulation of biological quality. These proteomic findings confirm pathways and gene families activated in tail regeneration in the green anole as well as identify uncharacterized proteins whose role in regrowth remains to be revealed. This study demonstrates the insights that are possible from the integration of proteomic and transcriptomic data in tail regrowth in the green anole, with potentially broader application to studies in other regenerative models.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Elizabeth D. Hutchins
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Walter Eckalbar
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: School of Medicine, University of California, San Francisco, California, USA
| | - Ken Pendarvis
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Derek M. Benson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Fiona M. McCarthy
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Muniandy S, Few LL, Khoo BY, Hassan SA, Yvonne-Τee GB, See Too WC. Dysregulated expression of miR‑367 in disease development and its prospects as a therapeutic target and diagnostic biomarker (Review). Biomed Rep 2023; 19:91. [PMID: 37901877 PMCID: PMC10603372 DOI: 10.3892/br.2023.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
MicroRNA (miR)-367 has a wide range of functions in gene regulation and as such plays a critical role in cell proliferation, differentiation and development, making it an essential molecule in various physiological processes. miR-367 belongs to the miR-302/367 cluster and is located in the intronic region of human chromosome 4 on the 4q25 locus. Dysregulation of miR-367 is associated with various disease conditions, including cancer, inflammation and cardiac conditions. Moreover, miR-367 has shown promise both as a tumor suppressor and a potential diagnostic biomarker for breast, gastric and prostate cancer. The elucidation of the essential role of miR-367 in inflammation, development and cardiac diseases emphasizes its versatility in regulating various physiological processes beyond cancer biology. However, further research is necessary to fully understand the complex regulatory mechanisms involving miR-367 in different physiological and pathological contexts. In conclusion, the versatility and significance of miR-367 makes it a promising candidate for further study and in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shaleniprieya Muniandy
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Asma' Hassan
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Get Bee Yvonne-Τee
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
5
|
Greco N, Onisto M, Alibardi L. Protein extracts from regenerating lizard tail show an inhibitory effect on human cancer cells cultivated in-vitro. Ann Anat 2023; 250:152115. [PMID: 37315628 DOI: 10.1016/j.aanat.2023.152115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND accumulating evidence indicates that during tail regeneration in lizards the initial stage of regenerative blastema is a tumor-like proliferative outgrowth that rapidly elongates into a new tail composed of fully differentiated tissues. Both oncogenes and tumor-suppressors are expressed during regeneration, and it has been hypothesized that an efficient control of cell proliferation avoids that the blastema is turned into a tumor outgrowth. METHODS in order to determine whether functional tumor-suppressors are present in the growing blastema we have utilized protein extracts collected from early regenerating tails of 3-5 mm that have been tested for a potential anti-tumor effect on in-vitro culture by using cancer cell lines from human mammary gland (MDA-MB-231) and prostate cancer (DU145). RESULTS at specific dilutions, the extract determines a reduction of viability in cancer cells after 2-4 days of culture, as supported by statistical and morphological analyses. While control cells appear viable, treated cells result damaged and produce an intense cytoplasmic granulation and degeneration. CONCLUSIONS this negative effect on cell viability and proliferation is absent using tissues from the original tail supporting the hypothesis that only regenerating tissues synthesize tumor-suppressor molecules. The study suggests that the regenerating tail of lizard at the stages here selected contains some molecules that determine inhibition of cell viability on the cancer cells analyzed.
