1
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2025; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
2
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
3
|
Crespo B, Illera JC, Silvan G, Lopez-Plaza P, Herrera de la Muela M, de la Puente Yague M, Diaz del Arco C, de Andrés PJ, Illera MJ, Caceres S. Bicalutamide Enhances Conventional Chemotherapy in In Vitro and In Vivo Assays Using Human and Canine Inflammatory Mammary Cancer Cell Lines. Int J Mol Sci 2024; 25:7923. [PMID: 39063165 PMCID: PMC11276844 DOI: 10.3390/ijms25147923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are highly aggressive neoplastic diseases that share numerous characteristics. In IBC and IMC, chemotherapy produces a limited pathological response and anti-androgen therapies have been of interest for breast cancer treatment. Therefore, the aim was to evaluate the effect of a therapy based on bicalutamide, a non-steroidal anti-androgen, with doxorubicin and docetaxel chemotherapy on cell proliferation, migration, tumor growth, and steroid-hormone secretion. An IMC-TN cell line, IPC-366, and an IBC-TN cell line, SUM149, were used. In vitro assays revealed that SUM149 exhibited greater sensitivity, reducing cell viability and migration with all tested drugs. In contrast, IPC-366 exhibited only significant in vitro reductions with docetaxel as a single agent or in different combinations. Decreased estrogen levels reduced in vitro tumor growth in both IMC and IBC. Curiously, doxorubicin resulted in low efficacy, especially in IMC. In addition, all drugs reduced the tumor volume in IBC and IMC by increasing intratumoral testosterone (T) levels, which have been related with reduced tumor progression. In conclusion, the addition of bicalutamide to doxorubicin and docetaxel combinations may represent a potential treatment for IMC and IBC.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Paula Lopez-Plaza
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - María Herrera de la Muela
- Obstetrics and Gynecology Department, Hospital Clinico San Carlos, Instituto de Salud de la Mujer, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IsISSC), 28040 Madrid, Spain;
| | - Miriam de la Puente Yague
- Department of Public and Maternal Child Health University, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Paloma Jimena de Andrés
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| |
Collapse
|
4
|
Essential Roles of Peroxiredoxin IV in Inflammation and Cancer. Molecules 2022; 27:molecules27196513. [PMID: 36235049 PMCID: PMC9573489 DOI: 10.3390/molecules27196513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxiredoxin IV (Prx4) is a 2-Cysteine peroxidase with ubiquitous expression in human tissues. Prx4 scavenges hydrogen peroxide and participates in oxidative protein folding in the endoplasmic reticulum. In addition, Prx4 is secreted outside the cell. Prx4 is upregulated in several cancers and is a potential therapeutic target. We have summarized historical and recent advances in the structure, function and biological roles of Prx4, focusing on inflammatory diseases and cancer. Oxidative stress is known to activate pro-inflammatory pathways. Chronic inflammation is a risk factor for cancer development. Hence, redox enzymes such as Prx4 are important players in the crosstalk between inflammation and cancer. Understanding molecular mechanisms of regulation of Prx4 expression and associated signaling pathways in normal physiological and disease conditions should reveal new therapeutic strategies. Thus, although Prx4 is a promising therapeutic target for inflammatory diseases and cancer, further research needs to be conducted to bridge the gap to clinical application.
Collapse
|
5
|
Lima TS, Souza LO, Iglesias-Gato D, Elversang J, Jørgensen FS, Kallunki T, Røder MA, Brasso K, Moreira JM. Itraconazole Reverts ABCB1-Mediated Docetaxel Resistance in Prostate Cancer. Front Pharmacol 2022; 13:869461. [PMID: 35721223 PMCID: PMC9203833 DOI: 10.3389/fphar.2022.869461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Docetaxel (DTX) was the first chemotherapeutic agent to demonstrate significant efficacy in the treatment of men with metastatic castration-resistant prostate cancer. However, response to DTX is generally short-lived, and relapse eventually occurs due to emergence of drug-resistance. We previously established two DTX-resistant prostate cancer cell lines, LNCaPR and C4-2BR, derived from the androgen‐dependent LNCaP cell line, and from the LNCaP lineage-derived androgen-independent C4-2B sub-line, respectively. Using an unbiased drug screen, we identify itraconazole (ITZ), an oral antifungal drug, as a compound that can efficiently re-sensitize drug-resistant LNCaPR and C4-2BR prostate cancer cells to DTX treatment. ITZ can re-sensitize multiple DTX-resistant cell models, not only in prostate cancer derived cells, such as PC-3 and DU145, but also in docetaxel-resistant breast cancer cells. This effect is dependent on expression of ATP-binding cassette (ABC) transporter protein ABCB1, also known as P-glycoprotein (P-gp). Molecular modeling of ITZ bound to ABCB1, indicates that ITZ binds tightly to the inward-facing form of ABCB1 thereby inhibiting the transport of DTX. Our results suggest that ITZ may provide a feasible approach to re-sensitization of DTX resistant cells, which would add to the life-prolonging effects of DTX in men with metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Thiago S. Lima
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Luciano O. Souza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Sino-Danish Center for Education and Research, Aarhus University, Aarhus, Denmark
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanna Elversang
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuula Kallunki
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Cancer Invasion and Resistance, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Martin A. Røder
- Department of Urology, Copenhagen Prostate Cancer Center, Center for Cancer and Organ Disease—Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Brasso
- Department of Urology, Copenhagen Prostate Cancer Center, Center for Cancer and Organ Disease—Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - José M.A. Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: José M.A. Moreira,
| |
Collapse
|
6
|
DNA Copy Number Aberrations and Expression of ABC Transporter Genes in Breast Tumour: Correlation with the Effect of Neoadjuvant Chemotherapy and Prognosis of the Disease. Pharmaceutics 2022; 14:pharmaceutics14050948. [PMID: 35631534 PMCID: PMC9146568 DOI: 10.3390/pharmaceutics14050948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
One of the important reasons for the ineffectiveness of chemotherapy in breast cancer (BC) is considered to be the formation of a multidrug resistance phenotype in tumour cells, which is caused by the expression of energy-dependent ABC transporters. The aim of this work was to assess chromosomal aberrations and the level of transcripts of all 49 known ABC transporter genes in breast tumours. Materials and Methods. The study included 129 patients with breast cancer. A microarray study of all tumour samples was carried out on microchips. Results. This study established that the presence of a deletion in genes ABCB1, ABCB4, ABCB8, ABCC7, ABCC11, ABCC12, ABCF2, and ABCG4 is associated with an objective response to treatment (p ≤ 0.05). A decrease in the expression of genes was associated with a good response to chemotherapy, whereas an increase in expression caused the progression and stabilization of the tumour. Analysis of metastatic-free survival rates showed that the presence of ABCB1/4 and ABCC1/6 deletions was associated with 100% survival (log-rank test p = 0.01 and p = 0.03). Conclusions. The study showed that the aberrant state of ABC transporter genes, as well as a decrease in the expression of these genes, is a predictor of the effectiveness of therapeutic treatment and a potential prognostic marker of metastatic survival.
Collapse
|
7
|
Amirtharaj F, Venkatesh GH, Wojtas B, Nawafleh HH, Mahmood AS, Nizami ZN, Khan MS, Thiery J, Chouaib S. p53 reactivating small molecule PRIMA‑1 MET/APR‑246 regulates genomic instability in MDA‑MB‑231 cells. Oncol Rep 2022; 47:85. [PMID: 35234267 DOI: 10.3892/or.2022.8296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pharmacological reactivation of tumor‑suppressor protein p53 has acted as a promising strategy for more than 50% of human cancers that carry a non‑functional mutant p53 (mutp53). p53 plays a critical role in preserving genomic integrity and DNA fidelity through numerous biological processes, including cell cycle arrest, DNA repair, senescence and apoptosis. By contrast, non‑functional mutp53 compromises the aforementioned genome stabilizing mechanisms through gain of function, thereby increasing genomic instability in human cancers. Restoring the functional activity of p53 using both genetic and pharmacological approaches has gained prominence in targeting p53‑mutated tumors. Thus, the present study aimed to investigate the reactivation of p53 in DNA repair mechanisms and the maintenance of genomic stability using PRIMA‑1MET/APR‑246 small molecules, in both MDA‑MB‑231 and MCF‑7 breast cancer cell lines, which carry mutp53 and wild‑type p53, respectively. Results of the present study revealed that reactivation of p53 through APR‑246 led to an increase in the functional activity of DNA repair. Prolonged treatment of MDA‑MB‑231 cells with APR‑246 in the presence of cisplatin led to a reduction in mutational accumulation, compared with cells treated with cisplatin alone. These findings demonstrated that APR‑246 may act as a promising small molecule to control the genomic instability in p53‑mutated tumors.
Collapse
Affiliation(s)
- Francis Amirtharaj
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, PAS, 02‑093 Warsaw, Poland
| | - Hussam Hussein Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Ayda Shah Mahmood
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Zohra Nausheen Nizami
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Munazza Samar Khan
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris‑Saclay, F‑94805 Villejuif, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| |
Collapse
|
8
|
Kawaguchi ES, Li G, Lewinger JP, Gauderman WJ. Two-step hypothesis testing to detect gene-environment interactions in a genome-wide scan with a survival endpoint. Stat Med 2022; 41:1644-1657. [PMID: 35075649 PMCID: PMC9007892 DOI: 10.1002/sim.9319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 01/13/2023]
Abstract
Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure-modifying genes can lead to targeted interventions and focused studies. Genome-wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two-step hypothesis tests for GWIS with a time-to-event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step-2 G × E testing based on a carefully constructed Step-1 screening procedure. Simulation results demonstrate this two-step approach can lead to substantially higher power for identifying gene-environment ( G × E ) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane-anthracycline chemotherapy study for breast cancer patients, the two-step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS.
Collapse
Affiliation(s)
- Eric S Kawaguchi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Gang Li
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA.,Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Wang Y, Zhu Y, Pu Z, Li Z, Deng Y, Li N, Peng F. Soluble resistance-related calcium-binding protein participates in multiple diseases via protein-protein interactions. Biochimie 2021; 189:76-86. [PMID: 34153376 DOI: 10.1016/j.biochi.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Soluble resistance-related calcium-binding protein (sorcin), a 22 kDa penta-EF-hand protein, has been intensively studied in cancers and multidrug resistance over a prolonged period. Sorcin is widely distributed in tissues and participates in the regulation of Ca2+ homeostasis and Ca2+-dependent signaling. Protein-protein interactions (PPIs) are essential for regulating protein functions in almost all biological processes. Sorcin interaction partners tend to vary in type, including Ca2+ receptors, Ca2+ transporters, endoplasmic reticulum stress markers, transcriptional regulatory elements, immunomodulation-related factors, and viral proteins. Recent studies have shown that sorcin is involved in a broad range of pathological conditions, such as cardiomyopathy, type 2 diabetes mellitus, neurodegenerative diseases, liver diseases, and viral infections. As a multifunctional cellular protein, in these diseases, sorcin has a role by interacting with or regulating the expression of other proteins, such as sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase, ryanodine receptors, presenilin 2, L-type Ca2+ channels, carbohydrate-responsive element-binding protein, tau, α-synuclein, signal transducer and activator of transcription 3, HCV nonstructural 5A protein, and viral capsid protein 1. This review summarizes the roles that sorcin plays in various diseases, mainly via different PPIs, and focuses principally on non-neoplastic diseases to help acquire a more comprehensive understanding of sorcin's multifunctional characteristics.
Collapse
Affiliation(s)
- Yinmiao Wang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Yuanyuan Zhu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhangya Pu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhenfen Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Ying Deng
- People's Hospital of Ningxiang, Changsha, Hunan Province 410600, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China.
| |
Collapse
|
10
|
Wiegmans AP, Ward A, Ivanova E, Duijf PHG, Adams MN, Najib IM, Van Oosterhout R, Sadowski MC, Kelly G, Morrical SW, O'Byrne K, Lee JS, Richard DJ. Genome instability and pressure on non-homologous end joining drives chemotherapy resistance via a DNA repair crisis switch in triple negative breast cancer. NAR Cancer 2021; 3:zcab022. [PMID: 34316709 PMCID: PMC8210242 DOI: 10.1093/narcan/zcab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Chemotherapy is used as a standard-of-care against cancers that display high levels of inherent genome instability. Chemotherapy induces DNA damage and intensifies pressure on the DNA repair pathways that can lead to deregulation. There is an urgent clinical need to be able to track the emergence of DNA repair driven chemotherapy resistance and tailor patient staging appropriately. There have been numerous studies into chemoresistance but to date no study has elucidated in detail the roles of the key DNA repair components in resistance associated with the frontline clinical combination of anthracyclines and taxanes together. In this study, we hypothesized that the emergence of chemotherapy resistance in triple negative breast cancer was driven by changes in functional signaling in the DNA repair pathways. We identified that consistent pressure on the non-homologous end joining pathway in the presence of genome instability causes failure of the key kinase DNA-PK, loss of p53 and compensation by p73. In-turn a switch to reliance on the homologous recombination pathway and RAD51 recombinase occurred to repair residual double strand DNA breaks. Further we demonstrate that RAD51 is an actionable target for resensitization to chemotherapy in resistant cells with a matched gene expression profile of resistance highlighted by homologous recombination in clinical samples.
Collapse
Affiliation(s)
- Adrian P Wiegmans
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Woolloongabba QLD 4121, Australia
| | - Ambber Ward
- School of Medicine, University of Queensland, St Lucia, QLD Australia
| | - Ekaterina Ivanova
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Woolloongabba QLD 4121, Australia
| | - Pascal H G Duijf
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Woolloongabba QLD 4121, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Woolloongabba QLD 4121, Australia
| | - Idris Mohd Najib
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Woolloongabba QLD 4121, Australia
| | - Romy Van Oosterhout
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd, Herston, QLD 4006, Australia
| | - Martin C Sadowski
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Woolloongabba QLD 4121, Australia
| | - Greg Kelly
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd, Herston, QLD 4006, Australia
| | - Scott W Morrical
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Ken O'Byrne
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Woolloongabba QLD 4121, Australia
| | - Jason S Lee
- School of Medicine, University of Queensland, St Lucia, QLD Australia
| | - Derek J Richard
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Woolloongabba QLD 4121, Australia
| |
Collapse
|
11
|
Huang P, Li F, Mo Z, Geng C, Wen F, Zhang C, Guo J, Wu S, Li L, Brünner N, Stenvang J. A Comprehensive RNA Study to Identify circRNA and miRNA Biomarkers for Docetaxel Resistance in Breast Cancer. Front Oncol 2021; 11:669270. [PMID: 34055636 PMCID: PMC8162208 DOI: 10.3389/fonc.2021.669270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
To investigate the relationship between non-coding RNAs [especially circular RNAs (circRNAs)] and docetaxel resistance in breast cancer, and to find potential predictive biomarkers for taxane-containing therapies, we have performed transcriptome and microRNA (miRNA) sequencing for two established docetaxel-resistant breast cancer (DRBC) cell lines and their docetaxel-sensitive parental cell lines. Our analyses revealed differences between circRNA signatures in the docetaxel-resistant and -sensitive breast cancer cells, and discovered circRNAs generated by multidrug-resistance genes in taxane-resistant cancer cells. In DRBC cells, circABCB1 was identified and validated as a circRNA that is strongly up-regulated, whereas circEPHA3.1 and circEPHA3.2 are strongly down-regulated. Furthermore, we investigated the potential functions of these circRNAs by bioinformatics analysis, and miRNA analysis was performed to uncover potential interactions between circRNAs and miRNAs. Our data showed that circABCB1, circEPHA3.1 and circEPHA3.2 may sponge up eight significantly differentially expressed miRNAs that are associated with chemotherapy and contribute to docetaxel resistance via the PI3K-Akt and AGE-RAGE signaling pathways. We also integrated differential expression data of mRNA, long non-coding RNA, circRNA, and miRNA to gain a global profile of multi-level RNA changes in DRBC cells, and compared them with changes in DNA copy numbers in the same cell lines. We found that Chromosome 7 q21.12-q21.2 was a common region dominated by multi-level RNA overexpression and DNA amplification, indicating that overexpression of the RNA molecules transcribed from this region may result from DNA amplification during stepwise exposure to docetaxel. These findings may help to further our understanding of the mechanisms underlying docetaxel resistance in breast cancer.
Collapse
Affiliation(s)
| | - Fengyu Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | - Fang Wen
- MGI, BGI-Shenzhen, Shenzhen, China
| | | | - Jia Guo
- BGI, BGI-Shenzhen, Shenzhen, China
| | - Song Wu
- Shenzhen Luohu Hospital Group, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, China
| | - Lin Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nils Brünner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Stenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Liang Y, Pi H, Liao L, Tan M, Deng P, Yue Y, Xi Y, Tian L, Xie J, Chen M, Luo Y, Chen M, Wang L, Yu Z, Zhou Z. Cadmium promotes breast cancer cell proliferation, migration and invasion by inhibiting ACSS2/ATG5-mediated autophagy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116504. [PMID: 33486244 DOI: 10.1016/j.envpol.2021.116504] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), which is considered a carcinogenic metal, promotes breast cancer (BC) progression, but the precise mechanism remains unclear. Herein, MCF-7 and T47-D cells were treated with 0.1, 1, and 10 μM cadmium chloride (CdCl2) for 24, 48 and 72 h. In our study, Cd exposure significantly accelerated the proliferation, migration and invasion of MCF-7 and T47-D cells. Notably, Cd inhibited autophagic flux by suppressing ATG5-dependent autophagosome formation but had no significant effect on autophagosome-lysosome fusion and lysosomal function. The genetic enhancement of autophagy through ATG5 overexpression suppressed the Cd-mediated increases in proliferation, migration and invasion, which indicated a carcinogenic role of autophagy impairment in Cd-exposed BC cells. GSEA and GeneMANIA were utilized to demonstrate that the Cd-induced decrease in ACSS2 expression mechanistically inhibited ATG5-dependent autophagy in BC cells. Importantly, ACSS2 overexpression increased the level of H3K27 acetylation in the promoter region of ATG5, and this result maintained autophagic flux and abolished the Cd-induced increases in proliferation, migration and invasion. We also verified that the expression of ACSS2 in BC tissues was low and positively related to ATG5 expression. These findings indicated that the promoting effect of Cd on BC cell proliferation, migration and invasion through the impairment of ACSS2/ATG5-dependent autophagic flux suggests a new mechanism for BC cell proliferation and metastasis stimulated by Cd.
Collapse
Affiliation(s)
- Yidan Liang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Lingzhi Liao
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine (Central Hospital of Zhuzhou City), Central South University, Zhuzhou, Hunan, China
| | - Miduo Tan
- Surgery Department of Galactophore, Zhuzhou Hospital Affiliated to Xiangya School of Medicine (Central Hospital of Zhuzhou City), Central South University, Zhuzhou, Hunan, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yu Xi
- Department of Environmental Medicine, School of Public Health, And Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mingliang Chen
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Environmental Medicine, School of Public Health, And Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
14
|
Hlaváč V, Holý P, Souček P. Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450. J Pers Med 2020; 10:jpm10030108. [PMID: 32872162 PMCID: PMC7565825 DOI: 10.3390/jpm10030108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacogenomics is an evolving tool of precision medicine. Recently, due to the introduction of next-generation sequencing and projects generating "Big Data", a plethora of new genetic variants in pharmacogenes have been discovered. Cancer resistance is a major complication often preventing successful anticancer treatments. Pharmacogenomics of both somatic mutations in tumor cells and germline variants may help optimize targeted treatments and improve the response to conventional oncological therapy. In addition, integrative approaches combining copy number variations and long noncoding RNA profiling with germline and somatic variations seem to be a promising approach as well. In pharmacology, expression and enzyme activity are traditionally the more studied aspects of ATP-binding cassette transporters and cytochromes P450. In this review, we briefly introduce the field of pharmacogenomics and the advancements driven by next-generation sequencing and outline the possible roles of genetic variation in the two large pharmacogene superfamilies. Although the evidence needs further substantiation, somatic and copy number variants as well as rare variants and common polymorphisms in these genes could all affect response to cancer therapy. Regulation by long noncoding RNAs has also been shown to play a role. However, in all these areas, more comprehensive studies on larger sets of patients are needed.
Collapse
Affiliation(s)
- Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-267082681; Fax: +420-267311236
| | - Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| |
Collapse
|
15
|
Battista T, Fiorillo A, Chiarini V, Genovese I, Ilari A, Colotti G. Roles of Sorcin in Drug Resistance in Cancer: One Protein, Many Mechanisms, for a Novel Potential Anticancer Drug Target. Cancers (Basel) 2020; 12:cancers12040887. [PMID: 32268494 PMCID: PMC7226229 DOI: 10.3390/cancers12040887] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The development of drug resistance is one of the main causes of failure in anti-cancer treatments. Tumor cells adopt many strategies to counteract the action of chemotherapeutic agents, e.g., enhanced DNA damage repair, inactivation of apoptotic pathways, alteration of drug targets, drug inactivation, and overexpression of ABC (Adenosine triphosphate-binding cassette, or ATP-binding cassette) transporters. These are broad substrate-specificity ATP-dependent efflux pumps able to export toxins or drugs out of cells; for instance, ABCB1 (MDR1, or P-glycoprotein 1), overexpressed in most cancer cells, confers them multidrug resistance (MDR). The gene coding for sorcin (SOluble Resistance-related Calcium-binding proteIN) is highly conserved among mammals and is located in the same chromosomal locus and amplicon as the ABC transporters ABCB1 and ABCB4, both in human and rodent genomes (two variants of ABCB1, i.e., ABCB1a and ABCB1b, are in rodent amplicon). Sorcin was initially characterized as a soluble protein overexpressed in multidrug (MD) resistant cells and named "resistance-related" because of its co-amplification with ABCB1. Although for years sorcin overexpression was thought to be only a by-product of the co-amplification with ABC transporter genes, many papers have recently demonstrated that sorcin plays an important part in MDR, indicating a possible role of sorcin as an oncoprotein. The present review illustrates sorcin roles in the generation of MDR via many mechanisms and points to sorcin as a novel potential target of different anticancer molecules.
Collapse
Affiliation(s)
- Theo Battista
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (T.B.); (A.F.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (T.B.); (A.F.)
| | - Valerio Chiarini
- Doctoral Programme in Integrative Life Science, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland;
| | - Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR), c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy
- Correspondence: (A.I.); (G.C.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR), c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy
- Correspondence: (A.I.); (G.C.)
| |
Collapse
|
16
|
The Pyrazolo[3,4-d]pyrimidine Derivative, SCO-201, Reverses Multidrug Resistance Mediated by ABCG2/BCRP. Cells 2020; 9:cells9030613. [PMID: 32143347 PMCID: PMC7140522 DOI: 10.3390/cells9030613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/29/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, such as breast cancer resistance protein (BCRP), are key players in resistance to multiple anti-cancer drugs, leading to cancer treatment failure and cancer-related death. Currently, there are no clinically approved drugs for reversal of cancer drug resistance caused by ABC transporters. This study investigated if a novel drug candidate, SCO-201, could inhibit BCRP and reverse BCRP-mediated drug resistance. We applied in vitro cell viability assays in SN-38 (7-Ethyl-10-hydroxycamptothecin)-resistant colon cancer cells and in non-cancer cells with ectopic expression of BCRP. SCO-201 reversed resistance to SN-38 (active metabolite of irinotecan) in both model systems. Dye efflux assays, bidirectional transport assays, and ATPase assays demonstrated that SCO-201 inhibits BCRP. In silico interaction analyses supported the ATPase assay data and suggest that SCO-201 competes with SN-38 for the BCRP drug-binding site. To analyze for inhibition of other transporters or cytochrome P450 (CYP) enzymes, we performed enzyme and transporter assays by in vitro drug metabolism and pharmacokinetics studies, which demonstrated that SCO-201 selectively inhibited BCRP and neither inhibited nor induced CYPs. We conclude that SCO-201 is a specific, potent, and potentially non-toxic drug candidate for the reversal of BCRP-mediated resistance in cancer cells.
Collapse
|
17
|
Chen X, Hu L, Wang Y, Sun W, Yang C. Single Cell Gene Co-Expression Network Reveals FECH/CROT Signature as a Prognostic Marker. Cells 2019; 8:cells8070698. [PMID: 31295943 PMCID: PMC6678878 DOI: 10.3390/cells8070698] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant activation of signaling pathways is frequently observed and reported to be associated with the progression and poor prognosis of prostate cancer (PCa). We aimed to identify key biological processes regulated by androgen receptor (AR) using gene co-expression network from single cell resolution. The bimodal index was used to evaluate whether two subpopulations exist among the single cells. Gene expression among single cells revealed averaging pitfalls and bimodality pattern. Weighted gene co-expression network analysis (WGCNA) was used to identify modules of highly correlated genes. Twenty-nine gene modules were identified and AR-regulated modules were screened by significantly overlapping reported androgen induced differentially expressed genes. The biological function "generation of precursor metabolites and energy" was significantly enriched by AR-regulated modules with bimodality, presenting differential androgen response among subpopulations. Integrating with public ChIP-seq data, two genes FECH, and CROT has AR binding sites. Public in vitro studies also show that androgen regulates FECH and CROT. After receiving androgen deprivation therapy, patients lowly express FECH and CROT. Further survival analysis indicates that FECH/CROT signature can predict PCa recurrence. We reveal the heterogeneous function of "generation of precursor metabolites and energy" upon androgen stimulation from the perspective of single cells. Inhibitors targeting this biological process will facilitate to prevent prostate cancer progression.
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Lingling Hu
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yuan Wang
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Weijun Sun
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Yang
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Du Y, Zhou L, Lin Y, Yin K, Yin W, Lu J. Polymorphisms in microRNA let-7 binding sites of the HIF1AN and CLDN12 genes can predict pathologic complete response to taxane- and platinum-based neoadjuvant chemotherapy in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:138. [PMID: 31157259 DOI: 10.21037/atm.2019.04.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Germline genetic polymorphisms in certain genes are associated with response to anthracycline- and taxane-based neoadjuvant chemotherapy in breast cancer (BC). Recent evidence has indicated that microRNA (miRNA) let-7 expression is associated with response to chemotherapeutics. This study aims to evaluate the potential role of let-7 miRNA-related single nucleotide polymorphisms (mirSNPs) in the prediction of pathologic complete response to taxane- and platinum-based neoadjuvant chemotherapy in locally advanced breast cancer (LABC). Methods We genotyped the SNPs that reside in and around miRNA let-7 binding sites of two target genes: hypoxia-inducible factor 1 subunit alpha inhibitor (HIF1AN) and claudin 12 (CLDN12). The distribution frequencies of the SNPs were genotyped in LABC patients who received taxane- and platinum-based neoadjuvant chemotherapy. Associations among tumour-relevant biomarkers, genotype and pathological complete response (pCR) were evaluated using Student's t-test for continuous variables and the chi-square or Fisher's exact tests for non-categorical variables. The modified odds ratios (ORs) with their 95% confidence intervals (CIs) were calculated by a multivariate logistic regression analysis to explore the association of genotype with pCR. Results For rs11292, which is located in the 3'-untranslated region (UTR) of HIF1AN, significant differences were detected in codominant, dominant and overdominant models between the patients who achieved pCR and those who did not (non-pCR) (P<0.05) in a multivariate analysis. For rs1017105, which is located in the 3'-UTR of CLDN12, significant differences were observed in the recessive model between the pCR and non-pCR patients with luminal-type BC. Conclusions Let-7-related mirSNPs could predict pathologic complete response to taxane- and platinum-based neoadjuvant chemotherapy in LABC, which suggests the potential role of variants of miRNA let-7-related gene networks as predictive markers in a clinical setting.
Collapse
Affiliation(s)
- Yueyao Du
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kai Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
19
|
Jia W, Chen P, Cheng Y. PRDX4 and Its Roles in Various Cancers. Technol Cancer Res Treat 2019; 18:1533033819864313. [PMID: 31311441 PMCID: PMC6636222 DOI: 10.1177/1533033819864313] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species play a vital role in cell survival by regulating physiological metabolism and signal transduction of cells. The imbalance of oxidant and antioxidant states induces oxidative stress within a cell. Redox regulation and oxidative stress are closely related to survival and proliferation of stem cells, cancer cells, and cancer stem cells. Peroxiredoxin 4, a typical endoplasmic reticulum-resident 2-Cys antioxidant of peroxiredoxins, can fine-tune hydrogen peroxide catabolism which affects cell survival by affecting redox balance, oxidative protein folding, and regulation of hydrogen peroxide signaling. Recent studies revealed the overexpression of peroxiredoxin 4 in several kinds of cancers, such as breast cancer, prostate cancer, ovarian cancer, colorectal cancer, and lung cancer. And it has been demonstrated that peroxiredoxin 4 causally contributes to tumorigenesis, therapeutic resistance, metastasis, and recurrence of tumors. In this article, the characteristics of peroxiredoxin 4 in physiological functions and the cancer-related research progress of mammalian peroxiredoxin 4 is reviewed. We believe that peroxiredoxin 4 has the potential of serving as a novel target for multiple cancers.
Collapse
Affiliation(s)
- Wenqiao Jia
- Health Management Center, Shandong University Qilu Hospital, Jinan, China
| | - Pengxiang Chen
- Radiotherapy Department, Shandong University Qilu Hospital, Jinan, China
| | - Yufeng Cheng
- Radiotherapy Department, Shandong University Qilu Hospital, Jinan, China
| |
Collapse
|
20
|
Ibrahim S, Karim S, Abusamra H, Pushparaj PN, Khan JA, Abuzenadah AM, Gari MA, Bakhashab S, Ahmed F, Al-Qahtani MH. Genomic amplification of chromosome 7 in the Doxorubicin resistant K562 cell line. Bioinformation 2018; 14:587-593. [PMID: 31223218 PMCID: PMC6563671 DOI: 10.6026/97320630014587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 11/23/2022] Open
Abstract
Acquisition of multi-drug resistance (MDR) is a major hindrance towards the successful treatment of cancers. Over expression of a range of ATP-dependent efflux pumps, particularly ABCB1 is a widely reported mechanism of cancer cell MDR. Approximately 30% acute myeloid leukemia (AML) patients demonstrate ABCB1 over expression. Several mechanisms for up regulation of ABCB1 have been proposed. Our aim was to investigate the role of genomic amplification of the chromosome 7 region with regard to its influence on ABCB1 over expression in AML cell line. For this, we developed Doxorubicin (Dox) resistant leukemic cell line from K562 cells, demonstrating MDR phenotype. The chromosomal changes associated with the acquisition of MDR were characterized by array- based comparative genomic hybridization (aCGH) with the parental K562 cell line as the reference genome. Significant genomic gains in the chromosomal region corresponding to 7q11.21-7q22.1 were observed in Dox selected cell line. Moreover, the amplicon contains the ABCB1 gene locus at 7q21.1 with a copy number gain of >4. ABCB1 mRNA was found to be up-regulated by54-fold. Our results demonstrate that the development of MDR in K562/Dox is underlined by a genomic amplification of the chromosome 7 region harboring the ABCB1 gene.
Collapse
Affiliation(s)
- Sara.M Ibrahim
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80218, Jeddah, 21589, Kingdom of Saudi Arabi
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Heba Abusamra
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Peter N Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Jalaluddin A Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80218, Jeddah, 21589, Kingdom of Saudi Arabi
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
- King Fahad Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Mamdooh A Gari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80218, Jeddah, 21589, Kingdom of Saudi Arabi
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
- Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Mohammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Huang P, Li F, Li L, You Y, Luo S, Dong Z, Gao Q, Wu S, Brünner N, Stenvang J. lncRNA profile study reveals the mRNAs and lncRNAs associated with docetaxel resistance in breast cancer cells. Sci Rep 2018; 8:17970. [PMID: 30568280 PMCID: PMC6299474 DOI: 10.1038/s41598-018-36231-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Resistance to adjuvant systemic treatment, including taxanes (docetaxel and paclitaxel) is a major clinical problem for breast cancer patients. lncRNAs (long non-coding RNAs) are non-coding transcripts, which have recently emerged as important players in a variety of biological processes, including cancer development and chemotherapy resistance. However, the contribution of lncRNAs to docetaxel resistance in breast cancer and the relationship between lncRNAs and taxane-resistance genes are still unclear. Here, we performed comprehensive RNA sequencing and analyses on two docetaxel-resistant breast cancer cell lines (MCF7-RES and MDA-RES) and their docetaxel-sensitive parental cell lines. We identified protein coding genes and pathways that may contribute to docetaxel resistance. More importantly, we identified lncRNAs that were consistently up-regulated or down-regulated in both the MCF7-RES and MDA-RES cells. The co-expression network and location analyses pinpointed four overexpressed lncRNAs located within or near the ABCB1 (ATP-binding cassette subfamily B member 1) locus, which might up-regulate the expression of ABCB1. We also identified the lncRNA EPB41L4A-AS2 (EPB41L4A Antisense RNA 2) as a potential biomarker for docetaxel sensitivity. These findings have improved our understanding of the mechanisms underlying docetaxel resistance in breast cancer and have provided potential biomarkers to predict the response to docetaxel in breast cancer patients.
Collapse
Affiliation(s)
- Peide Huang
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fengyu Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lin Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuling You
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shizhi Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China.
| | - Nils Brünner
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Jan Stenvang
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
22
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
23
|
Das CK, Linder B, Bonn F, Rothweiler F, Dikic I, Michaelis M, Cinatl J, Mandal M, Kögel D. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells. Neoplasia 2018; 20:263-279. [PMID: 29462756 PMCID: PMC5852393 DOI: 10.1016/j.neo.2018.01.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/07/2023] Open
Abstract
Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549rDOX20) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468r5-FU2000) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549rDOX20 and MDA-MB-468r5-FU2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer.
Collapse
Affiliation(s)
- Chandan Kanta Das
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Benedikt Linder
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany
| | - Florian Rothweiler
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Martin Michaelis
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany; School of Biosciences, The University of Kent, Canterbury, Kent, UK
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Germany.
| |
Collapse
|
24
|
Tian L, Zhao Z, Xie L, Zhu J. MiR-361-5p suppresses chemoresistance of gastric cancer cells by targeting FOXM1 via the PI3K/Akt/mTOR pathway. Oncotarget 2017; 9:4886-4896. [PMID: 29435149 PMCID: PMC5797020 DOI: 10.18632/oncotarget.23513] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer is a prevalent cancer and chemotherapy is a main treatment for patients. Docetaxel is commonly used as a chemotherapeutic drug for gastric cancer patients. With the increasing emergence of docetaxel resistance, exploring the mechanism of chemoresistance may improve prognosis of patients. In this study, we found that overexpressed miR-361-5p suppressed chemoresistance to docetaxel of gastric cancer cells (SGC-7901, MKN-28) by decreasing IC50 values of docetaxel while increasing cell apoptosis rate, especially in docetaxel resistant SGC-7901 cells. Further researches revealed that overexpressed miR-361-5p inhibited chemoresistance through inhibiting autophagy with a characteristic of declined number of LC3+ puncta, decreased expression of Beclin-1 and the ratio of LC3 II/I and increased expression of p62. Bioinformatics study and Luciferase reporter assay indicated that FOXM1 was a target of miR-361-5p and FOXM1 was negatively regulated by miR-361-5p in gastric cancer. Simultaneously, overexpression of FOXM1 counteracted the inhibitory effects of miR-361-5p on chemoresistance of gastric cancer cells through activating autophagy, further certifying the targeting relationship between the two. Moreover, overexpressed miR-361-5p activated the PI3K/Akt/mTOR pathway. The adding of PI3K inhibitor LY294002 played an opposite role to miR-361-5p mimic by inducing autophagy and chemoresistance to docetaxel of gastric cancer cells compared with docetaxel + miR-361-5p mimic group, indicating that miR-361-5p suppressed autophagy-induced chemoresistance via the PI3K/Akt/mTOR pathway in gastric cancer cells. In conclusion, we found that miR-361-5p suppressed autophagy-induced chemoresistance of gastric cancer cells through targeting FOXM1 via the PI3K/Akt/mTOR pathway, providing a foundation for the mechanism research and treatment of gastric cancer.
Collapse
Affiliation(s)
- Lei Tian
- Department Gastroenterol, Jinzhou Medical University, Affilliated Hospital 1, Jinzhou 121000, Liaoning Province, Peoples Republic of China
| | - Zhifeng Zhao
- Department Gastroenterol, Zhongguo Medical University, Affilliated Hospital 4, Shengyang 110000, Liaoning Province, Peoples Republic of China
| | - Ling Xie
- Department Anatomy, Jinzhou Medical University, Jinzhou 121000, Liaoning Province, Peoples Republic of China
| | - JinPeng Zhu
- Department Gastroenterol, Jinzhou Medical University, Affilliated Hospital 1, Jinzhou 121000, Liaoning Province, Peoples Republic of China
| |
Collapse
|
25
|
Peng WF, Xu SS, Ren X, Lv FH, Xie XL, Zhao YX, Zhang M, Shen ZQ, Ren YL, Gao L, Shen M, Kantanen J, Li MH. A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries). Anim Genet 2017; 48:570-579. [PMID: 28703336 DOI: 10.1111/age.12575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 01/20/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied in livestock to identify genes associated with traits of economic interest. Here, we conducted the first GWAS of the supernumerary nipple phenotype in Wadi sheep, a native Chinese sheep breed, based on Ovine Infinium HD SNP BeadChip genotypes in a total of 144 ewes (75 cases with four teats, including two normal and two supernumerary teats, and 69 control cases with two teats). We detected 63 significant SNPs at the chromosome-wise threshold. Additionally, one candidate region (chr1: 170.723-170.734 Mb) was identified by haplotype-based association tests, with one SNP (rs413490006) surrounding functional genes BBX and CD47 on chromosome 1 being commonly identified as significant by the two mentioned analyses. Moreover, Gene Ontology enrichment for the significant SNPs identified by the GWAS analysis was functionally clustered into the categories of receptor activity and synaptic membrane. In addition, pathway mapping revealed four promising pathways (Wnt, oxytocin, MAPK and axon guidance) involved in the development of the supernumerary nipple phenotype. Our results provide novel and important insights into the genetic mechanisms underlying the phenotype of supernumerary nipples in mammals, including humans. These findings may be useful for future breeding and genetics in sheep and other livestock.
Collapse
Affiliation(s)
- W-F Peng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - S-S Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - X Ren
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - F-H Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - X-L Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Y-X Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - M Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Z-Q Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - Y-L Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - L Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - M Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - J Kantanen
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - M-H Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
26
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
27
|
Fu S, Liu X, Luo M, Xie K, Nice EC, Zhang H, Huang C. Proteogenomic studies on cancer drug resistance: towards biomarker discovery and target identification. Expert Rev Proteomics 2017; 14:351-362. [PMID: 28276747 DOI: 10.1080/14789450.2017.1299006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Chemoresistance is a major obstacle for current cancer treatment. Proteogenomics is a powerful multi-omics research field that uses customized protein sequence databases generated by genomic and transcriptomic information to identify novel genes (e.g. noncoding, mutation and fusion genes) from mass spectrometry-based proteomic data. By identifying aberrations that are differentially expressed between tumor and normal pairs, this approach can also be applied to validate protein variants in cancer, which may reveal the response to drug treatment. Areas covered: In this review, we will present recent advances in proteogenomic investigations of cancer drug resistance with an emphasis on integrative proteogenomic pipelines and the biomarker discovery which contributes to achieving the goal of using precision/personalized medicine for cancer treatment. Expert commentary: The discovery and comprehensive understanding of potential biomarkers help identify the cohort of patients who may benefit from particular treatments, and will assist real-time clinical decision-making to maximize therapeutic efficacy and minimize adverse effects. With the development of MS-based proteomics and NGS-based sequencing, a growing number of proteogenomic tools are being developed specifically to investigate cancer drug resistance.
Collapse
Affiliation(s)
- Shuyue Fu
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Xiang Liu
- b Department of Pathology , Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital , Chengdu , P.R. China
| | - Maochao Luo
- c West China School of Public Health, Sichuan University , Chengdu , P.R.China
| | - Ke Xie
- d Department of Oncology , Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital , Chengdu , P.R. China
| | - Edouard C Nice
- e Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- f School of Medicine , Yangtze University , P. R. China
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| |
Collapse
|