1
|
Soleymani F, Paquet E, Viktor HL, Michalowski W. Structure-based protein and small molecule generation using EGNN and diffusion models: A comprehensive review. Comput Struct Biotechnol J 2024; 23:2779-2797. [PMID: 39050782 PMCID: PMC11268121 DOI: 10.1016/j.csbj.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Recent breakthroughs in deep learning have revolutionized protein sequence and structure prediction. These advancements are built on decades of protein design efforts, and are overcoming traditional time and cost limitations. Diffusion models, at the forefront of these innovations, significantly enhance design efficiency by automating knowledge acquisition. In the field of de novo protein design, the goal is to create entirely novel proteins with predetermined structures. Given the arbitrary positions of proteins in 3-D space, graph representations and their properties are widely used in protein generation studies. A critical requirement in protein modelling is maintaining spatial relationships under transformations (rotations, translations, and reflections). This property, known as equivariance, ensures that predicted protein characteristics adapt seamlessly to changes in orientation or position. Equivariant graph neural networks offer a solution to this challenge. By incorporating equivariant graph neural networks to learn the score of the probability density function in diffusion models, one can generate proteins with robust 3-D structural representations. This review examines the latest deep learning advancements, specifically focusing on frameworks that combine diffusion models with equivariant graph neural networks for protein generation.
Collapse
Affiliation(s)
- Farzan Soleymani
- Telfer School of Management, University of Ottawa, ON, K1N 6N5, Canada
| | - Eric Paquet
- National Research Council, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, ON, K1N 6N5, Canada
| | - Herna Lydia Viktor
- School of Electrical Engineering and Computer Science, University of Ottawa, ON, K1N 6N5, Canada
| | | |
Collapse
|
2
|
Lian Y, Bodian D, Shehu A. Elucidating the Role of Wildtype and Variant FGFR2 Structural Dynamics in (Dys)Function and Disorder. Int J Mol Sci 2024; 25:4523. [PMID: 38674107 PMCID: PMC11050683 DOI: 10.3390/ijms25084523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation of the FGFR2 protein and downstream molecular pathways. Many tertiary structures of the FGFR2 kinase domain are publicly available in the wildtype and mutated forms and in the inactive and activated state of the receptor. The current literature suggests a molecular brake inhibiting the ATP-binding A loop from adopting the activated state. Mutations relieve this brake, triggering allosteric changes between active and inactive states. However, the existing analysis relies on static structures and fails to account for the intrinsic structural dynamics. In this study, we utilize experimentally resolved structures of the FGFR2 tyrosine kinase domain and machine learning to capture the intrinsic structural dynamics, correlate it with functional regions and disease types, and enrich it with predicted structures of variants with currently no experimentally resolved structures. Our findings demonstrate the value of machine learning-enabled characterizations of structure dynamics in revealing the impact of mutations on (dys)function and disorder in FGFR2.
Collapse
Affiliation(s)
- Yiyang Lian
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
| | - Dale Bodian
- Diamond Age Data Science, Boston, MA 02143, USA;
| | - Amarda Shehu
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
3
|
Zaman AB, Inan TT, De Jong K, Shehu A. Adaptive Stochastic Optimization to Improve Protein Conformation Sampling. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2759-2771. [PMID: 34882562 DOI: 10.1109/tcbb.2021.3134103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have long known that characterizing protein structures structure is key to understanding protein function. Computational approaches have largely addressed a narrow formulation of the problem, seeking to compute one native structure from an amino-acid sequence. Now AlphaFold2 is shown to be able to reveal a high-quality native structure for many proteins. However, researchers over the years have argued for broadening our view to account for the multiplicity of native structures. We now know that many protein molecules switch between different structures to regulate interactions with molecular partners in the cell. Elucidating such structures de novo is exceptionally difficult, as it requires exploration of possibly a very large structure space in search of competing, near-optimal structures. Here we report on a novel stochastic optimization method capable of revealing very different structures for a given protein from knowledge of its amino-acid sequence. The method leverages evolutionary search techniques and adapts its exploration of the search space to balance between exploration and exploitation in the presence of a computational budget. In addition to demonstrating the utility of this method for identifying multiple native structures, we additionally provide a benchmark dataset for researchers to continue work on this problem.