Collapse
Affiliation(s)
- Nicola Greco
- Department of Biomedical Science, University of Padova, Italy
| | - Maurizio Onisto
- Department of Biomedical Science, University of Padova, Italy
| | | |
Collapse
|
6
|
Subramanian E, Elewa A, Brito G, Kumar A, Segerstolpe Å, Karampelias C, Björklund Å, Sandberg R, Echeverri K, Lui WO, Andersson O, Simon A. A small noncoding RNA links ribosome recovery and translation control to dedifferentiation during salamander limb regeneration. Dev Cell 2023; 58:450-460.e6. [PMID: 36893754 DOI: 10.1016/j.devcel.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Building a blastema from the stump is a key step of salamander limb regeneration. Stump-derived cells temporarily suspend their identity as they contribute to the blastema by a process generally referred to as dedifferentiation. Here, we provide evidence for a mechanism that involves an active inhibition of protein synthesis during blastema formation and growth. Relieving this inhibition results in a higher number of cycling cells and enhances the pace of limb regeneration. By small RNA profiling and fate mapping of skeletal muscle progeny as a cellular model for dedifferentiation, we find that the downregulation of miR-10b-5p is critical for rebooting the translation machinery. miR-10b-5p targets ribosomal mRNAs, and its artificial upregulation causes decreased blastema cell proliferation, reduction in transcripts that encode ribosomal subunits, diminished nascent protein synthesis, and retardation of limb regeneration. Taken together, our data identify a link between miRNA regulation, ribosome biogenesis, and protein synthesis during newt limb regeneration.
Collapse
Affiliation(s)
| | - Ahmed Elewa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gonçalo Brito
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anoop Kumar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Infrastructure of Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, USA
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Lang C, Lin HT, Wu C, Alavi M. In Silico analysis of the sequence and structure of plant microRNAs packaged in extracellular vesicles. Comput Biol Chem 2022; 101:107771. [DOI: 10.1016/j.compbiolchem.2022.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
|
8
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
9
|
Alibardi L. Immunolocalization of Adenomatous Polyposis Coli protein (apc) in the regenerating lizard tail suggests involvement in tissue differentiation and regulation of growth. J Morphol 2022; 283:677-688. [PMID: 35195910 DOI: 10.1002/jmor.21465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/07/2022]
Abstract
Lizard tail regeneration is likely regulated by the balanced activity of oncogenes and tumor suppressors that control cell proliferation avoiding tumorigenic degeneration. One of the main tumor suppressor genes present in the regenerating tail is the "adenomatous polyposis coli (apc)" but the localization of its coded protein (apc) is not known. This protein may be involved in regulation of apical-basal tail regeneration in lizards. The present immunohistochemical study shows that apc is localized in apical wound epidermis and regenerating ependyme, two tissues that proliferate and also express onco-genes. Apc is not present in blastema cells but localizes in differentiating cells of regenerating scales, muscles and less intensely in the non-apical ependymal epithelium and cartilage. This suggests that apc is involved in the induction of their differentiation. The apc immunolabeling is mainly nuclear in the basal epidermal layer of the apical wound epidermis where it may be involved in modulating keratinocytes proliferation, like in the forming scales. In regenerating muscle and cartilage apc is mainly cytoplasmic while sparse labeled nuclei are seen in proliferative areas of these tissues. In the regenerating spinal cord, the nuclear and cytoplasmic apc labeling is present in ependymal cells of the distal-most ependymal ampulla but the labeling fades in more proximal regions and mainly remains in the cytoplasm facing the central canal and in sparse nuclei. It is suggested that the pattern of immunolabeling for apc indicates that this tumor suppressor may contribute to tissue differentiation within the regenerating tail. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology of the University of Bologna
| |
Collapse
|
10
|
Alibardi L. Introduction to the Study on Regeneration in Lizards as an Amniote Model of Organ Regeneration. J Dev Biol 2021; 9:51. [PMID: 34842730 PMCID: PMC8628930 DOI: 10.3390/jdb9040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Initial observations on the regeneration of the tail in lizards were recorded in brief notes by Aristotle over 2000 years ago, as reported in his book, History of Animals (cited from [...].
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, 35100 Padova, Italy;
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
11
|
Alibardi L. Review: Regeneration of the tail in lizards appears regulated by a balanced expression of oncogenes and tumor suppressors. Ann Anat 2021; 239:151824. [PMID: 34478856 DOI: 10.1016/j.aanat.2021.151824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Tail regeneration in lizards is the only case of large multi-tissue organ regeneration in amniotes. METHODS The present Review summarizes numerous immunolocalization and gene-expression studies indicating that after tail amputation in lizards the stump is covered in 7-10 days by the migration of keratinocytes. This allows the accumulation of mesenchymal-fibroblasts underneath the wound epidermis and forms a regenerative blastema and a new tail. RESULTS During migration keratinocytes transit from a compact epidermis into relatively free keratinocytes in a process of "Epithelial Mesenchymal Transition" (EMT). While EMT has been implicated in carcinogenesis no malignant transformation is observed during these cell movements in the regenerative blastema. Immunolabeling for E-cadherin and snail shows that these proteins are present in the cytoplasm and nuclei of migrating keratinocytes. The basal layer of the wound epithelium of the apical blastema express onco-proteins (wnt2b, egfr, c-myc, fgfs, fgfr, rhov, etc.) and tumor suppressors (p53/63, fat2, ephr, apc, retinoblastoma, arhgap28 etc.). This suggests that their balanced action regulates proliferation of the blastema. CONCLUSIONS While apical epidermis and mesenchyme are kept under a tight proliferative control, in more proximal regions of the regenerating tail the expression of tumor-suppressors triggers the differentiation of numerous tissues, forming the large myomeres, axial cartilage, simple spinal cord and nerves, new scales, arteries and veins, fat deposits, dermis and other connective tissues. Understanding gene expression patterns of developmental pathways activated during tail regeneration in lizards is useful for cancer research and for future attempts to induce organ regeneration in other amniotes including humans.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Dipartmento di Biologia, Universita' di Bologna, Italy.
| |
Collapse
|
12
|
Daponte V, Tylzanowski P, Forlino A. Appendage Regeneration in Vertebrates: What Makes This Possible? Cells 2021; 10:cells10020242. [PMID: 33513779 PMCID: PMC7911911 DOI: 10.3390/cells10020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ability to regenerate amputated or injured tissues and organs is a fascinating property shared by several invertebrates and, interestingly, some vertebrates. The mechanism of evolutionary loss of regeneration in mammals is not understood, yet from the biomedical and clinical point of view, it would be very beneficial to be able, at least partially, to restore that capability. The current availability of new experimental tools, facilitating the comparative study of models with high regenerative ability, provides a powerful instrument to unveil what is needed for a successful regeneration. The present review provides an updated overview of multiple aspects of appendage regeneration in three vertebrates: lizard, salamander, and zebrafish. The deep investigation of this process points to common mechanisms, including the relevance of Wnt/β-catenin and FGF signaling for the restoration of a functional appendage. We discuss the formation and cellular origin of the blastema and the identification of epigenetic and cellular changes and molecular pathways shared by vertebrates capable of regeneration. Understanding the similarities, being aware of the differences of the processes, during lizard, salamander, and zebrafish regeneration can provide a useful guide for supporting effective regenerative strategies in mammals.
Collapse
Affiliation(s)
- Valentina Daponte
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
| | - Przemko Tylzanowski
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium;
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-987235
| |
Collapse
|
13
|
Alibardi L. Appendage regeneration in anamniotes utilizes genes active during larval-metamorphic stages that have been lost or altered in amniotes: The case for studying lizard tail regeneration. J Morphol 2020; 281:1358-1381. [PMID: 32865265 DOI: 10.1002/jmor.21251] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
This review elaborates the idea that organ regeneration derives from specific evolutionary histories of vertebrates. Regenerative ability depends on genomic regulation of genes specific to the life-cycles that have differentially evolved in anamniotes and amniotes. In aquatic environments, where fish and amphibians live, one or multiple metamorphic transitions occur before the adult stage is reached. Each transition involves the destruction and remodeling of larval organs that are replaced with adult organs. After organ injury or loss in adult anamniotes, regeneration uses similar genes and developmental process than those operating during larval growth and metamorphosis. Therefore, the broad presence of regenerative capability across anamniotes is possible because generating new organs is included in their life history at metamorphic stages. Soft hyaluronate-rich regenerative blastemas grow in submersed or in hydrated environments, that is, essential conditions for regeneration, like during development. In adult anamniotes, the ability to regenerate different organs decreases in comparison to larval stages and becomes limited during aging. Comparisons of genes activated during metamorphosis and regeneration in anamniotes identify key genes unique to these processes, and include thyroid, wnt and non-coding RNAs developmental pathways. In the terrestrial environment, some genes or developmental pathways for metamorphic transitions were lost during amniote evolution, determining loss of regeneration. Among amniotes, the formation of soft and hydrated blastemas only occurs in lizards, a morphogenetic process that evolved favoring their survival through tail autotomy, leading to a massive although imperfect regeneration of the tail. Deciphering genes activity during lizard tail regeneration would address future attempts to recreate in other amniotes regenerative blastemas that grow into variably completed organs.
Collapse
|
14
|
Gordeev DA, Ananjeva NB, Korost DV. Autotomy and Regeneration in Squamate Reptiles (Squamata, Reptilia): Defensive Behavior Strategies and Morphological Characteristics (Using Computer Microtomography Methods). BIOL BULL+ 2020. [DOI: 10.1134/s1062359020040068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
It has been noted that caudal autotomy as a way of defending against predators in recent reptiles is characteristic solely of lepidosaurs and is absent in crocodiles and turtles. It was found that, in the order Rhynchocephalia and in representatives of the majority of families of lizards, intravertebral (IntraVB) autotomy is a widespread phenomenon, whereas agamid lizards and some snakes do not have a break plane, and their tails break between adjacent vertebrae (intervertebral (InterVB) autotomy). The frequencies of occurrence of InterVB autotomy and regeneration in six species of agamas of the genus Paralaudakia were analyzed. Six types of regenerate’s characteristic of the studied group and the anatomical structure of the knob -shaped jagged regenerate are described on the basis of the results of computed microtomography (micro-CT). Phenomena of autotomy and regeneration are discussed in the phylogenetic context.
Collapse
|
15
|
Abo-Al-Ela HG, Burgos-Aceves MA. Exploring the role of microRNAs in axolotl regeneration. J Cell Physiol 2020; 236:839-850. [PMID: 32638401 DOI: 10.1002/jcp.29920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/30/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The axolotl, Ambystoma mexicanum, is used extensively for research in developmental biology, particularly for its ability to regenerate and restore lost organs, including in the nervous system, to full functionality. Regeneration in mammals typically depends on the healing process and scar formation with limited replacement of lost tissue. Other organisms, such as spiny mice (Acomys cahirinus), salamanders, and zebrafish, are able to regenerate some damaged body components. Blastema is a tissue that is formed after tissue injury in such organisms and is composed of progenitor cells or dedifferentiated cells that differentiate into various cell types during regeneration. Thus, identifying the molecules responsible for initiation of blastema formation is an important aspect for understanding regeneration. Introns, a major source of noncoding RNAs (ncRNAs), have characteristic sizes in the axolotl, particularly in genes associated with development. These ncRNAs, particularly microRNAs (miRNAs), exhibit dynamic regulation during regeneration. These miRNAs play an essential role in timing and control of gene expression to order and organize processes necessary for blastema creation. Master keys or molecules that underlie the remarkable regenerative abilities of the axolotl remain to be fully explored and exploited. Further and ongoing research on regeneration promises new knowledge that may allow improved repair and renewal of human tissues.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - Mario A Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
16
|
Ghosh A, Platt RN, Vandewege MW, Tabassum R, Hsu CY, Isberg SR, Peterson DG, Finger JW, Kieran TJ, Glenn TC, Gongora J, Ray DA. Identification and characterization of microRNAs (miRNAs) and their transposable element origins in the saltwater crocodile, Crocodylus porosus. Anal Biochem 2020; 602:113781. [PMID: 32485163 DOI: 10.1016/j.ab.2020.113781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are 18-24 nucleotide regulatory RNAs. They are involved in the regulation of genetic and biological pathways through post transcriptional gene silencing and/or translational repression. Data suggests a slow evolutionary rate for the saltwater crocodile (Crocodylus porosus) over the past several million years when compared to birds, the closest extant relatives of crocodilians. Understanding gene regulation in the saltwater crocodile in the context of relatively slow genomic change thus holds potential for the investigation of genomics, evolution, and adaptation. Utilizing eleven tissue types and sixteen small RNA libraries, we report 644 miRNAs in the saltwater crocodile with >78% of miRNAs being novel to crocodilians. We also identified potential targets for the miRNAs and analyzed the relationship of the miRNA repertoire to transposable elements (TEs). Results suggest an increased association of DNA transposons with miRNAs when compared to retrotransposons. This work reports the first comprehensive analysis of miRNAs in Crocodylus porosus and addresses the potential impacts of miRNAs in regulating the genome in the saltwater crocodile. In addition, the data suggests a supporting role of TEs as a source for miRNAs, adding to the increasing evidence that TEs play a significant role in the evolution of gene regulation.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Roy N Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michael W Vandewege
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; Department of Biology, Eastern New Mexico University, Portales, NM, USA
| | | | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA
| | - Sally R Isberg
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia; The Centre for Crocodile Research, Darwin, NT, Australia
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA
| | - John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Troy J Kieran
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Jaime Gongora
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
17
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Pillai A, Patel S, Ranadive I, Desai I, Balakrishnan S. Fibroblast growth factor-2 signaling modulates matrix reorganization and cell cycle turnover rate in the regenerating tail of Hemidactylus flaviviridis. Acta Histochem 2020; 122:151464. [PMID: 31780191 DOI: 10.1016/j.acthis.2019.151464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Lizards restore their lost tail by the recruitment of multipotent cells which are selectively differentiated into varied cell types so as to sculpt a new tail. The precise coordination of the events involved in this complex process requires crosstalk between many signaling molecules and differential regulation of several mediators that facilitate the achievements of various milestones of regeneration. Fibroblast growth factor-2 is one such signaling molecule which activates a number of intracellular signaling pathways. Herein, the regulatory role of FGF2 during tail regeneration in Hemidactylus flaviviridis was investigated. Upon inhibition of FGFR using SU5402, the FGF2 levels were found to be significantly reduced at both transcript and protein level. Further, the compromised levels of the gelatinases, namely MMP2 and MMP9 in the tail tissues of treated lizards indicate that FGF2 regulates the activity of these enzymes perhaps to facilitate the recruitment of multipotent mesenchymal cells (blastema). The in vivo 5BrdU incorporation assay showed a lower cell proliferation rate in FGF2 signal inhibited animals during all the proliferative stages of regeneration studied. This observation was substantiated by decreased levels of PCNA in treated group. Moreover, from the combined results of Caspase-3 localization and its expression levels in the regenerates of control and SU5402 treated lizards it can be deduced that FGF2 signal regulates apoptosis as well during early stages of regeneration. Overall, the current study indicates beyond doubt that FGF2 signaling plays a pivotal role in orchestrating the matrix reorganization and cell cycle turnover during lizard tail regeneration.
Collapse
|
19
|
Alibardi L, Borsetti F. Immunolabelling for RhoV and actin in early regenerating tail of the lizard
Podarcis muralis
suggests involvement in epithelial and mesenchymal cell motility. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology of University of Bologna Bologna Italy
| | - Francesca Borsetti
- Comparative Histolab Padova and Department of Biology of University of Bologna Bologna Italy
| |
Collapse
|
20
|
Alibardi L. Tail regeneration in Lepidosauria as an exception to the generalized lack of organ regeneration in amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 336:145-164. [PMID: 31532061 DOI: 10.1002/jez.b.22901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
The present review hypothesizes that during the transition from water to land, amniotes lost part of the genetic program for metamorphosis utilized in larvae of their amphibian ancestors, a program that in extant fish and amphibians allows organ regeneration. The direct development of amniotes, with their growth from embryos to adults, occurred with the elimination of larval stages, increases the efficiency of immune responses and the complexity of nervous circuits. In amniotes, T-cells and macrophages likely eliminate embryonic-larval antigens that are replaced with the definitive antigens of adult organs. Among lepidosaurians numerous lizard families during the Permian and Triassic evolved the process of tail autotomy to escape predation, followed by tail regeneration. Autotomy limits inflammation allowing the formation of a regenerative blastema rich in the immunosuppressant and hygroscopic hyaluronic acid. Expression loss of developmental genes for metamorphosis and segmentation in addition to an effective immune system, determined an imperfect regeneration of the tail. Genes involved in somitogenesis were likely lost or are inactivated and the axial skeleton and muscles of the original tail are replaced with a nonsegmented cartilaginous tube and segmental myotomes. Lack of neural genes, negative influence of immune system, and isolation of the regenerating spinal cord within the cartilaginous tube impede the production of nerve and glial cells, and a stratified spinal cord with ganglia. Tissue and organ regeneration in other body regions of lizards and other reptiles is relatively limited, like in the other amniotes, although the cartilage shows a higher regenerative capability than in mammals.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Alibardi L. Immunohistochemical localization of a proto‐cadherin fat tumour‐suppressor homolog in the regenerating tail of lizard suggests a role in apical growth control. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
22
|
Alibardi L. Review: The Regenerating Tail Blastema of Lizards as a Model to Study Organ Regeneration and Tumor Growth Regulation in Amniotes. Anat Rec (Hoboken) 2018; 302:1469-1490. [DOI: 10.1002/ar.24029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology at University of Bologna Bologna Italy
| |
Collapse
|
23
|
Alibardi L. Review: Limb regeneration in humans: Dream or reality? Ann Anat 2018; 217:1-6. [DOI: 10.1016/j.aanat.2017.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023]
|
24
|
Developmental and adult-specific processes contribute to de novo neuromuscular regeneration in the lizard tail. Dev Biol 2017; 433:287-296. [PMID: 29291978 DOI: 10.1016/j.ydbio.2017.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response.
Collapse
|
25
|
Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L. Downregulation of lizard immuno-genes in the regenerating tail and myogenes in the scarring limb suggests that tail regeneration occurs in an immuno-privileged organ. PROTOPLASMA 2017; 254:2127-2141. [PMID: 28357509 DOI: 10.1007/s00709-017-1107-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Amputated tails of lizards regenerate while limbs form scars which histological structure is very different from the original organs. Lizards provide useful information for regenerative medicine and some hypotheses on the loss of regeneration in terrestrial vertebrates. Analysis of tail and limb transcriptomes shows strong downregulation in the tail blastema for immunoglobulins and surface B and T receptors, cell function, and metabolism. In contrast, in the limb blastema genes for myogenesis, muscle and cell function, and extracellular matrix deposition but not immunity are variably downregulated. The upregulated genes show that the regenerating tail is an embryonic organ driven by the Wnt pathway and non-coding RNAs. The strong inflammation following amputation, the non-activation of the Wnt pathway, and the upregulation of inflammatory genes with no downregulation of immune genes indicate that the amputated limb does not activate an embryonic program. Intense inflammation in limbs influences in particular the activity of genes coding for muscle proteins, cell functions, and stimulates the deposition of dense extracellular matrix proteins resulting in scarring limb outgrowths devoid of muscles. The present study complements that on upregulated genes, and indicates that the regenerating tail requires immune suppression to maintain this embryonic organ connected to the rest of the tail without be rejected or turned into a scar. It is hypothesized that the evolution of the adaptive immune system determined scarring instead of organ regeneration in terrestrial vertebrates and that lizards evolved the process of tail regeneration through a mechanism of immuno-evasion.
Collapse
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Tatjana Skobo
- Department of Biology, University of Padova, Padova, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | - Lorenzo Alibardi
- Comparative Histolab, Padova, Italy.
