• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4673303)   Today's Articles (12)
For: Pan X, Fan YX, Yan J, Shen HB. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genomics 2016;17:582. [PMID: 27506469 PMCID: PMC4979166 DOI: 10.1186/s12864-016-2931-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/12/2016] [Indexed: 01/18/2023]  Open
Number Cited by Other Article(s)
1
Gao Y, Shi R, Yu G, Huang Y, Yang Y. ZeRPI: A graph neural network model for zero-shot prediction of RNA-protein interactions. Methods 2025;235:45-52. [PMID: 39892680 DOI: 10.1016/j.ymeth.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]  Open
2
Li P, Liu ZP. Structure-Based Prediction of lncRNA-Protein Interactions by Deep Learning. Methods Mol Biol 2025;2883:363-376. [PMID: 39702717 DOI: 10.1007/978-1-0716-4290-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
3
Tan L, Mengshan L, Yu F, Yelin L, Jihong Z, Lixin G. Predicting lncRNA-protein interactions using a hybrid deep learning model with dinucleotide-codon fusion feature encoding. BMC Genomics 2024;25:1253. [PMID: 39732642 DOI: 10.1186/s12864-024-11168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]  Open
4
Florentino BR, Parmezan Bonidia R, Sanches NH, da Rocha UN, de Carvalho AC. BioPrediction-RPI: Democratizing the prediction of interaction between non-coding RNA and protein with end-to-end machine learning. Comput Struct Biotechnol J 2024;23:2267-2276. [PMID: 38827228 PMCID: PMC11140557 DOI: 10.1016/j.csbj.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]  Open
5
Krautwurst S, Lamkiewicz K. RNA-protein interaction prediction without high-throughput data: An overview and benchmark of in silico tools. Comput Struct Biotechnol J 2024;23:4036-4046. [PMID: 39610906 PMCID: PMC11603007 DOI: 10.1016/j.csbj.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]  Open
6
Zhang X, Zhao L, Chai Z, Wu H, Yang W, Li C, Jiang Y, Liu Q. NPI-DCGNN: An Accurate Tool for Identifying ncRNA-Protein Interactions Using a Dual-Channel Graph Neural Network. J Comput Biol 2024;31:742-756. [PMID: 38923911 DOI: 10.1089/cmb.2023.0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]  Open
7
Zhang M, Zhang L, Liu T, Feng H, He Z, Li F, Zhao J, Liu H. CBIL-VHPLI: a model for predicting viral-host protein-lncRNA interactions based on machine learning and transfer learning. Sci Rep 2024;14:17549. [PMID: 39080344 PMCID: PMC11289117 DOI: 10.1038/s41598-024-68750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]  Open
8
Sun DZ, Sun ZL, Liu M, Yong SH. LPI-SKMSC: Predicting LncRNA-Protein Interactions with Segmented k-mer Frequencies and Multi-space Clustering. Interdiscip Sci 2024;16:378-391. [PMID: 38206558 DOI: 10.1007/s12539-023-00598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
9
Wang T, Wang W, Jiang X, Mao J, Zhuo L, Liu M, Fu X, Yao X. ML-NPI: Predicting Interactions between Noncoding RNA and Protein Based on Meta-Learning in a Large-Scale Dynamic Graph. J Chem Inf Model 2024;64:2912-2920. [PMID: 37920888 DOI: 10.1021/acs.jcim.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
10
Li X, Qu W, Yan J, Tan J. RPI-EDLCN: An Ensemble Deep Learning Framework Based on Capsule Network for ncRNA-Protein Interaction Prediction. J Chem Inf Model 2024;64:2221-2235. [PMID: 37158609 DOI: 10.1021/acs.jcim.3c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
11
Yan J, Qu W, Li X, Wang R, Tan J. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction. Comput Biol Chem 2024;108:108000. [PMID: 38070456 DOI: 10.1016/j.compbiolchem.2023.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
12
Huiwen J, Kai S. Prediction of LncRNA-protein Interactions Using Auto-Encoder, SE-ResNet Models and Transfer Learning. Microrna 2024;13:155-165. [PMID: 38591194 DOI: 10.2174/0122115366288068240322064431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
13
Gong L, Chen J, Cui X, Liu Y. RPIPCM: A deep network model for predicting lncRNA-protein interaction based on sequence feature encoding. Comput Biol Med 2023;165:107366. [PMID: 37633089 DOI: 10.1016/j.compbiomed.2023.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/29/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
14
Ballarino M, Pepe G, Helmer-Citterich M, Palma A. Exploring the landscape of tools and resources for the analysis of long non-coding RNAs. Comput Struct Biotechnol J 2023;21:4706-4716. [PMID: 37841333 PMCID: PMC10568309 DOI: 10.1016/j.csbj.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]  Open
15
Zhou Z, Du Z, Wei J, Zhuo L, Pan S, Fu X, Lian X. MHAM-NPI: Predicting ncRNA-protein interactions based on multi-head attention mechanism. Comput Biol Med 2023;163:107143. [PMID: 37339574 DOI: 10.1016/j.compbiomed.2023.107143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
16
