1
|
Zhang X, Wu Q, Lan L, Peng D, Guan H, Luo K, Bao M, Bendahmane M, Fu X, Wu Z. Haplotype-resolved genome assembly of the diploid Rosa chinensis provides insight into the mechanisms underlying key ornamental traits. MOLECULAR HORTICULTURE 2024; 4:14. [PMID: 38622744 PMCID: PMC11020927 DOI: 10.1186/s43897-024-00088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Roses are consistently ranked at the forefront in cut flower production. Increasing demands of market and changing climate conditions have resulted in the need to further improve the diversity and quality of traits. However, frequent hybridization leads to highly heterozygous nature, including the allelic variants. Therefore, the absence of comprehensive genomic information leads to them making it challenging to molecular breeding. Here, two haplotype-resolved chromosome genomes for Rosa chinensis 'Chilong Hanzhu' (2n = 14) which is high heterozygous diploid old Chinese rose are generated. An amount of genetic variation (1,605,616 SNPs, 209,575 indels) is identified. 13,971 allelic genes show differential expression patterns between two haplotypes. Importantly, these differences hold valuable insights into regulatory mechanisms of traits. RcMYB114b can influence cyanidin-3-glucoside accumulation and the allelic variation in its promoter leads to differences in promoter activity, which as a factor control petal color. Moreover, gene family expansion may contribute to the abundance of terpenes in floral scents. Additionally, RcANT1, RcDA1, RcAG1 and RcSVP1 genes are involved in regulation of petal number and size under heat stress treatment. This study provides a foundation for molecular breeding to improve important characteristics of roses.
Collapse
Affiliation(s)
- Xiaoni Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Quanshu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Huilin Guan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiqing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohammed Bendahmane
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratoire Reproduction Et Development Des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, 520074, Lyon, France.
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China.
| |
Collapse
|
2
|
Wu X, Li J, Wen X, Zhang Q, Dai S. Genome-wide identification of the TCP gene family in Chrysanthemum lavandulifolium and its homologs expression patterns during flower development in different Chrysanthemum species. FRONTIERS IN PLANT SCIENCE 2023; 14:1276123. [PMID: 37841609 PMCID: PMC10570465 DOI: 10.3389/fpls.2023.1276123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
TCP proteins, part of the transcription factors specific to plants, are recognized for their involvement in various aspects of plant growth and development. Nevertheless, a thorough investigation of TCPs in Chrysanthemum lavandulifolium, a prominent ancestral species of cultivated chrysanthemum and an excellent model material for investigating ray floret (RF) and disc floret (DF) development in Chrysanthemum, remains unexplored yet. Herein, a comprehensive study was performed to analyze the genome-wide distribution of TCPs in C. lavandulifolium. In total, 39 TCPs in C. lavandulifolium were identified, showing uneven distribution on 8 chromosomes. Phylogenetic and gene structural analyses revealed that ClTCPs were grouped into classes I and II. The class II genes were subdivided into two subclades, the CIN and CYC/TB1 subclades, with members of each clade having similar conserved motifs and gene structures. Four CIN subclade genes (ClTCP24, ClTCP25, ClTCP26, and ClTCP27) contained the potential miR319 target sites. Promoter analysis revealed that ClTCPs had numerous cis-regulatory elements associated with phytohormone responses, stress responses, and plant growth/development. The expression patterns of ClTCPs during capitulum development and in two different florets were determined using RNA-seq and qRT-PCR. The expression levels of TCPs varied in six development stages of capitula; 25 out of the 36 TCPs genes were specifically expressed in flowers. Additionally, we identified six key ClCYC2 genes, which belong to the class II TCP subclade, with markedly upregulated expression in RFs compared with DFs, and these genes exhibited similar expression patterns in the two florets of Chrysanthemum species. It is speculated that they may be responsible for RFs and DFs development. Subcellular localization and transactivation activity analyses of six candidate genes demonstrated that all of them were localized in the nucleus, while three exhibited self-activation activities. This research provided a better understanding of TCPs in C. lavandulifolium and laid a foundation for unraveling the mechanism by which important TCPs involved in the capitulum development.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Tanaka T, Sasaki K. Detection of Transcription Factors Related to Axillary Bud Development after Exposure to Cold Conditions in Hexaploid Chrysanthemum morifolium Using Arabidopsis Information. PLANTS (BASEL, SWITZERLAND) 2023; 12:3122. [PMID: 37687366 PMCID: PMC10490133 DOI: 10.3390/plants12173122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Chrysanthemum is one of the most commercially used ornamental flowering plants in the world. As chrysanthemum is self-incompatible, the propagation of identical varieties is carried out through cuttings rather than through seed. Axillary bud development can be controlled by changing the temperature; for instance, axillary bud development in some varieties is suppressed at high temperatures. In this study, we focused on the simultaneous axillary bud growth from multiple lines of chrysanthemum upon changing conditions from low to normal temperature. Transcriptome analysis was conducted on the Chrysanthemum morifolium cultivar 'Jinba' to identify the important genes for axillary bud development seen when moved from low-temperature treatment to normal cultivation temperature. We performed RNA-Seq analysis on plants after cold conditions in two-day time-course experiments. Under these settings, we constructed a transcriptome of 415,923 C. morifolium and extracted 7357 differentially expressed genes. Our understanding of Arabidopsis axillary meristem development and growth showed that at least 101 genes in our dataset were homologous to transcription factors involved in the biological process. In addition, six genes exhibited statistically significant variations in expression throughout conditions. We hypothesized that these genes were involved in the formation of axillary buds in C. morifolium after cold conditions.
Collapse
Affiliation(s)
- Tsuyoshi Tanaka
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8518, Ibaraki, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba 305-0852, Ibaraki, Japan
| |
Collapse
|
4
|
Casey M, Marchioni I, Lear B, Cort AP, Baldwin A, Rogers HJ, Stead AD. Senescence in dahlia flowers is regulated by a complex interplay between flower age and floret position. FRONTIERS IN PLANT SCIENCE 2023; 13:1085933. [PMID: 36714770 PMCID: PMC9880482 DOI: 10.3389/fpls.2022.1085933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Mechanisms regulating flower senescence are not fully understood in any species and are particularly complex in composite flowers. Dahlia (Dahlia pinnata Cav.) florets develop sequentially, hence each composite flower head includes florets of different developmental stages as the whole flower head ages. Moreover, the wide range of available cultivars enables assessment of intraspecific variation. Transcriptomes were compared amongst inner (younger) and outer (older) florets of two flower head ages to assess the effect of floret vs. flower head ageing. More gene expression, including ethylene and cytokinin pathway expression changed between inner and outer florets of older flower heads than between inner florets of younger and older flower heads. Additionally, based on Arabidopsis network analysis, different patterns of co-expressed ethylene response genes were elicited. This suggests that changes occur in young inner florets as the whole flower head ages that are different to ageing florets within a flower head. In some species floral senescence is orchestrated by the plant growth regulator ethylene. However, there is both inter and intra-species variation in its importance. There is a lack of conclusive data regarding ethylene sensitivity in dahlia. Speed of senescence progression, effects of ethylene signalling perturbation, and patterns of ethylene biosynthesis gene expression differed across three dahlia cultivars ('Sylvia', 'Karma Prospero' and 'Onesta') suggesting differences in the role of ethylene in their floral senescence, while effects of exogenous cytokinin were less cultivar-specific.
Collapse
Affiliation(s)
- Matthew Casey
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ilaria Marchioni
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Pisa, Italy
| | - Bianca Lear
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Alex P. Cort
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ashley Baldwin
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony D. Stead
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
5
|
Fan J, Huang J, Pu Y, Niu Y, Zhang M, Dai S, Huang H. Transcriptomic analysis reveals the formation mechanism of anemone-type flower in chrysanthemum. BMC Genomics 2022; 23:846. [PMID: 36544087 PMCID: PMC9773529 DOI: 10.1186/s12864-022-09078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ray and disc florets on the chrysanthemum capitulum are morphologically diverse and have remarkably abundant variant types, resulting in a rich variety of flower types. An anemone shape with pigmented and elongated disk florets is an important trait in flower shape breeding of chrysanthemums. The regulatory mechanism of their anemone-type disc floret formation was not clear, thus limiting the directional breeding of chrysanthemum flower types. In this study, we used morphological observation, transcriptomic analysis, and gene expression to investigate the morphogenetic processes and regulatory mechanisms of anemone-type chrysanthemum. RESULT Scanning electron microscopy (SEM) observation showed that morphological differences between non-anemone-type disc florets and anemone-type disc florets occurred mainly during the petal elongation period. The anemone-type disc florets elongated rapidly in the later stages of development. Longitudinal paraffin section analysis revealed that the anemone-type disc florets were formed by a great number of cells in the middle layer of the petals with vigorous division. We investigated the differentially expressed genes (DEGs) using ray and disc florets of two chrysanthemum cultivars, 082 and 068, for RNA-Seq and their expression patterns of non-anemone-type and anemone-type disc florets. The result suggested that the CYCLOIDEA2 (CYC2s), MADS-box genes, and phytohormone signal-related genes appeared significantly different in both types of disc florets and might have important effects on the formation of anemone-type disc florets. In addition, it is noteworthy that the auxin and jasmonate signaling pathways might play a vital role in developing anemone-type disc florets. CONCLUSIONS Based on our findings, we propose a regulatory network for forming non-anemone-type and anemone-type disc florets. The results of this study lead the way to further clarify the mechanism of the anemone-type chrysanthemum formation and lay the foundation for the directive breeding of chrysanthemum petal types.
Collapse
Affiliation(s)
- Jiawei Fan
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Jialu Huang
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Ya Pu
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Yajing Niu
- National Bot Garden, Beijing, 100093 China
| | | | - Silan Dai
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - He Huang
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
6
|
Xuan L, Wang Q, Liu Z, Xu B, Cheng S, Zhang Y, Lu D, Dong B, Zhang D, Zhang L, Ma J, Shen Y. Metabolic analysis of the regulatory mechanism of sugars on secondary flowering in Magnolia. BMC Mol Cell Biol 2022; 23:56. [DOI: 10.1186/s12860-022-00458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Magnolia, a traditional and important ornamental plant in urban greening, has been cultivated for about 2000 years in China for its elegant flower shape and gorgeous flower color. Most varieties of Magnolia bloom once a year in spring, whereas a few others, such as Magnolia liliiflora Desr. ‘Hongyuanbao’, also bloom for the second time in summer or early autumn. Such a twice flowering trait is desirable for its high ornamental value, while its underlying mechanism remains unclear.
Methods
Paraffin section was used to show the flowering time and phenotypic changes of M. liliiflora ‘Hongyuanbao’ during the twice flowering periods from March 28 to August 25, 2018. Gas chromatography-mass spectrometry (GC-MS) was then performed to explore the chemical metabolites through the twice flower bud differentiation process in ‘Hongyuanbao’, and the metabolites were screened and identified by orthogonal projection to latent structures discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was used to reveal the relationship between the sugar metabolites and twice-flowering characteristic. To further investigate the potential role of sucrose and trehalose on flowering regulation of ‘Hongyuanbao’, the plants once finished the spring flowering were regularly sprayed with sucrose and trehalose solutions at 30 mM, 60 mM, and 90 mM concentrations from April 22, 2019. The flower bud differentiation processes of sprayed plants were observed and the expression patterns of the genes involved in sucrose and trehalose metabolic pathways were studied by quantitative reverse transcription PCR (qRT-PCR).
Results
It showed that ‘Hongyuanbao’ could complete flower bud differentiation twice in a year and flowered in both spring and summer. The metabolites of flower bud differentiation had a significant variation between the first and second flower buds. Compared to the first flower bud differentiation process, the metabolites in the sucrose and trehalose metabolic pathways were significantly up-regulated during the second flower bud differentiation process. Besides that, the expression levels of a number of trehalose-6-phosphate synthase (TPS) genes including MlTPS1, MlTPS5, MlTPS6, MlTPS7 and MlTPS9 were substantially increased in the second flower differentiation process compared with the first process. Exogenous treatments indicated that compared to the control plants (sprayed with water, CK), all three concentrations of trehalose could accelerate flowering and the effect of 60 mM concentration was the most significant. For the sucrose foliar spray, only the 60 mM concentration accelerated flowering compared with CK. It suggested that different concentration of trehalose and sucrose might have different effects. Expression analysis showed that sucrose treatment increased the transcription levels of MlTPS5 and MlTPS6, whereas trehalose treatment increased MlTPS1, showing that different MlTPS genes took part in sucrose and trehalose metabolic pathways respectively. The expression levels of a number of flowering-related genes, such as MlFT, MlLFY, and MlSPL were also increased in response to the sprays of sucrose and trehalose.
Conclusions
We provide a novel insight into the effect of sucrose and trehalose on the flowering process in Magnolia. Under the different sugar contents treatments, the time of flower bud differentiation of Magnolia was advanced. Induced and accelerated flowering in response to sucrose and trehalose foliar spray, coupled with elevated expression of trehalose regulatory and response genes, suggests that secondary flower bud formation is a promoted by altered endogenous sucrose and trehalose levels. Those results give a new understanding of sucrose and trehalose on twice-flowering in Magnolia and provide a preliminary speculation for inducing and accelerating the flowering process in Magnolia.
Collapse
|
7
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
8
|
Singh KP, Kumari P, Yadava DK. Development of de-novo transcriptome assembly and SSRs in allohexaploid Brassica with functional annotations and identification of heat-shock proteins for thermotolerance. Front Genet 2022; 13:958217. [PMID: 36186472 PMCID: PMC9524822 DOI: 10.3389/fgene.2022.958217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Crop Brassicas contain monogenomic and digenomic species, with no evidence of a trigenomic Brassica in nature. Through somatic fusion (Sinapis alba + B. juncea), a novel allohexaploid trigenomic Brassica (H1 = AABBSS; 2n = 60) was produced and used for transcriptome analysis to uncover genes for thermotolerance, annotations, and microsatellite markers for future molecular breeding. Illumina Novaseq 6000 generated a total of 76,055,546 paired-end raw reads, which were used for de-novo assembly, resulting in the development of 486,066 transcripts. A total of 133,167 coding sequences (CDSs) were predicted from transcripts with a mean length of 507.12 bp and 46.15% GC content. The BLASTX search of CDSs against public protein databases showed a maximum of 126,131 (94.72%) and a minimum of 29,810 (22.39%) positive hits. Furthermore, 953,773 gene ontology (GO) terms were found in 77,613 (58.28%) CDSs, which were divided into biological processes (49.06%), cellular components (31.67%), and molecular functions (19.27%). CDSs were assigned to 144 pathways by a pathway study using the KEGG database and 1,551 pathways by a similar analysis using the Reactome database. Further investigation led to the discovery of genes encoding over 2,000 heat shock proteins (HSPs). The discovery of a large number of HSPs in allohexaploid Brassica validated our earlier findings for heat tolerance at seed maturity. A total of 15,736 SSRs have been found in 13,595 CDSs, with an average of one SSR per 4.29 kb length and an SSR frequency of 11.82%. The first transcriptome assembly of a meiotically stable allohexaploid Brassica has been given in this article, along with functional annotations and the presence of SSRs, which could aid future genetic and genomic studies.
Collapse
Affiliation(s)
| | - Preetesh Kumari
- Genetics Division, ICAR—Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Preetesh Kumari,
| | | |
Collapse
|
9
|
Liu H, Jia Y, Chai Y, Wang S, Chen H, Zhou X, Huang C, Guo S, Chen D. Whole-transcriptome analysis of differentially expressed genes between ray and disc florets and identification of flowering regulatory genes in Chrysanthemum morifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:947331. [PMID: 35991433 PMCID: PMC9388166 DOI: 10.3389/fpls.2022.947331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 05/13/2023]
Abstract
Chrysanthemum morifolium has ornamental and economic values. However, there has been minimal research on the morphology of the chrysanthemum florets and related genes. In this study, we used the leaves as a control to screen for differentially expressed genes between ray and disc florets in chrysanthemum flowers. A total of 8,359 genes were differentially expressed between the ray and disc florets, of which 3,005 were upregulated and 5,354 were downregulated in the disc florets. Important regulatory genes that control flower development and flowering determination were identified. Among them, we identified a TM6 gene (CmTM6-mu) that belongs to the Class B floral homeotic MADS-box transcription factor family, which was specifically expressed in disc florets. We isolated this gene and found it was highly similar to other typical TM6 lineage genes, but a single-base deletion at the 3' end of the open reading frame caused a frame shift that generated a protein in which the TM6-specific paleoAP3 motif was missing at the C terminus. The CmTM6-mu gene was ectopically expressed in Arabidopsis thaliana. Petal and stamen developmental processes were unaffected in transgenic A. thaliana lines; however, the flowering time was earlier than in the wild-type control. Thus, the C-terminal of paleoAP3 appears to be necessary for the functional performance in regulating the development of petals or stamens and CmTM6-mu may be involved in the regulation of flowering time in chrysanthemum. The results of this study will be useful for future research on flowering molecular mechanisms and for the breeding of novel flower types.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuhong Chai
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Sen Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haixia Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiumei Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Conglin Huang,
| | - Shuang Guo
- Chengdu Park City Construction Development Research Institute, Chengdu, China
- *Correspondence: Conglin Huang,
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Conglin Huang,
| |
Collapse
|
10
|
Giovannini A, Laura M, Nesi B, Savona M, Cardi T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. PLANT CELL REPORTS 2021; 40:461-478. [PMID: 33388891 PMCID: PMC7778708 DOI: 10.1007/s00299-020-02632-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 05/05/2023]
Abstract
We review the main genes underlying commercial traits in cut flower species and critically discuss the possibility to apply genome editing approaches to produce novel variation and phenotypes. Promoting flowering and flower longevity as well as creating novelty in flower structure, colour range and fragrances are major objectives of ornamental plant breeding. The novel genome editing techniques add new possibilities to study gene function and breed new varieties. The implementation of such techniques, however, relies on detailed information about structure and function of genomes and genes. Moreover, improved protocols for efficient delivery of editing reagents are required. Recent results of the application of genome editing techniques to elite ornamental crops are discussed in this review. Enabling technologies and genomic resources are reviewed in relation to the implementation of such approaches. Availability of the main gene sequences, underlying commercial traits and in vitro transformation protocols are provided for the world's best-selling cut flowers, namely rose, lily, chrysanthemum, lisianthus, tulip, gerbera, freesia, alstroemeria, carnation and hydrangea. Results obtained so far are described and their implications for the improvement of flowering, flower architecture, colour, scent and shelf-life are discussed.
Collapse
Affiliation(s)
- A. Giovannini
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - M. Laura
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - B. Nesi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via dei Fiori 8, 51017 Pescia, Italy
| | - M. Savona
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - T. Cardi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
11
|
Liu H, Luo C, Chen D, Wang Y, Guo S, Chen X, Bai J, Li M, Huang X, Cheng X, Huang C. Whole-transcriptome analysis of differentially expressed genes in the mutant and normal capitula of Chrysanthemum morifolium. BMC Genom Data 2021; 22:2. [PMID: 33568073 PMCID: PMC7853313 DOI: 10.1186/s12863-021-00959-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemum morifolium is one of the most economically important and popular floricultural crops in the family Asteraceae. Chrysanthemum flowers vary considerably in terms of colors and shapes. However, the molecular mechanism controlling the development of chrysanthemum floral colors and shapes remains an enigma. We analyzed a cut-flower chrysanthemum variety that produces normal capitula composed of ray florets with normally developed pistils and purple corollas and mutant capitula comprising ray florets with green corollas and vegetative buds instead of pistils. RESULTS We conducted a whole-transcriptome analysis of the differentially expressed genes (DEGs) in the mutant and normal capitula using third-generation and second-generation sequencing techniques. We identified the DEGs between the mutant and normal capitula to reveal important regulators underlying the differential development. Many transcription factors and genes related to the photoperiod and GA pathways, floral organ identity, and the anthocyanin biosynthesis pathway were differentially expressed between the normal and mutant capitula. A qualitative analysis of the pigments in the florets of normal and mutant capitula indicated anthocyanins were synthesized and accumulated in the florets of normal capitula, but not in the florets of mutant capitula. These results provide clues regarding the molecular basis of the replacement of Chrysanthemum morifolium ray florets with normally developed pistils and purple corollas with mutant ray florets with green corollas and vegetative buds. Additionally, the study findings will help to elucidate the molecular mechanisms underlying floral organ development and contribute to the development of techniques for studying the regulation of flower shape and color, which may enhance chrysanthemum breeding. CONCLUSIONS The whole-transcriptome analysis of DEGs in mutant and normal C. morifolium capitula described herein indicates the anthocyanin deficiency of the mutant capitula may be related to the mutation that replaces ray floret pistils with vegetative buds. Moreover, pistils may be required for the anthocyanin biosynthesis in the corollas of chrysanthemum ray florets.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Chang Luo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Dongliang Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Yaqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Guo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xiaoxi Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Jingyi Bai
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Mingyuan Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xinlei Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xi Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Conglin Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China.
| |
Collapse
|
12
|
Liu H, Luo C, Chen D, Wang Y, Guo S, Chen X, Bai J, Li M, Huang X, Cheng X, Huang C. Whole-transcriptome analysis of differentially expressed genes in the mutant and normal capitula of Chrysanthemum morifolium. BMC Genom Data 2021; 22:2. [PMID: 33568073 DOI: 10.21203/rs.3.rs-27505/v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/05/2021] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Chrysanthemum morifolium is one of the most economically important and popular floricultural crops in the family Asteraceae. Chrysanthemum flowers vary considerably in terms of colors and shapes. However, the molecular mechanism controlling the development of chrysanthemum floral colors and shapes remains an enigma. We analyzed a cut-flower chrysanthemum variety that produces normal capitula composed of ray florets with normally developed pistils and purple corollas and mutant capitula comprising ray florets with green corollas and vegetative buds instead of pistils. RESULTS We conducted a whole-transcriptome analysis of the differentially expressed genes (DEGs) in the mutant and normal capitula using third-generation and second-generation sequencing techniques. We identified the DEGs between the mutant and normal capitula to reveal important regulators underlying the differential development. Many transcription factors and genes related to the photoperiod and GA pathways, floral organ identity, and the anthocyanin biosynthesis pathway were differentially expressed between the normal and mutant capitula. A qualitative analysis of the pigments in the florets of normal and mutant capitula indicated anthocyanins were synthesized and accumulated in the florets of normal capitula, but not in the florets of mutant capitula. These results provide clues regarding the molecular basis of the replacement of Chrysanthemum morifolium ray florets with normally developed pistils and purple corollas with mutant ray florets with green corollas and vegetative buds. Additionally, the study findings will help to elucidate the molecular mechanisms underlying floral organ development and contribute to the development of techniques for studying the regulation of flower shape and color, which may enhance chrysanthemum breeding. CONCLUSIONS The whole-transcriptome analysis of DEGs in mutant and normal C. morifolium capitula described herein indicates the anthocyanin deficiency of the mutant capitula may be related to the mutation that replaces ray floret pistils with vegetative buds. Moreover, pistils may be required for the anthocyanin biosynthesis in the corollas of chrysanthemum ray florets.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Chang Luo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Dongliang Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Yaqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Guo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xiaoxi Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Jingyi Bai
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Mingyuan Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xinlei Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xi Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Conglin Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China.
| |
Collapse
|
13
|
Won SY, Jung JA, Kim JS. Genome-wide analysis of the MADS-Box gene family in Chrysanthemum. Comput Biol Chem 2020; 90:107424. [PMID: 33340990 DOI: 10.1016/j.compbiolchem.2020.107424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
MADS-box family transcription factors play key roles in various developmental processes in plants. Here, we identified 108 MADS-box genes in the genome of chrysanthemum (Chrysanthemum nankingense). We classified these genes based on their phylogenetic relationships with MADS-box genes in Arabidopsis thaliana and lettuce (Lactuca sativa). Type I genes were subdivided into classes Mα (19 genes), Mβ (12 genes), and Mγ (10 genes), and type II genes were subdivided into classes MIKCC (64 genes) and MIKC* (3 genes). The MIKCC class genes were further divided into 16 subclasses that included genes described in the ABCDE flower development model. Each group of MADS-box genes showed a specific pattern of conserved protein motifs and exon-intron structure. We analyzed the expression levels of each MADS-box gene in root, stem, leaf, flower bud, disc floret, and ray floret tissues. Subfamilies AGL18, FLC, and SVP contained more members in chrysanthemum. The asterid-specific TM8 subfamily and eleven Asteraceae Specific-MADS CnMADS genes were present in chrysanthemum. Chrysanthemum is the lacking members of the AGL15 subfamily. Among the genes responsible for the ABCDE model, B-class genes were expanded in chrysanthemum with three AP3 and four PI genes. One AP3 homolog functions in marginal ray floret development, whereas the two other AP3 homologs function in the development of the central disc floret. Two of the four PI genes are expressed in chrysanthemum, specifically in both types of florets. The results of this study lay the foundation for further studies of the roles of MADS-box genes in flower development in chrysanthemum and of the evolution of MADS-box genes in plants.
Collapse
Affiliation(s)
- So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
14
|
Zhang J, Guo T, Tao Z, Wang P, Tian H. Transcriptome profiling of genes involved in nutrient uptake regulated by phosphate-solubilizing bacteria in pepper (Capsicum annuum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:611-626. [PMID: 33069115 DOI: 10.1016/j.plaphy.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Improving nutrient absorption in pepper has become a vital prerequisite for growth to produce a sustainable yield. In this study, transcriptome gene expression in pepper inoculated with two types of phosphate-solubilizing bacteria (PSB) and grown under low and high nutrient levels (LN and HN) was analyzed. Results showed that the root length increased when pepper was grown under LN; however, the root structure was intensively tight under HN. Our data revealed that the roots preferred horizontal growth than longitudinal growth under HN. PSB strains 'M01' and 'N3' significantly (P < 0.01) increased the P uptake by 70.44% and 98.20%, respectively, but decreased the Ca2+ content by 8.96% and 9.13%, respectively, compared with the control (L1). Although no remarkable difference was detected in the chlorophyll content, inoculation with the two PSB strains decreased the Fe3+ content in pepper under HN. The total clean sequenced data from samples ranged between 5,923,659,118 and 9,955,045,953 bp. Transcriptome profiling revealed 320 upregulated and 449 downregulated genes in L3 versus L1 and 468 upregulated and 532 downregulated genes in L4 versus L1. Gene ontology analysis revealed that the biological processes, including response to stress and secondary metabolic process, were involved. Several pathways were subordinate to glycosphingolipid biosynthesis and linoleic acid and nitrogen metabolisms. Analysis of the eukaryotic orthologous group function revealed that most differential genes were attributed to RNA processing and modification, transcription, and signal transduction. Our results provided new insights into the molecular mechanism related to nutrient uptake in pepper inoculated with PSBs.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031, Anhui Province, China.
| | - Tingting Guo
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China; School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui Province, China
| | - Zhen Tao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031, Anhui Province, China
| | - Hongmei Tian
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031, Anhui Province, China
| |
Collapse
|
15
|
Wang K, Li C, Lei C, Jiang Y, Qiu L, Zou X, Zheng Y. β-aminobutyric acid induces priming defence against Botrytis cinerea in grapefruit by reducing intercellular redox status that modifies posttranslation of VvNPR1 and its interaction with VvTGA1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:552-565. [PMID: 33059266 DOI: 10.1016/j.plaphy.2020.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/19/2020] [Indexed: 05/18/2023]
Abstract
Either NPR1 or TGA1 serve as master redox-sensitive transcriptional regulators for the transcription of PR genes in plants. The redox modification of the two co-activators involved in BABA-induced priming resistance against Botrytis cinerea in grapes was examined in this study. The results showed that 10 mmol L-1 BABA could effectively trigger a priming defense in grapes as manifested by augmented expression levels of PR genes upon inoculation with B. cinerea. Moreover, transcriptome profiling analysis revealed that all of the sets of key genes in the enzymatic ROS scavenging system, the PPP and AsA-GSH cycle were in harmony and were transcriptionally induced in BABA-primed grapes with pathogenic infection; in addition, this enhanced expression caused the accelerated accumulation of reductive substances, namely, AsA, GSH and NADPH, resulting in reduced intercellular conditions. Under reduced conditions, the interaction of VvTGA1 and VvNPR1 in the Y2H assay implied that VvTGA1 can provide the DNA binding capacity required by VvNPR1 for activation of VvPR genes. Consequently, the transactivation of VvNPR1 by the promoters of VvPR1, VvPR2 and VvPR5 was determined via a DLR assay, and it induced the transcription of the VvPR genes. In parallel, the redox-modified reducing condition achieved with an abundant supply of reductive substances was closely associated with the translocation of NPR1 for interaction with TGA in the nucleus. Thus, the posttranslational modification and subsequent interaction of the two redox-sensitive co-activators of VvNPR1 and VvTGA1 under reduced conditions may be responsible for BABA-induced priming for effective disease resistance in grapes.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China; College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Changyi Lei
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Yongbo Jiang
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Linglan Qiu
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Xinyi Zou
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
16
|
Ding L, Song A, Zhang X, Li S, Su J, Xia W, Zhao K, Zhao W, Guan Y, Fang W, Chen S, Jiang J, Chen F. The core regulatory networks and hub genes regulating flower development in Chrysanthemum morifolium. PLANT MOLECULAR BIOLOGY 2020; 103:669-688. [PMID: 32472481 DOI: 10.1007/s11103-020-01017-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/24/2020] [Indexed: 05/17/2023]
Abstract
The study has facilitated important insights into the regulatory networks involved in flower development in chrysanthemum (Asteraceae), and is informative with respect to the mechanism of flower shape determination. Chrysanthemum morifolium, valued as an ornamental species given the diversity of its inflorescence form, is viewed as a model for understanding flower development in the Asteraceae. Yet, the underlying regulatory networks remain largely unexplored. Here, a transcriptomic survey of the Chrysanthemum morifolium variety 'Jinba' was undertaken to uncover the global gene expression profiles and identify the modules of co-transcribed genes associated with flower development. The weighted gene coexpression network analysis revealed important networks and hub genes including ray floret petals-specific coexpression network, disc floret petals-specific network, B and E class genes involved network and CYC2 genes network. Three ray floret petal-specific hub genes were also strongly transcribed in the ray florets of a selection of six diverse varieties and especially so in those which form ligulate ray floret petals. CmCYC2c was strongly transcribed in the distal and lateral regions of the ray floret petals, and also, along with CmCYC2d, in the tubular ray florets. Furthermore, CmOFP, belonging to the family of ovate proteins, was identified in the CYC2 genes network. CmOFP can interact with CmCYC2d that physically interact with CmCYC2c. This work provides important insights into the regulatory networks involved in flower development in chrysanthemum, and is informative with respect to the mechanistic basis of the regulation of flower shape.
Collapse
Affiliation(s)
- Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weikang Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Ding L, Zhao K, Zhang X, Song A, Su J, Hu Y, Zhao W, Jiang J, Chen F. Comprehensive characterization of a floral mutant reveals the mechanism of hooked petal morphogenesis in Chrysanthemum morifolium. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2325-2340. [PMID: 31050173 PMCID: PMC6835125 DOI: 10.1111/pbi.13143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 05/17/2023]
Abstract
The diversity of form of the chrysanthemum flower makes this species an ideal model for studying petal morphogenesis, but as yet, the molecular mechanisms underlying petal shape development remain largely unexplored. Here, a floral mutant, which arose as a bud sport in a plant of the variety 'Anastasia Dark Green', and formed straight, rather than hooked petals, was subjected to both comparative morphological analysis and transcriptome profiling. The hooked petals only became discernible during a late stage of flower development. At the late stage of 'Anastasia Dark Green', genes related to chloroplast, hormone metabolism, cell wall and microtubules were active, as were cell division-promoting factors. Auxin concentration was significantly reduced, and a positive regulator of cell expansion was down-regulated. Two types of critical candidates, boundary genes and adaxial-abaxial regulators, were identified from 7937 differentially expressed genes in pairwise comparisons, which were up-regulated at the late stage in 'Anastasia Dark Green' and another two hooked varieties. Ectopic expression of a candidate abaxial gene, CmYAB1, in chrysanthemum led to changes in petal curvature and inflorescence morphology. Our findings provide new insights into the regulatory networks underlying chrysanthemum petal morphogenesis.
Collapse
Affiliation(s)
- Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yueheng Hu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
18
|
Li X, Yang Y, Ahmad S, Sun M, Yuan C, Zheng T, Han Y, Cheng T, Wang J, Zhang Q. Selection of optimal reference genes for qRT-PCR analysis of shoot development and graviresponse in prostrate and erect chrysanthemums. PLoS One 2019; 14:e0225241. [PMID: 31774840 PMCID: PMC6880974 DOI: 10.1371/journal.pone.0225241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022] Open
Abstract
The prostrate cultivars of ground-cover chrysanthemum have been used in landscape gardening due to their small stature, large crown width and strong branching ability. qRT-PCR is a rapid and powerful tool for gene expression analysis, while its accuracy highly depends on the stability of reference genes. The paucity of authentic reference genes presents a major hurdle in understanding the genetic regulators of prostrate architecture. Therefore, in order to reveal the regulatory mechanism of prostrate growth of chrysanthemum stems, here, stable reference genes were selected for expression analysis of key genes involved in shoot development and graviresponse. Based on transcriptome data, eleven reference genes with relatively stable expression were identified as the candidate reference genes. After the comprehensive analysis of the stability of these reference genes with four programs (geNorm, NormFinder, BestKeeper and RefFinder), we found that TIP41 was the most stable reference gene in all of the samples. SAND was determined as a superior reference gene in different genotypes and during the process of shoot development. The optimal reference gene for gravitropic response was PP2A-1. In addition, the expression patterns of LA1 and PIN1 further verified the reliability of the screened reference genes. These results can provide more accurate and reliable qRT-PCR normalization for future studies on the expression patterns of genes regulating plant architecture of chrysanthemums.
Collapse
Affiliation(s)
- Xiaowei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yujie Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ming Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Cunquan Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Yang Y, Sun M, Yuan C, Han Y, Zheng T, Cheng T, Wang J, Zhang Q. Interactions between WUSCHEL- and CYC2-like Transcription Factors in Regulating the Development of Reproductive Organs in Chrysanthemum morifolium. Int J Mol Sci 2019; 20:ijms20061276. [PMID: 30875718 PMCID: PMC6471657 DOI: 10.3390/ijms20061276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
Chrysanthemum morifolium is a gynomonoecious plant that bears both female zygomorphic ray florets and bisexual actinomorphic disc florets in the inflorescence. This sexual system is quite prevalent in Asteraceae, but poorly understood. CYCLOIDEA (CYC) 2 subclade transcription factors, key regulators of flower symmetry and floret identity in Asteraceae, have also been speculated to function in reproductive organs and could be an entry point for studying gynomonoecy. However, the molecular mechanism is still unclear. On the other hand, the Arabidopsis WUSCHEL (WUS) transcription factor has been proven to play a vital role in the development of reproductive organs. Here, a WUS homologue (CmWUS) in C. morifolium was isolated and characterized. Overexpression of CmWUS in A. thaliana led to shorter siliques and fewer stamens, which was similar to CYC2-like genes reported before. In addition, both CmWUS and CmCYC2 were highly expressed in flower buds during floral organ differentiation and in the reproductive organs at later development stages, indicating their involvement in the development of reproductive organs. Moreover, CmWUS could directly interact with CmCYC2d. Thus, our data suggest a collaboration between CmWUS and CmCYC2 in the regulation of reproductive organ development in chrysanthemum and will contribute to a further understanding of the gynomonoecious sexual system in Asteraceae.
Collapse
Affiliation(s)
- Yi Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Wang S, Zhang C, Zhao J, Li R, Lv J. Expression analysis of four pseudo-response regulator (PRR) genes in Chrysanthemum morifolium under different photoperiods. PeerJ 2019; 7:e6420. [PMID: 30809439 PMCID: PMC6385685 DOI: 10.7717/peerj.6420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/05/2019] [Indexed: 12/02/2022] Open
Abstract
Genes encoding pseudo-response regulator (PRR) proteins play significant roles in plant circadian clocks. In this study, four genes related to flowering time were isolated from Chrysanthemum morifolium. Phylogenetic analysis showed that they are highly homologous to the counterparts of PRRs of Helianthus annuus and named as CmPRR2, CmPRR7, CmPRR37, and CmPRR73. Conserved motifs prediction indicated that most of the closely related members in the phylogenetic tree share common protein sequence motifs, suggesting functional similarities among the PRR proteins within the same subtree. In order to explore functions of the genes, we selected two Chrysanthemum varieties for comparison; that is, a short-day sensitive Zijiao and a short-day insensitive Aoyunbaixue. Compared to Aoyunbaixue, Zijiao needs 13 more days to complete the flower bud differentiation. Evidence from spatio-temporal gene expression patterns demonstrated that the CmPRRs are highly expressed in flower and stem tissues, with a growing trend across the Chrysanthemum developmental process. In addition, we also characterized the CmPRRs expression patterns and found that CmPRRs can maintain their circadian oscillation features to some extent under different photoperiod treatment conditions. These lines of evidence indicated that the four CmPRRs undergo circadian oscillation and possibly play roles in regulating the flowering time of C. morifolium.
Collapse
Affiliation(s)
- Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chunlai Zhang
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Jing Zhao
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Renhua Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jinhui Lv
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
21
|
Bains S, Thakur V, Kaur J, Singh K, Kaur R. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Genomics 2018; 111:1474-1482. [PMID: 30343181 DOI: 10.1016/j.ygeno.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022]
Abstract
Saussurea lappa (family Asteraceae) possesses immense pharmacological potential mainly due to the presence of sesquiterpene lactones. In spite of its medicinal importance, S. lappa has been poorly explored at the molecular level. We initiated leaf transcriptome sequencing of S. lappa using the illumina highseq 2000 platform and generated 62,039,614 raw reads. Trinity assembler generated 122,434 contigs with an N50 value of 1053 bp. The assembled transcripts were compared against the non-redundant protein database at NCBI. The Blast2GO analysis assigned gene ontology (GO) terms, categorized into molecular functions (3132), biological processes (4477) and cellular components (1.927). Using KEGG, around 476 contigs were assigned to 39 pathways. For secondary metabolic pathways, we identified transcripts encoding genes involved in sesquiterpenoid and flavonoid biosynthesis. Relatively low number of transcripts were also found encoding for genes involved in the alkaloid pathway. Our data will contribute to functional genomics and metabolic engineering studies in this plant.
Collapse
Affiliation(s)
- Savita Bains
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Vasundhara Thakur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Jagdeep Kaur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Ravneet Kaur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
22
|
Wan H, Yu C, Han Y, Guo X, Ahmad S, Tang A, Wang J, Cheng T, Pan H, Zhang Q. Flavonols and Carotenoids in Yellow Petals of Rose Cultivar ( Rosa 'Sun City'): A Possible Rich Source of Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4171-4181. [PMID: 29618209 DOI: 10.1021/acs.jafc.8b01509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rose flowers have received increasing interest as rich sources of bioactive compounds. The composition of flavonols and carotenoids in yellow petals of Rosa 'Sun City' was determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometric detectors (HPLC-PDA-MS). In total, 19 flavonols and 16 carotenoids were identified, some of which were first discovered in rose petals. Significant changes were observed in their profiles during seven blooming stages. Total flavonol contents showed the highest levels at stage 2 (S2; 1152.29 μg/g, FW). Kaempferol 7- O-glucoside and kaempferol 3- O-rhamnoside were the predominant individual flavonols. Total carotenoid concentration was highest at S4 (142.71 μg/g, FW). Violaxanthins with different geometrical configurations appeared as the major carotenoids across all blooming stages. These results indicated that 'Sun City' petals are rich sources of flavonols and carotenoids. Moreover, it is important to choose the appropriate harvest time on the basis of the targeted compounds.
Collapse
Affiliation(s)
- Huihua Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Chao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Xuelian Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Aoying Tang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture , Beijing Forestry University , Beijing , 100083 , China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design , Beijing Forestry University , Beijing , 100083 , China
| |
Collapse
|
23
|
Han Z, Ma X, Wei M, Zhao T, Zhan R, Chen W. SSR marker development and intraspecific genetic divergence exploration of Chrysanthemum indicum based on transcriptome analysis. BMC Genomics 2018; 19:291. [PMID: 29695227 PMCID: PMC5918905 DOI: 10.1186/s12864-018-4702-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemum indicum L., an important ancestral species of the flowering plant chrysanthemum, can be used as medicine and for functional food development. Due to the lack of hereditary information for this species and the difficulty of germplasm identification, we herein provide new genetic insight from the perspective of intraspecific transcriptome comparison and present single sequence repeat (SSR) molecular marker recognition technology. RESULTS Through the study of a diploid germplasm (DIWNT) and a tetraploid germplasm (DIWT), the following outcome were obtained. (1) A significant difference in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations for specific homologous genes was observed using the OrthoMCL method for the identification of homologous gene families between the two cytotypes. Ka/Ks analysis of common, single-copy homologous family members also revealed a greater difference among genes that experienced positive selection than among those experiencing positive selection. (2) Of more practical value, 2575 SSR markers were predicted and partly verified. We used TaxonGap as a visual tool to inspect genotype uniqueness and screen for high-performance molecular loci; we recommend four primers of 65 randomly selected primers with a combined identification success rate of 88.6% as priorities for further development of DNA fingerprinting of C. indicum germplasm. CONCLUSIONS The SSR technology based on next-generation sequencing was proved to be successful in the identification of C. indicum germplasms. And the information on the intraspecfic genetic divergence generated by transcriptome comparison deepened the understanding of this complex species' nature.
Collapse
Affiliation(s)
- Zhengzhou Han
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.,China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, 518110, Guangdong, China
| | - Xinye Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, 518110, Guangdong, China
| | - Tong Zhao
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
24
|
Christie N, Myburg AA, Joubert F, Murray SL, Carstens M, Lin YC, Meyer J, Crampton BG, Christensen SA, Ntuli JF, Wighard SS, Van de Peer Y, Berger DK. Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:746-763. [PMID: 27862526 DOI: 10.1111/tpj.13419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 05/20/2023]
Abstract
We used a systems genetics approach to elucidate the molecular mechanisms of the responses of maize to grey leaf spot (GLS) disease caused by Cercospora zeina, a threat to maize production globally. Expression analysis of earleaf samples in a subtropical maize recombinant inbred line population (CML444 × SC Malawi) subjected in the field to C. zeina infection allowed detection of 20 206 expression quantitative trait loci (eQTLs). Four trans-eQTL hotspots coincided with GLS disease QTLs mapped in the same field experiment. Co-expression network analysis identified three expression modules correlated with GLS disease scores. The module (GY-s) most highly correlated with susceptibility (r = 0.71; 179 genes) was enriched for the glyoxylate pathway, lipid metabolism, diterpenoid biosynthesis and responses to pathogen molecules such as chitin. The GY-s module was enriched for genes with trans-eQTLs in hotspots on chromosomes 9 and 10, which also coincided with phenotypic QTLs for susceptibility to GLS. This transcriptional network has significant overlap with the GLS susceptibility response of maize line B73, and may reflect pathogen manipulation for nutrient acquisition and/or unsuccessful defence responses, such as kauralexin production by the diterpenoid biosynthesis pathway. The co-expression module that correlated best with resistance (TQ-r; 1498 genes) was enriched for genes with trans-eQTLs in hotspots coinciding with GLS resistance QTLs on chromosome 9. Jasmonate responses were implicated in resistance to GLS through co-expression of COI1 and enrichment of genes with the Gene Ontology term 'cullin-RING ubiquitin ligase complex' in the TQ-r module. Consistent with this, JAZ repressor expression was highly correlated with the severity of GLS disease in the GY-s susceptibility network.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, Department of Biochemistry, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, Department of Biochemistry, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Shane L Murray
- Centre for Proteomic and Genomic Research, 0A Anzio Rd, Observatory, Cape Town, 7925, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Maryke Carstens
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jacqueline Meyer
- Centre for Proteomic and Genomic Research, 0A Anzio Rd, Observatory, Cape Town, 7925, South Africa
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Bridget G Crampton
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Shawn A Christensen
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, 32608, USA
| | - Jean F Ntuli
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Sara S Wighard
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Dave K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
25
|
Ai Y, Zhang C, Sun Y, Wang W, He Y, Bao M. Characterization and Functional Analysis of Five MADS-Box B Class Genes Related to Floral Organ Identification in Tagetes erecta. PLoS One 2017; 12:e0169777. [PMID: 28081202 PMCID: PMC5231280 DOI: 10.1371/journal.pone.0169777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022] Open
Abstract
According to the floral organ development ABC model, B class genes specify petal and stamen identification. In order to study the function of B class genes in flower development of Tagetes erecta, five MADS-box B class genes were identified and their expression and putative functions were studied. Sequence comparisons and phylogenetic analyses indicated that there were one PI-like gene-TePI, two euAP3-like genes-TeAP3-1 and TeAP3-2, and two TM6-like genes-TeTM6-1 and TeTM6-2 in T. erecta. Strong expression levels of these genes were detected in stamens of the disk florets, but little or no expression was detected in bracts, receptacles or vegetative organs. Yeast hybrid experiments of the B class proteins showed that TePI protein could form a homodimer and heterodimers with all the other four B class proteins TeAP3-1, TeAP3-2, TeTM6-1 and TeTM6-2. No homodimer or interaction was observed between the euAP3 and TM6 clade members. Over-expression of five B class genes of T. erecta in Nicotiana rotundifolia showed that only the transgenic plants of 35S::TePI showed altered floral morphology compared with the non-transgenic line. This study could contribute to the understanding of the function of B class genes in flower development of T. erecta, and provide a theoretical basis for further research to change floral organ structures and create new materials for plant breeding.
Collapse
Affiliation(s)
- Ye Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou, Fujian, China
| | - Chunling Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yalin Sun
- Institute of Vegetable Science, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Weining Wang
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, University of Florida, Wimauma, Florida, United States of America
| | - Yanhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
26
|
Chen Z, Han Y, Ning K, Ding Y, Zhao W, Yan S, Luo C, Jiang X, Ge D, Liu R, Wang Q, Zhang X. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:2248. [PMID: 29403510 PMCID: PMC5778503 DOI: 10.3389/fpls.2017.02248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/21/2017] [Indexed: 05/18/2023]
Abstract
Lettuce (Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Yingyan Han
- New Technological Laboratory in Agriculture Application in Beijing, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Kang Ning
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Yunyu Ding
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shuangshuang Yan
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Chen Luo
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaotang Jiang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Danfeng Ge
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Wang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
- *Correspondence: Xiaolan Zhang, Qian Wang,
| | - Xiaolan Zhang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
- *Correspondence: Xiaolan Zhang, Qian Wang,
| |
Collapse
|