- Dipartimento Bigea, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
26
|
Alibardi L. Immunohistochemical and western blot analysis suggest that the soluble forms of FGF1-2 and FGFR1-2 sustain tail regeneration in the lizard. Ann Anat 2017; 214:67-74. [PMID: 28823877 DOI: 10.1016/j.aanat.2017.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
Abstract
Fibroblast Growth Factors 1-2 (FGF1-2) stimulate tail regeneration in lizards and therefore the distribution of their receptors, FGFR1-2, in the regenerating tail of the lizard. Podarcis muralis has been studied using immunofluorescence and western blotting. Immunoreactive protein bands at 15-16kDa for FGF1-2 in addition to those at 50-65kDa are detected in the regenerating epidermis, but weak bands at 35, 45 and 50kDa appear from the regenerating connective tissues. Strongly immunolabeled bands for FGFR1 at 32, 60, and 80kDa and less intense for FGFR2 only appear in the regenerating tail. In normal tail epidermis and dermis, higher MW forms are present at 80 and 115-140kDa, respectively, but they disappear in the regenerating epidermis and dermis where low MW forms of FGFR1-2 are found at 50-70kDa. Immunolocalization confirms that most FGFR1-2 are present in the wound epidermis, Apical Epidermal Peg, ependymal tube while immunolabeling lowers in regenerating muscles, blastema cells, cartilage and connectives tissues. The likely release of FGFs from the Apical Epidermal Peg and ependyma and the presence of their receptors in these tissues may determine the autocrine stimulation of proliferation and a paracrine stimulation of the blastema cells through their FGF Receptors.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology of the University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
27
|
Alibardi L. Review: Biological and Molecular Differences between Tail Regeneration and Limb Scarring in Lizard: An Inspiring Model Addressing Limb Regeneration in Amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:493-514. [DOI: 10.1002/jez.b.22754] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
28
|
Spina EJ, Guzman E, Zhou H, Kosik KS, Smith WC. A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development 2017; 144:1787-1797. [PMID: 28432214 DOI: 10.1242/dev.144097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle.
Collapse
Affiliation(s)
- Elijah J Spina
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Hongjun Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA .,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
29
|
Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L. Transcriptome analysis of the regenerating tail vs. the scarring limb in lizard reveals pathways leading to successful vs. unsuccessful organ regeneration in amniotes. Dev Dyn 2017; 246:116-134. [DOI: 10.1002/dvdy.24474] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology; University of Verona; Italy
| | | | - Tatjana Skobo
- Department of Biology; University of Padova; Padova Italy
| | - Giorgio Valle
- Department of Biology; University of Padova; Padova Italy
| | | |
Collapse
|
30
|
Sanger TJ, Kircher BK. Model Clades Versus Model Species: Anolis Lizards as an Integrative Model of Anatomical Evolution. Methods Mol Biol 2017; 1650:285-297. [PMID: 28809029 DOI: 10.1007/978-1-4939-7216-6_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anolis lizards , known for their replicated patterns of morphological diversification, are widely studied in the fields of evolution and ecology. As a textbook example of adaptive radiation, this genus has supported decades of intense study in natural history, behavior, morphological evolution, and systematics. Following the publication of the A. carolinensis genome, research on Anolis lizards has expanded into new areas, toward obtaining an understanding the developmental and genetic bases of anole diversity. Here, we discuss recent progress in these areas and the burgeoning methodological toolkit that has been used to elucidate the genetic mechanisms underlying anatomical variation in this group. We also highlight the growing number of studies that have used A. carolinensis as the representative squamate in large-scale comparison of amniote evolution and development . Finally, we address one of the largest technical challenges biologists are facing in making Anolis a model for integrative studies of ecology, evolution, development , and genetics, the development of ex-ovo culturing techniques that have broad utility. Ultimately, with the power to ask questions across all biological scales in this diverse genus full, anoles are rapidly becoming a uniquely integrative and powerful biological system.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA.
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, FL, 32601, USA
| |
Collapse
|
31
|
Regeneration: Lessons from the Lizard. INNOVATIONS IN MOLECULAR MECHANISMS AND TISSUE ENGINEERING 2016. [DOI: 10.1007/978-3-319-44996-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|