Wei J, Zhuo L, Pan S, Lian X, Yao X, Fu X. HeadTailTransfer: An efficient sampling method to improve the performance of graph neural network method in predicting sparse ncRNA-protein interactions. Comput Biol Med 2023;157:106783. [PMID: 36958237 DOI: 10.1016/j.compbiomed.2023.106783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
17
Chen L, Sun ZL. PmliHFM: Predicting Plant miRNA-lncRNA Interactions with Hybrid Feature Mining Network. Interdiscip Sci 2023;15:44-54. [PMID: 36223068 DOI: 10.1007/s12539-022-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
18
Han Y, Zhang SW. Docsubty: FLAncRPI-LGAT: Prediction of ncRNA-Protein Interactions with Line Graph Attention Network Framework. Comput Struct Biotechnol J 2023;21:2286-2295. [PMID: 37035546 PMCID: PMC10073990 DOI: 10.1016/j.csbj.2023.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]  Open
19
Constructing discriminative feature space for LncRNA-protein interaction based on deep autoencoder and marginal fisher analysis. Comput Biol Med 2023;157:106711. [PMID: 36924738 DOI: 10.1016/j.compbiomed.2023.106711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
20
Wei MM, Yu CQ, Li LP, You ZH, Ren ZH, Guan YJ, Wang XF, Li YC. LPIH2V: LncRNA-protein interactions prediction using HIN2Vec based on heterogeneous networks model. Front Genet 2023;14:1122909. [PMID: 36845392 PMCID: PMC9950107 DOI: 10.3389/fgene.2023.1122909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023]  Open
21
Zhao J, Sun J, Shuai SC, Zhao Q, Shuai J. Predicting potential interactions between lncRNAs and proteins via combined graph auto-encoder methods. Brief Bioinform 2023;24:6896030. [PMID: 36515153 DOI: 10.1093/bib/bbac527] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 12/15/2022]  Open
22
Han S, Yang X, Sun H, Yang H, Zhang Q, Peng C, Fang W, Li Y. LION: an integrated R package for effective prediction of ncRNA-protein interaction. Brief Bioinform 2022;23:6713512. [PMID: 36155620 DOI: 10.1093/bib/bbac420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]  Open
23
Arora V, Sanguinetti G. De novo prediction of RNA-protein interactions with graph neural networks. RNA (NEW YORK, N.Y.) 2022;28:1469-1480. [PMID: 36008134 PMCID: PMC9745830 DOI: 10.1261/rna.079365.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
24
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022;86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
25
Pepe G, Appierdo R, Carrino C, Ballesio F, Helmer-Citterich M, Gherardini PF. Artificial intelligence methods enhance the discovery of RNA interactions. Front Mol Biosci 2022;9:1000205. [PMID: 36275611 PMCID: PMC9585310 DOI: 10.3389/fmolb.2022.1000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022]  Open
26
Zhuo L, Chen Y, Song B, Liu Y, Su Y. A model for predicting ncRNA-protein interactions based on graph neural networks and community detection. Methods 2022;207:74-80. [PMID: 36108992 DOI: 10.1016/j.ymeth.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/07/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]  Open
27
Zhuo L, Song B, Liu Y, Li Z, Fu X. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning. Brief Bioinform 2022;23:6691912. [PMID: 36063562 DOI: 10.1093/bib/bbac339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022]  Open
28
Gong X, Zhang T, Chen CLP, Liu Z. Research Review for Broad Learning System: Algorithms, Theory, and Applications. IEEE TRANSACTIONS ON CYBERNETICS 2022;52:8922-8950. [PMID: 33729975 DOI: 10.1109/tcyb.2021.3061094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
29
Asim MN, Ibrahim MA, Zehe C, Trygg J, Dengel A, Ahmed S. BoT-Net: a lightweight bag of tricks-based neural network for efficient LncRNA–miRNA interaction prediction. Interdiscip Sci 2022;14:841-862. [PMID: 35947255 PMCID: PMC9581873 DOI: 10.1007/s12539-022-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
30
Huang X, Shi Y, Yan J, Qu W, Li X, Tan J. LPI-CSFFR: Combining serial fusion with feature reuse for predicting LncRNA-protein interactions. Comput Biol Chem 2022;99:107718. [PMID: 35785626 DOI: 10.1016/j.compbiolchem.2022.107718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
31
Xu D, Yuan W, Fan C, Liu B, Lu MZ, Zhang J. Opportunities and Challenges of Predictive Approaches for the Non-coding RNA in Plants. FRONTIERS IN PLANT SCIENCE 2022;13:890663. [PMID: 35498708 PMCID: PMC9048598 DOI: 10.3389/fpls.2022.890663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/01/2023]
32
Song J, Tian S, Yu L, Yang Q, Dai Q, Wang Y, Wu W, Duan X. RLF-LPI: An ensemble learning framework using sequence information for predicting lncRNA-protein interaction based on AE-ResLSTM and fuzzy decision. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022;19:4749-4764. [PMID: 35430839 DOI: 10.3934/mbe.2022222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
33
Yu B, Wang X, Zhang Y, Gao H, Wang Y, Liu Y, Gao X. RPI-MDLStack: Predicting RNA-protein interactions through deep learning with stacking strategy and LASSO. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
