1
|
Münch L, Helmprobst F, Volff JN, Chalopin D, Schartl M, Kneitz S. Transposable Element Expression Profiles in Premalignant Pigment Cell Lesions and Melanoma of Xiphophorus. Genes (Basel) 2024; 15:620. [PMID: 38790249 PMCID: PMC11121471 DOI: 10.3390/genes15050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Transposable elements (TEs) are characterized by their ability to change their genomic position. Through insertion or recombination leading to deletions and other chromosomal aberrations, they can cause genetic instability. The extent to which they thereby exert regulatory influence on cellular functions is unclear. To better characterize TEs in processes such as carcinogenesis, we used the well-established Xiphophorus melanoma model. By transcriptome sequencing, we show that an increasing total number in transposons correlates with progression of malignancy in melanoma samples from Xiphophorus interspecific hybrids. Further, by comparing the presence of TEs in the parental genomes of Xiphophorus maculatus and Xiphophorus hellerii, we could show that even in closely related species, genomic location and spectrum of TEs are considerably different.
Collapse
Affiliation(s)
- Luca Münch
- Neurology Asklepios Klinik Barmbek, Rübenkamp 220, 22307 Hamburg, Germany;
| | - Frederik Helmprobst
- Institute of Neuropathology, Philipps-University Marburg, 35037 Marburg, Germany;
| | | | | | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 786666, USA
- Developmental Biochemistry, University of Würzburg, 97974 Würzburg, Germany
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
2
|
Gupta P, Das G, Chattopadhyay T, Ghosh Z, Mallick B. TarpiD, a database of putative and validated targets of piRNAs. Mol Omics 2023; 19:706-713. [PMID: 37427797 DOI: 10.1039/d3mo00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel class of 18-36 nts long small non-coding single-stranded RNAs that play crucial roles in a wide array of critical biological activities besides maintaining genome integrity by transposon silencing. piRNAs influence biological processes and pathways by regulating gene expression at transcriptional and post-transcriptional level. Studies have reported that piRNAs silence various endogenous genes post-transcriptionally by binding to respective mRNAs through interaction with the PIWI proteins. Several thousands of piRNAs have been discovered in animals, but their functions remain largely undiscovered owing to a lack of proper guiding principles of piRNA targeting or diversity in targeting patterns amongst piRNAs from the same or different species. Identification of piRNA targets is essential for deciphering their functions. There are a few tools and databases on piRNAs, but there are no systematic and exclusive repositories to obtain information on target genes regulated by piRNAs and other related information. Hence, we developed a user-friendly database named TarpiD (Targets of piRNA Database) that offers comprehensive information on piRNA and its targets, including their expression, methodologies (high-throughput or low-throughput) for target identification/validation, cells/tissue types, diseases, target gene regulation types, target binding regions, and key functions driven by piRNAs through target gene interactions. The contents of TarpiD are curated from the published literature and enable users to search and download the targets of a particular piRNA or the piRNAs that target a specific gene for use in their research. This database harbours 28 682 entries of piRNA-target interactions supported by 15 methodologies reported in hundreds of cell types/tissues from 9 species. TarpiD will be a valuable resource for a better understanding of the functions and gene-regulatory mechanisms mediated by piRNAs. TarpiD is freely accessible for academic use at https://tarpid.nitrkl.ac.in/tarpid_db/.
Collapse
Affiliation(s)
- Pooja Gupta
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| | - Gourab Das
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| |
Collapse
|
3
|
Wang J, Yuan L, Tang J, Liu J, Sun C, Itgen MW, Chen G, Sessions SK, Zhang G, Mueller RL. Transposable element and host silencing activity in gigantic genomes. Front Cell Dev Biol 2023; 11:1124374. [PMID: 36910142 PMCID: PMC9998948 DOI: 10.3389/fcell.2023.1124374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Transposable elements (TEs) and the silencing machinery of their hosts are engaged in a germline arms-race dynamic that shapes TE accumulation and, therefore, genome size. In animal species with extremely large genomes (>10 Gb), TE accumulation has been pushed to the extreme, prompting the question of whether TE silencing also deviates from typical conditions. To address this question, we characterize TE silencing via two pathways-the piRNA pathway and KRAB-ZFP transcriptional repression-in the male and female gonads of Ranodon sibiricus, a salamander species with a ∼21 Gb genome. We quantify 1) genomic TE diversity, 2) TE expression, and 3) small RNA expression and find a significant relationship between the expression of piRNAs and TEs they target for silencing in both ovaries and testes. We also quantified TE silencing pathway gene expression in R. sibiricus and 14 other vertebrates with genome sizes ranging from 1 to 130 Gb and find no association between pathway expression and genome size. Taken together, our results reveal that the gigantic R. sibiricus genome includes at least 19 putatively active TE superfamilies, all of which are targeted by the piRNA pathway in proportion to their expression levels, suggesting comprehensive piRNA-mediated silencing. Testes have higher TE expression than ovaries, suggesting that they may contribute more to the species' high genomic TE load. We posit that apparently conflicting interpretations of TE silencing and genomic gigantism in the literature, as well as the absence of a correlation between TE silencing pathway gene expression and genome size, can be reconciled by considering whether the TE community or the host is currently "on the attack" in the arms race dynamic.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Liang Yuan
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Jiaxing Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Guiying Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | | | - Guangpu Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,College of Life Sciences, Sichuan Normal University, Chengdu, China
| | | |
Collapse
|
4
|
Etchegaray E, Dechaud C, Barbier J, Naville M, Volff JN. Diversity of Harbinger-like Transposons in Teleost Fish Genomes. Animals (Basel) 2022; 12:ani12111429. [PMID: 35681893 PMCID: PMC9179366 DOI: 10.3390/ani12111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The study of transposable elements, which are repeated DNA sequences that can insert into new locations in genomes, is of particular interest to genome evolution, as they are sources of mutations but also of new regulatory and coding sequences. Teleost fish are a species-rich clade presenting a high diversity of transposable elements, both quantitatively and qualitatively, making them a very attractive group to investigate the evolution of mobile sequences. We studied Harbinger-like DNA transposons, which are widespread from plants to vertebrates but absent from mammalian genomes. These elements code for both a transposase and a Myb-like protein. We observed high variability in the genomic composition of Harbinger-like sequences in teleost fish. While Harbinger transposons might have been present in a common ancestor of all the fish species studied, ISL2EU elements were possibly gained by horizontal transfer at the base of teleost fish. Transposase and Myb-like protein phylogenies of Harbinger transposons indicated unique origins of the association between both genes and suggests recombination was rare between transposon sublineages. Finally, we report one case of Harbinger horizontal transfer between divergent fish species and the transcriptional activity of both Harbinger and ISL2EU transposons in teleost fish. There was male-biased expression in the gonads of the medaka fish. Abstract Harbinger elements are DNA transposons that are widespread from plants to vertebrates but absent from mammalian genomes. Among vertebrates, teleost fish are the clade presenting not only the largest number of species but also the highest diversity of transposable elements, both quantitatively and qualitatively, making them a very attractive group to investigate the evolution of mobile sequences. We studied Harbinger DNA transposons and the distantly related ISL2EU elements in fish, focusing on representative teleost species compared to the spotted gar, the coelacanth, the elephant shark and the amphioxus. We observed high variability in the genomic composition of Harbinger-like sequences in teleost fish, as they covered 0.002–0.14% of the genome, when present. While Harbinger transposons might have been present in a common ancestor of all the fish species studied here, with secondary loss in elephant shark, our results suggests that ISL2EU elements were gained by horizontal transfer at the base of teleost fish 200–300 million years ago, and that there was secondary loss in a common ancestor of pufferfishes and stickleback. Harbinger transposons code for a transposase and a Myb-like protein. We reconstructed and compared molecular phylogenies of both proteins to get insights into the evolution of Harbinger transposons in fish. Transposase and Myb-like protein phylogenies showed global congruent evolution, indicating unique origin of the association between both genes and suggesting rare recombination between transposon sublineages. Finally, we report one case of Harbinger horizontal transfer between divergent fish species and the transcriptional activity of both Harbinger and ISL2EU transposons in teleost fish. There was male-biased expression in the gonads of the medaka fish.
Collapse
|
5
|
Zhao N, Deng Q, Zhu C, Zhang B. Mucus piRNAs profiles of Vibrio harveyi-infected Cynoglossus semilaevis: A hint for fish disease monitoring. JOURNAL OF FISH DISEASES 2022; 45:165-175. [PMID: 34741552 DOI: 10.1111/jfd.13546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The half-smooth tongue sole, Cynoglossus semilaevis, is an important cultured flatfish species. Vibrio harveyi is a common pathogen to this fish, which may result in great economic loss to C. semilaevis culture industry. piRNAs, a non-coding RNAs with 26-32 nt, have been regarded as promising biomarkers for cancer diagnosis and fish diseases. Here, we extracted the RNA from mucus of C. semilaevis and constructed the differential expression profiles of piRNAs between the sick fish (MS) and healthy fish (MC). We identified 45,696 differentially expressed piRNAs including 22,735 up-regulated piRNAs and 22,961 down-regulated piRNAs in MS group compared with MC group. The GO enrichment and KEGG pathway enrichment analyses of the differential piRNAs were carried out. The result showed immunity-related target genes mainly involved in immune system process, response to stimulus, cell killing, immune system, infectious diseases and cell growth and death. The 10 most differentially expressed piRNAs were chosen to perform the qRT-PCR, while only seven piRNAs were consistent with the sequence result. Compared with MC group, the expression levels of piR-mmu-72173>piR-rno-62831>piR-xtr-704880, piR-dme-15546979, piR-mmu-49941660, piR-mmu-29283297 and piR-mmu-1758399 were significantly lower, and piR-gga-10574 and piR-gga-134812 were significantly higher in MS group. These piRNAs may be potential biomarkers during the V. harveyi infection of C. semilaevis. This study could provide a new method to identify the infection status of C. semilaevis and understand better about the innate and adaptive immune system in C. semilaevis during bacterial infection.
Collapse
Affiliation(s)
- Na Zhao
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Shanghai Ocean University, Shanghai, China
| | - Qiuxia Deng
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
| | - Chunhua Zhu
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
| | - Bo Zhang
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
- Tianjin Fisheries Research Institute, Tianjin, China
| |
Collapse
|
6
|
Dechaud C, Miyake S, Martinez-Bengochea A, Schartl M, Volff JN, Naville M. Clustering of Sex-Biased Genes and Transposable Elements in the Genome of the Medaka Fish Oryzias latipes. Genome Biol Evol 2021; 13:6384576. [PMID: 34623422 PMCID: PMC8633743 DOI: 10.1093/gbe/evab230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Although genes with similar expression patterns are sometimes found in the same genomic regions, almost nothing is known about the relative organization in genomes of genes and transposable elements (TEs), which might influence each other at the regulatory level. In this study, we used transcriptomic data from male and female gonads of the Japanese medaka Oryzias latipes to define sexually biased genes and TEs and analyze their relative genomic localization. We identified 20,588 genes expressed in the adult gonads of O. latipes. Around 39% of these genes are differentially expressed between male and female gonads. We further analyzed the expression of TEs using the program SQuIRE and showed that more TE copies are overexpressed in testis than in ovaries (36% vs. 10%, respectively). We then developed a method to detect genomic regions enriched in testis- or ovary-biased genes. This revealed that sex-biased genes and TEs are not randomly distributed in the genome and a part of them form clusters with the same expression bias. We also found a correlation of expression between TE copies and their closest genes, which increases with decreasing intervening distance. Such a genomic organization suggests either that TEs hijack the regulatory sequences of neighboring sexual genes, allowing their expression in germ line cells and consequently new insertions to be transmitted to the next generation, or that TEs are involved in the regulation of sexual genes, and might therefore through their mobility participate in the rewiring of sex regulatory networks.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Sho Miyake
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | | | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Zhao N, Zhang B, Jia L, He X, Bao B. Extracellular vesicles piwi-interacting RNAs from skin mucus for identification of infected Cynoglossus semilaevis with Vibrio harveyi. FISH & SHELLFISH IMMUNOLOGY 2021; 111:170-178. [PMID: 33561561 DOI: 10.1016/j.fsi.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles play a regulatory role in intracellular and intercellular transmission through a variety of biological information molecules, including mRNA, small RNAs and proteins. piRNAs are one kind of regulatory small RNAs in the vesicles at the post transcriptional level. Hereby, we isolated the extracellular vesicles from skin mucus and screened the piRNA profiles of these vesicles, aiming at developing biomarkers related to bacterial infections in Cynoglossus semilaevis. The different profilings of piRNAs in mucous extracellular vesicles of C. semilaevis were compared through small RNA sequencing, between fish infected with Vibrio harveyi and healthy ones. The number of clean reads on the alignment of exosome sick (ES) group was 105, 345 and that of exosome control (EC) group was 455, 144. GO and KEGG pathway enrichment analysis showed that most of the target genes were involved in cellular process, response to stimulus, biological regulation, immune system process and signal transduction, signal molecular and interaction, transport and catabolism. The 45 final candidate piRNAs related to immunity or infectious diseases included 20 piRNAs with high expression in the ES group and 25 piRNAs with a low expression in the ES group. After verification by qRT-PCR, there was significant difference of five piRNAs expression level between infected fish and healthy fish, in line with the sequencing. The expression level of piR-mmu-16401212, piR-mmu-26829319 and piR-gga-244092 in infected fish were significantly lower than that of control group, while piR-gga-71717 and piR-gga-99034 were higher, which implying that these piRNAs in mucous extracellular vesicles can be used to identify diseased fish from normal ones. This work supplied a novel class of biomarker for infection diagnosis in fish, and it will be benefit for screening disease resistant breeding of C. semilaevis.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Tianjin Fisheries Research Institute, Tianjin, China.
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
8
|
Site-Specific Expression Pattern of PIWI-Interacting RNA in Skin and Oral Mucosal Wound Healing. Int J Mol Sci 2020; 21:ijms21020521. [PMID: 31947648 PMCID: PMC7013508 DOI: 10.3390/ijms21020521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/11/2020] [Indexed: 12/24/2022] Open
Abstract
The oral mucosa exhibits exceptional healing capability when compared to skin. Recent studies suggest that intrinsic differences in coding genes and regulatory small non-coding RNA (sncRNA) genes (e.g., microRNAs) may underlie the exceptional healing that occurs in the oral mucosa. Here, we investigate the role of a novel class of sncRNA-Piwi-interacting RNA (piRNA)-in the tissue-specific differential response to injury. An abundance of piRNAs was detected in both skin and oral mucosal epithelium during wound healing. The expression of PIWI genes (the obligate binding partners of piRNAs) was also detected in skin and oral wound healing. This data suggested that PIWI-piRNA machinery may serve an unknown function in the highly orchestrated wound healing process. Furthermore, unique tissue-specific piRNA profiles were obtained in the skin and oral mucosal epithelium, and substantially more changes in piRNA expression were observed during skin wound healing than oral mucosal wound healing. Thus, we present the first clue suggesting a role of piRNA in wound healing, and provide the first site-specific piRNA profile of skin and oral mucosal wound healing. These results serve as a foundation for the future investigation of the functional contribution(s) of piRNA in wound repair and tissue regeneration.
Collapse
|
9
|
Lu Y, Boswell W, Boswell M, Klotz B, Kneitz S, Regneri J, Savage M, Mendoza C, Postlethwait J, Warren WC, Schartl M, Walter RB. Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model. Sci Rep 2019; 9:530. [PMID: 30679619 PMCID: PMC6345854 DOI: 10.1038/s41598-018-36656-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.
Collapse
Affiliation(s)
- Yuan Lu
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - William Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Mikki Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Barbara Klotz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Susanne Kneitz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Janine Regneri
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Markita Savage
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Cristina Mendoza
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | | | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, USA
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
10
|
Sarasamma S, Lai YH, Liang ST, Liu K, Hsiao CD. The Power of Fish Models to Elucidate Skin Cancer Pathogenesis and Impact the Discovery of New Therapeutic Opportunities. Int J Mol Sci 2018; 19:E3929. [PMID: 30544544 PMCID: PMC6321611 DOI: 10.3390/ijms19123929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023] Open
Abstract
Animal models play important roles in investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic tools. Despite rapid progress in the understanding of disease mechanisms and technological advancement in drug discovery, negative trial outcomes are the most frequent incidences during a Phase III trial. Skin cancer is a potential life-threatening disease in humans and might be medically futile when tumors metastasize. This explains the low success rate of melanoma therapy amongst other malignancies. In the past decades, a number of skin cancer models in fish that showed a parallel development to the disease in humans have provided important insights into the fundamental biology of skin cancer and future treatment methods. With the diversity and breadth of advanced molecular genetic tools available in fish biology, fish skin cancer models will continue to be refined and expanded to keep pace with the rapid development of skin cancer research. This review begins with a brief introduction of molecular characteristics of skin cancers, followed by an overview of teleost models that have been used in the last decades in melanoma research. Next, we will detail the importance of the zebrafish (Danio rerio) animal model and other emerging fish models including platyfish (Xiphophorus sp.), and medaka (Oryzias latipes) in future cutaneous malignancy studies. The last part of this review provides the recent development and genome editing applications of skin cancer models in zebrafish and the progress in small molecule screening.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Taiwan Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
11
|
Klotz B, Kneitz S, Regensburger M, Hahn L, Dannemann M, Kelso J, Nickel B, Lu Y, Boswell W, Postlethwait J, Warren W, Kunz M, Walter RB, Schartl M. Expression signatures of early-stage and advanced medaka melanomas. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:20-28. [PMID: 29162497 PMCID: PMC5936653 DOI: 10.1016/j.cbpc.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Melanoma is one of the most aggressive tumors with a very low survival rate once metastasized. The incidence of newly detected cases increases every year suggesting the necessity of development and application of innovative treatment strategies. Human melanoma develops from melanocytes localized in the epidermis of the skin to malignant tumors because of deregulated effectors influencing several molecular pathways. Despite many advances in describing the molecular changes accompanying melanoma formation, many critical and clinically relevant molecular features of the transformed pigment cells and the underlying mechanisms are largely unknown. To contribute to a better understanding of the molecular processes of melanoma formation, we use a transgenic medaka melanoma model that is well suited for the investigation of melanoma tumor development because fish and human melanocytes are both localized in the epidermis. The purpose of our study was to gain insights into melanoma development from the first steps of tumor formation up to melanoma progression and to identify gene expression patterns that will be useful for monitoring treatment effects in drug screening approaches. Comparing transcriptomes from juvenile fish at the tumor initiating stage with nevi and advanced melanoma of adults, we identified stage specific expression signatures and pathways that are characteristic for the development of medaka melanoma, and are also found in human malignancies.
Collapse
Affiliation(s)
- Barbara Klotz
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Martina Regensburger
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Lena Hahn
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Birgit Nickel
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, OR 97401, USA
| | - Wesley Warren
- Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Blvd., St Louis, MO, 63108, USA
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Ronald B. Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
- Corresponding author: Prof. Dr. Manfred Schartl, Tel.: +49 931 31 84148; fax: +49 931 31 84150. (M. Schartl)
| |
Collapse
|
12
|
Gambichler T, Kohsik C, Höh AK, Lang K, Käfferlein HU, Brüning T, Stockfleth E, Stücker M, Dreißigacker M, Sand M. Expression of PIWIL3 in primary and metastatic melanoma. J Cancer Res Clin Oncol 2017; 143:433-437. [PMID: 27858163 DOI: 10.1007/s00432-016-2305-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE The PIWI-interacting RNA machinery in malignant melanoma (MM) has not been sufficiently studied. We aimed to investigate the PIWIL3 expression profiles in primary melanomas and metastases of MM including a correlation with clinical data. METHODS We studied 161 primary melanomas, 45 lymph node metastases, and 16 distant metastases of 183 patients with MM. We used immunohistochemistry to assess PIWIL3 protein expression in situ. The relationship between the immunoreactivity of PIWIL3 and clinical data was statistically evaluated. RESULTS We observed a significantly (P = 0.000059) higher median immunoreactivity score in primary melanomas (4.9; range, 0.1-6), lymph node metastases (5.1; range, 3.3-6), and distant metastases (5.6; range, 4.5-6). PIWIL3 was expressed significantly higher (P = 0.0002) in primary nodular melanomas and acral melanomas (5.2; range, 3.4-6) when compared to other melanoma subtypes (4.7; range, 0.1-6). On univariate analysis, a significant positive correlation was observed between primary melanoma PIWIL3 expression and tumor thickness (r = 0.2; P = 0.014). On univariate and multivariate analysis, PIWIL3 did not prove to be an independent predictor for melanoma relapse or death. CONCLUSIONS Our data indicate that PIWIL3 protein expression is elevated in more aggressive primary MM and metastatic disease. As also observed in other malignancies, PIWIL3 seems to play a role in MM progression.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center of the Department of Dermatology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
| | - Christina Kohsik
- Skin Cancer Center of the Department of Dermatology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ann-Kathrin Höh
- Skin Cancer Center of the Department of Dermatology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Kerstin Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Eggert Stockfleth
- Skin Cancer Center of the Department of Dermatology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Markus Stücker
- Skin Cancer Center of the Department of Dermatology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Max Dreißigacker
- Skin Cancer Center of the Department of Dermatology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Michael Sand
- Skin Cancer Center of the Department of Dermatology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| |
Collapse
|