Collapse
|
4
|
Data Size and Quality Matter: Generating Physically-Realistic Distance Maps of Protein Tertiary Structures. Biomolecules 2022; 12:biom12070908. [PMID: 35883464 PMCID: PMC9313347 DOI: 10.3390/biom12070908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
With the debut of AlphaFold2, we now can get a highly-accurate view of a reasonable equilibrium tertiary structure of a protein molecule. Yet, a single-structure view is insufficient and does not account for the high structural plasticity of protein molecules. Obtaining a multi-structure view of a protein molecule continues to be an outstanding challenge in computational structural biology. In tandem with methods formulated under the umbrella of stochastic optimization, we are now seeing rapid advances in the capabilities of methods based on deep learning. In recent work, we advance the capability of these models to learn from experimentally-available tertiary structures of protein molecules of varying lengths. In this work, we elucidate the important role of the composition of the training dataset on the neural network’s ability to learn key local and distal patterns in tertiary structures. To make such patterns visible to the network, we utilize a contact map-based representation of protein tertiary structure. We show interesting relationships between data size, quality, and composition on the ability of latent variable models to learn key patterns of tertiary structure. In addition, we present a disentangled latent variable model which improves upon the state-of-the-art variable autoencoder-based model in key, physically-realistic structural patterns. We believe this work opens up further avenues of research on deep learning-based models for computing multi-structure views of protein molecules.
Collapse
|
5
|
Rahman T, Du Y, Zhao L, Shehu A. Generative Adversarial Learning of Protein Tertiary Structures. Molecules 2021; 26:molecules26051209. [PMID: 33668217 PMCID: PMC7956369 DOI: 10.3390/molecules26051209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Protein molecules are inherently dynamic and modulate their interactions with different molecular partners by accessing different tertiary structures under physiological conditions. Elucidating such structures remains challenging. Current momentum in deep learning and the powerful performance of generative adversarial networks (GANs) in complex domains, such as computer vision, inspires us to investigate GANs on their ability to generate physically-realistic protein tertiary structures. The analysis presented here shows that several GAN models fail to capture complex, distal structural patterns present in protein tertiary structures. The study additionally reveals that mechanisms touted as effective in stabilizing the training of a GAN model are not all effective, and that performance based on loss alone may be orthogonal to performance based on the quality of generated datasets. A novel contribution in this study is the demonstration that Wasserstein GAN strikes a good balance and manages to capture both local and distal patterns, thus presenting a first step towards more powerful deep generative models for exploring a possibly very diverse set of structures supporting diverse activities of a protein molecule in the cell.
Collapse
Affiliation(s)
- Taseef Rahman
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; (T.R.); (Y.D.)
| | - Yuanqi Du
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; (T.R.); (Y.D.)
| | - Liang Zhao
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA;
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; (T.R.); (Y.D.)
- Center for Advancing Human-Machine Partnerships, George Mason University, Fairfax, VA 22030, USA
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
- Correspondence:
| |
Collapse
|
6
|
Alam FF, Rahman T, Shehu A. Evaluating Autoencoder-Based Featurization and Supervised Learning for Protein Decoy Selection. Molecules 2020; 25:E1146. [PMID: 32143444 PMCID: PMC7179114 DOI: 10.3390/molecules25051146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022] Open
Abstract
Rapid growth in molecular structure data is renewing interest in featurizing structure. Featurizations that retain information on biological activity are particularly sought for protein molecules, where decades of research have shown that indeed structure encodes function. Research on featurization of protein structure is active, but here we assess the promise of autoencoders. Motivated by rapid progress in neural network research, we investigate and evaluate autoencoders on yielding linear and nonlinear featurizations of protein tertiary structures. An additional reason we focus on autoencoders as the engine to obtain featurizations is the versatility of their architectures and the ease with which changes to architecture yield linear versus nonlinear features. While open-source neural network libraries, such as Keras, which we employ here, greatly facilitate constructing, training, and evaluating autoencoder architectures and conducting model search, autoencoders have not yet gained popularity in the structure biology community. Here we demonstrate their utility in a practical context. Employing autoencoder-based featurizations, we address the classic problem of decoy selection in protein structure prediction. Utilizing off-the-shelf supervised learning methods, we demonstrate that the featurizations are indeed meaningful and allow detecting active tertiary structures, thus opening the way for further avenues of research.
Collapse
Affiliation(s)
- Fardina Fathmiul Alam
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; (F.F.A.); (T.R.)
| | - Taseef Rahman
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; (F.F.A.); (T.R.)
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; (F.F.A.); (T.R.)
- Center for Advancing Human-Machine Partnerships, George Mason University, Fairfax, VA 22030, USA
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
7
|
Morris D, Maximova T, Plaku E, Shehu A. Attenuating dependence on structural data in computing protein energy landscapes. BMC Bioinformatics 2019; 20:280. [PMID: 31167640 PMCID: PMC6551245 DOI: 10.1186/s12859-019-2822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Nearly all cellular processes involve proteins structurally rearranging to accommodate molecular partners. The energy landscape underscores the inherent nature of proteins as dynamic molecules interconverting between structures with varying energies. In principle, reconstructing a protein’s energy landscape holds the key to characterizing the structural dynamics and its regulation of protein function. In practice, the disparate spatio-temporal scales spanned by the slow dynamics challenge both wet and dry laboratories. However, the growing number of deposited structures for proteins central to human biology presents an opportunity to infer the relevant dynamics via exploitation of the information encoded in such structures about equilibrium dynamics. Results Recent computational efforts using extrinsic modes of motion as variables have successfully reconstructed detailed energy landscapes of several medium-size proteins. Here we investigate the extent to which one can reconstruct the energy landscape of a protein in the absence of sufficient, wet-laboratory structural data. We do so by integrating intrinsic modes of motion extracted off a single structure in a stochastic optimization framework that supports the plug-and-play of different variable selection strategies. We demonstrate that, while knowledge of more wet-laboratory structures yields better-reconstructed landscapes, precious information can be obtained even when only one structural model is available. Conclusions The presented work shows that it is possible to reconstruct the energy landscape of a protein with reasonable detail and accuracy even when the structural information about the protein is limited to one structure. By attenuating the dependence on structural data of methods designed to compute protein energy landscapes, the work opens up interesting venues of research on structure-based inference of dynamics. Of particular interest are directions of research that will extend such inference to proteins with no experimentally-characterized structures.
Collapse
Affiliation(s)
- David Morris
- Department of Computer Science, George Mason University, Fairfax, 22030, VA, USA
| | - Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, 22030, VA, USA
| | - Erion Plaku
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, 20064, D.C., USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, 22030, VA, USA. .,Department of Bioengineering, George Mason University, Fairfax, 22030, VA, USA. .,School of Systems Biology, George Mason University, Manassas, 20110, VA, USA.
| |
Collapse
|
8
|
Nussinov R, Tsai CJ, Shehu A, Jang H. Computational Structural Biology: Successes, Future Directions, and Challenges. Molecules 2019; 24:molecules24030637. [PMID: 30759724 PMCID: PMC6384756 DOI: 10.3390/molecules24030637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
Computational biology has made powerful advances. Among these, trends in human health have been uncovered through heterogeneous 'big data' integration, and disease-associated genes were identified and classified. Along a different front, the dynamic organization of chromatin is being elucidated to gain insight into the fundamental question of genome regulation. Powerful conformational sampling methods have also been developed to yield a detailed molecular view of cellular processes. when combining these methods with the advancements in the modeling of supramolecular assemblies, including those at the membrane, we are finally able to get a glimpse into how cells' actions are regulated. Perhaps most intriguingly, a major thrust is on to decipher the mystery of how the brain is coded. Here, we aim to provide a broad, yet concise, sketch of modern aspects of computational biology, with a special focus on computational structural biology. We attempt to forecast the areas that computational structural biology will embrace in the future and the challenges that it may face. We skirt details, highlight successes, note failures, and map directions.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Amarda Shehu
- Departments of Computer Science, Department of Bioengineering, and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
Abstract
Background The protein energy landscape underscores the inherent nature of proteins as dynamic molecules interconverting between structures with varying energies. Reconstructing a protein’s energy landscape holds the key to characterizing a protein’s equilibrium conformational dynamics and its relationship to function. Many pathogenic mutations in protein sequences alter the equilibrium dynamics that regulates molecular interactions and thus protein function. In principle, reconstructing energy landscapes of a protein’s healthy and diseased variants is a central step to understanding how mutations impact dynamics, biological mechanisms, and function. Results Recent computational advances are yielding detailed, sample-based representations of protein energy landscapes. In this paper, we propose and describe two novel methods that leverage computed, sample-based representations of landscapes to reconstruct them and extract from them informative local structures that reveal the underlying organization of an energy landscape. Such structures constitute landscape features that, as we demonstrate here, can be utilized to detect alterations of landscapes upon mutation. Conclusions The proposed methods detect altered protein energy landscape features in response to sequence mutations. By doing so, the methods allow formulating hypotheses on the impact of mutations on specific biological activities of a protein. This work demonstrates that the availability of energy landscapes of healthy and diseased variants of a protein opens up new avenues to harness the quantitative information embedded in landscapes to summarize mechanisms via which mutations alter protein dynamics to percolate to dysfunction.
Collapse
|