34
Ren ZH, Yu CQ, Li LP, You ZH, Guan YJ, Li YC, Pan J. SAWRPI: A Stacking Ensemble Framework With Adaptive Weight for Predicting ncRNA-Protein Interactions Using Sequence Information. Front Genet 2022;13:839540. [PMID: 35360836 PMCID: PMC8963817 DOI: 10.3389/fgene.2022.839540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022]  Open
35
Zhao G, Li P, Qiao X, Han X, Liu ZP. Predicting lncRNA–Protein Interactions by Heterogenous Network Embedding. Front Genet 2022;12:814073. [PMID: 35186016 PMCID: PMC8854746 DOI: 10.3389/fgene.2021.814073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022]  Open
36
Yu T. AIME: Autoencoder-based integrative multi-omics data embedding that allows for confounder adjustments. PLoS Comput Biol 2022;18:e1009826. [PMID: 35081109 PMCID: PMC8820645 DOI: 10.1371/journal.pcbi.1009826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 02/07/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]  Open
37
Arora V, Sanguinetti G. Challenges for machine learning in RNA-protein interaction prediction. Stat Appl Genet Mol Biol 2022;21:sagmb-2021-0087. [PMID: 35073469 DOI: 10.1515/sagmb-2021-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/02/2022] [Indexed: 11/15/2022]
38
Yu X, Jiang L, Jin S, Zeng X, Liu X. preMLI: a pre-trained method to uncover microRNA-lncRNA potential interactions. Brief Bioinform 2021;23:6446267. [PMID: 34850810 DOI: 10.1093/bib/bbab470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]  Open
39
LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification. BMC Bioinformatics 2021;22:568. [PMID: 34836494 PMCID: PMC8620196 DOI: 10.1186/s12859-021-04485-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022]  Open
40
Mushtaq M, Naveed H, Khalid Z. Computational Prediction of lncRNA-Protein Interactions using Machine learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021;2021:2100-2103. [PMID: 34891703 DOI: 10.1109/embc46164.2021.9630282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
41
Yu H, Shen ZA, Du PF. NPI-RGCNAE: Fast predicting ncRNA-protein interactions using the Relational Graph Convolutional Network Auto-Encoder. IEEE J Biomed Health Inform 2021;26:1861-1871. [PMID: 34699377 DOI: 10.1109/jbhi.2021.3122527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
42
LGFC-CNN: Prediction of lncRNA-Protein Interactions by Using Multiple Types of Features through Deep Learning. Genes (Basel) 2021;12:genes12111689. [PMID: 34828296 PMCID: PMC8621699 DOI: 10.3390/genes12111689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]  Open
43
Zhou H, Wekesa JS, Luan Y, Meng J. PRPI-SC: an ensemble deep learning model for predicting plant lncRNA-protein interactions. BMC Bioinformatics 2021;22:415. [PMID: 34429059 PMCID: PMC8385908 DOI: 10.1186/s12859-021-04328-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023]  Open
44
Yu H, Shen ZA, Zhou YK, Du PF. Recent advances in predicting protein-lncRNA interactions using machine learning methods. Curr Gene Ther 2021;22:228-244. [PMID: 34254917 DOI: 10.2174/1566523221666210712190718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
45
Zhu Q, Fan Y, Pan X. Fusing Multiple Biological Networks to Effectively Predict miRNA-disease Associations. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200715165335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
46
Li Y, Sun H, Feng S, Zhang Q, Han S, Du W. Capsule-LPI: a LncRNA-protein interaction predicting tool based on a capsule network. BMC Bioinformatics 2021;22:246. [PMID: 33985444 PMCID: PMC8120853 DOI: 10.1186/s12859-021-04171-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022]  Open
47
Shen ZA, Luo T, Zhou YK, Yu H, Du PF. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks. Brief Bioinform 2021;22:6210071. [PMID: 33822882 DOI: 10.1093/bib/bbab051] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/23/2022]  Open
48
Wang J, Zhao Y, Gong W, Liu Y, Wang M, Huang X, Tan J. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction. BMC Bioinformatics 2021;22:133. [PMID: 33740884 PMCID: PMC7980572 DOI: 10.1186/s12859-021-04069-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]  Open
49
Shaw D, Chen H, Xie M, Jiang T. DeepLPI: a multimodal deep learning method for predicting the interactions between lncRNAs and protein isoforms. BMC Bioinformatics 2021;22:24. [PMID: 33461501 PMCID: PMC7814738 DOI: 10.1186/s12859-020-03914-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]  Open
50
Alam T, Al-Absi HRH, Schmeier S. Deep Learning in LncRNAome: Contribution, Challenges, and Perspectives. Noncoding RNA 2020;6:E47. [PMID: 33266128 PMCID: PMC7711891 DOI: 10.3390/ncrna6040047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]  Open
PrevPage 1 of 3 123Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA