1
|
Gao Y, Liu GE, Ma L, Fang L, Li CJ, Baldwin RL. Transcriptomic profiling of gastrointestinal tracts in dairy cattle during lactation reveals molecular adaptations for milk synthesis. J Adv Res 2024:S2090-1232(24)00257-1. [PMID: 38925453 DOI: 10.1016/j.jare.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
During lactation, dairy cattle's digestive tract requires significant adaptations to meet the increased nutrient demands for milk production. As we attempt to improve milk-related traits through selective pressure, it is crucial to understand the biological functions of the epithelia of the rumen, small intestine, and colonic tissues in response to changes in physiological state driven by changes in nutrient demands for milk synthesis. In this study, we obtained a total of 108 transcriptome profiles from three tissues (epithelia of the colon, duodenum, and rumen) of five Holstein cows, spanning eight time points from the early, mid, late lactation periods to the dry period. On average 97.06% of reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We analyzed 27,607 gene expression patterns at multiple periods, enabling direct comparisons within and among tissues during different lactation stages, including early and peak lactation. We identified 1645, 813, and 2187 stage-specific genes in the colon, duodenum, and rumen, respectively, which were enriched for common or specific biological functions among different tissues. Time series analysis categorized the expressed genes within each tissue into four clusters. Furthermore, when the three tissues were analyzed collectively, 36 clusters of similarly expressed genes were identified. By integrating other comprehensive approaches such as gene co-expression analyses, functional enrichment, and cell type deconvolution, we gained profound insights into cattle lactation, revealing tissue-specific characteristics of the gastrointestinal tract and shedding light on the intricate molecular adaptations involved in nutrient absorption, immune regulation, and cellular processes for milk synthesis during lactation.
Collapse
Affiliation(s)
- Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
2
|
van den Berg I, Chamberlain AJ, MacLeod IM, Nguyen TV, Goddard ME, Xiang R, Mason B, Meier S, Phyn CVC, Burke CR, Pryce JE. Using expression data to fine map QTL associated with fertility in dairy cattle. Genet Sel Evol 2024; 56:42. [PMID: 38844868 PMCID: PMC11154999 DOI: 10.1186/s12711-024-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to combine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated with fertility in both Australia and New Zealand dairy cattle populations. RESULTS Variants that were significantly associated with calving interval (CI) were strongly enriched for variants associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial overlap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read sequencing may be useful. CONCLUSIONS Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped with eQTL, providing candidate genes for fertility in dairy cattle.
Collapse
Affiliation(s)
- Irene van den Berg
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia.
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Tuan V Nguyen
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Mike E Goddard
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brett Mason
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | | | | | | | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
3
|
Hu Z, Boschiero C, Li CJ, Connor EE, Baldwin RL, Liu GE. Unraveling the Genetic Basis of Feed Efficiency in Cattle through Integrated DNA Methylation and CattleGTEx Analysis. Genes (Basel) 2023; 14:2121. [PMID: 38136943 PMCID: PMC10742843 DOI: 10.3390/genes14122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Feed costs can amount to 75 percent of the total overhead cost of raising cows for milk production. Meanwhile, the livestock industry is considered a significant contributor to global climate change due to the production of greenhouse gas emissions, such as methane. Indeed, the genetic basis of feed efficiency (FE) is of great interest to the animal research community. Here, we explore the epigenetic basis of FE to provide base knowledge for the development of genomic tools to improve FE in cattle. The methylation level of 37,554 CpG sites was quantified using a mammalian methylation array (HorvathMammalMethylChip40) for 48 Holstein cows with extreme residual feed intake (RFI). We identified 421 CpG sites related to 287 genes that were associated with RFI, several of which were previously associated with feeding or digestion issues. Activator of transcription and developmental regulation (AUTS2) is associated with digestive disorders in humans, while glycerol-3-phosphate dehydrogenase 2 (GPD2) encodes a protein on the inner mitochondrial membrane, which can regulate glucose utilization and fatty acid and triglyceride synthesis. The extensive expression and co-expression of these genes across diverse tissues indicate the complex regulation of FE in cattle. Our study provides insight into the epigenetic basis of RFI and gene targets to improve FE in dairy cattle.
Collapse
Affiliation(s)
- Zhenbin Hu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Erin E. Connor
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Kertz NC, Banerjee P, Dyce PW, Diniz WJS. Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle-A Review. Animals (Basel) 2023; 13:3284. [PMID: 37894009 PMCID: PMC10603720 DOI: 10.3390/ani13203284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Female fertility is the foundation of the cow-calf industry, impacting both efficiency and profitability. Reproductive failure is the primary reason why beef cows are sold in the U.S. and the cause of an estimated annual gross loss of USD 2.8 billion. In this review, we discuss the status of the genomics, transcriptomics, and systems genomics approaches currently applied to female fertility and the tools available to cow-calf producers to maximize genetic progress. We highlight the opportunities and limitations associated with using genomic and transcriptomic approaches to discover genes and regulatory mechanisms related to beef fertility. Considering the complex nature of fertility, significant advances in precision breeding will rely on holistic, multidisciplinary approaches to further advance our ability to understand, predict, and improve reproductive performance. While these technologies have advanced our knowledge, the next step is to translate research findings from bench to on-farm applications.
Collapse
|
5
|
Ahn J, Hwang IS, Park MR, Hwang S, Lee K. Imprinting at the KBTBD6 locus involves species-specific maternal methylation and monoallelic expression in livestock animals. J Anim Sci Biotechnol 2023; 14:131. [PMID: 37817239 PMCID: PMC10565993 DOI: 10.1186/s40104-023-00931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The primary differentially methylated regions (DMRs) which are maternally hypermethylated serve as imprinting control regions (ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting. RESULTS Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter CpG island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter CpG islands were methylated in oocytes and/or allelically methylated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these CpG islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting. CONCLUSIONS In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - In-Sul Hwang
- Animal Biotechnology Division, Rural Development Administration, National Institute of Animal Science, Jeonbuk, 55365 Republic of Korea
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA
| | - Mi-Ryung Park
- Animal Biotechnology Division, Rural Development Administration, National Institute of Animal Science, Jeonbuk, 55365 Republic of Korea
| | - Seongsoo Hwang
- Animal Welfare Research Team, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Jeollabuk-do, 55365 Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
6
|
Prodanović R, Kirovski D, Vujanac I, Djordjevic A, Romić S, Pantelić M, Korićanac G. Obesity-related prepartal insulin resistance in dairy cows is associated with increased lipin 1 and decreased FATP 1 expression in skeletal muscle. Res Vet Sci 2022; 150:189-194. [DOI: 10.1016/j.rvsc.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/26/2022]
|
7
|
Veshkini A, M Hammon H, Vogel L, Delosière M, Viala D, Dèjean S, Tröscher A, Ceciliani F, Sauerwein H, Bonnet M. Liver proteome profiling in dairy cows during the transition from gestation to lactation: Effects of supplementation with essential fatty acids and conjugated linoleic acids as explored by PLS-DA. J Proteomics 2022; 252:104436. [PMID: 34839038 DOI: 10.1016/j.jprot.2021.104436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
This study aimed at investigating the synergistic effects of essential fatty acids (EFA) and conjugated linoleic acids (CLA) on the liver proteome profile of dairy cows during the transition to lactation. 16 Holstein cows were infused from 9 wk. antepartum to 9 wk. postpartum into the abomasum with either coconut oil (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (EFA + CLA). Label-free quantitative proteomics was performed in liver tissue biopsied at days -21, +1, +28, and + 63 relative to calving. Differentially abundant proteins (DAP) between treatment groups were identified at the intersection between a multivariate and a univariate analysis. In total, 1680 proteins were identified at each time point, of which between groups DAP were assigned to the metabolism of xenobiotics by cytochrome P450, drug metabolism - cytochrome P450, steroid hormone biosynthesis, glycolysis/gluconeogenesis, and glutathione metabolism. Cytochrome P450, as a central hub, enriched with specific CYP enzymes comprising: CYP51A1 (d - 21), CYP1A1 & CYP4F2 (d + 28), and CYP4V2 (d + 63). Collectively, supplementation of EFA + CLA in transition cows impacted hepatic lipid metabolism and enriched several common biological pathways at all time points that were mainly related to ω-oxidation of fatty acids through the Cytochrome p450 pathway. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is among the first longitudinal proteomics studies in nutrition of dairy cows. The selected time points are critical periods around parturition with profound endocrine and metabolic adaptations. Second, our findings provided novel information on key drivers of biologically relevant pathways suggested according to previously reported performance, zootechnical, and metabolism data (already published elsewhere). Third, our results revealed the role of cytochrome P450 that is hardly investigated, and of ω-oxidation pathways in the metabolism of fatty acids with the involvement of specific enzymes.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany; Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Mylène Delosière
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Sèbastien Dèjean
- Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
8
|
López-Diez L, Calle-Velásquez C, Hanigan MD, Ruiz-Cortés ZT. Amino Acid Metabolomic Profiles in Bovine Mammary Epithelial Cells under Essential Amino Acid Restriction. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051334. [PMID: 34067229 PMCID: PMC8151660 DOI: 10.3390/ani11051334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Cells of the mammary gland obtain their necessary nutrients from the blood to produce milk components, such as casein. To achieve higher productivity, cows are excessively supplemented, thus generating a higher cost of production and affecting the environment. Therefore, this triggers the need for a reduction in the supplementation of essential amino acids without affecting the milk composition. The present in vitro study shows that, through homeostatic and homeorhetic processes, cells have the ability to maintain stable casein levels despite decreasing the percentage of essential amino acids (EAAs) supplied. These findings could contribute to the proposal of more efficient nutritional strategies at lower environmental and economic costs. Abstract Mammary epithelial cells (MECs) in culture are a useful model for elucidating mammary gland metabolism and changes that occur under different nutrient disponibility. MECs were exposed to different treatments: 100% EAA for 8 h and 24 h restriction (R); 2% EAA for 8 h and 24 h R; 2% EAA for 8 h and 24 h + 100% EAA for 8 h and 24 h restriction + re-feeding (R + RF). Western blotting and protein quantification was performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) software identified the amino acids (AAs) and signaling pathways. The chi-squared test, multiple classification analysis, and analysis of variance were used for the purification and identification of data. Intracellular casein levels were not affected. The KEGG analysis revealed that the important pathways of metabolism of AAs, which were involved in processes related to metabolism and biosynthesis of phenylalanine, tyrosine, and tryptophan (fumarate, acetyl-CoA, and tricarboxylic acid (TCA) cycle), were affected by both R and R + RF treatments, mainly through the glutamic-oxaloacetic transaminase-2 enzyme. Additionally, metabolic processes mediated by the mitochondrial malate dehydrogenase, S-adenosylmethionine synthetase, and asparagine synthase proteins positively regulated the carbohydrate pathway, pyruvate, and TCA cycles, as well as the metabolism of alanine, aspartate, and glutamate metabolism (carbohydrate and TCA cycle). We hypothesized that MECs have the capacity to utilize alternative pathways that ensure the availability of substrates for composing milk proteins.
Collapse
Affiliation(s)
- Laura López-Diez
- Research Group Biogénesis, Faculty of Agricultural Sciences, University of Antioquia, Medellín 050034, Colombia;
| | | | - Mark D. Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Zulma Tatiana Ruiz-Cortés
- Research Group Biogénesis, Faculty of Agricultural Sciences, University of Antioquia, Medellín 050034, Colombia;
- Correspondence:
| |
Collapse
|
9
|
Pascottini OB, De Koster J, Van Nieuwerburgh F, Van Poucke M, Peelman L, Fievez V, Leroy JLMR, Opsomer G. Effect of overconditioning on the hepatic global gene expression pattern of dairy cows at the end of pregnancy. J Dairy Sci 2021; 104:8152-8163. [PMID: 33896624 DOI: 10.3168/jds.2020-19302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/18/2021] [Indexed: 11/19/2022]
Abstract
Overconditioning is a risk factor for upregulated pre- and postpartum fat mobilization. Therefore, we hypothesized that overconditioning at the end of pregnancy leads to the accumulation of lipids in the liver and modifications of the hepatic gene expression pattern. The aim of this study was to evaluate the effect of normal- versus overconditioning on the hepatic transcriptomic profile of dairy cows at the end of pregnancy. Ten dry multiparous Holstein cows were killed 2 wk before expected calving. Body condition score (BCS) and backfat thickness (BFT) were evaluated, and blood samples for nonesterified fatty acids (NEFA) were taken before cows were killed. After cows were killed, liver biopsy samples were collected for further assessment of total lipids and RNA sequencing. Five cows were classified as normal-conditioned (median BCS = 3, range 2.75-3.5) and 5 as overconditioned (median BCS = 4, range 4-5). Regression models confirmed that normal-conditioned cows had lower BFT (1.29 ± 0.29 cm; least squares means ± standard error) and serum NEFA (0.16 ± 0.04 mmol/L) in comparison to overconditioned cows (3.14 ± 0.43 cm and 0.38 ± 0.07 mmol/L for BFT and NEFA, respectively). Total liver lipid percentage tended to be lower in normal- versus overconditioned cows (4.63 ± 0.40% and 6.06 ± 0.44%, respectively). In comparison to the mean liver lipid percentage of the normal- and overconditioned cows, 1 overconditioned cow had a relatively low (5.21%) and 1 normal-conditioned cow had a relatively high (6.07%) liver lipid percentage. Differentially expressed genes analysis (edgeR quasi-likelihood method) showed that normal-conditioned cows presented 11 upregulated and 12 downregulated genes in comparison to overconditioned cows. Linear discriminant analysis effects size revealed 133 differentially expressed genes between normal- versus overconditioned cows. Notably, the liver of normal-conditioned cows had upregulated genes associated with liver functionality (ALB, SELENOP, IGF1, and IGF2). On the other hand, overconditioned cows had upregulated genes associated with the acute-phase response (C3, HPX, and, LBP). High basal lipolysis in overconditioned cows at the end of pregnancy increased liver lipid content, and this may alter the hepatic gene expression pattern to a pro-inflammatory state.
Collapse
Affiliation(s)
- O Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.
| | - J De Koster
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - M Van Poucke
- Laboratory for Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - L Peelman
- Laboratory for Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - V Fievez
- LANUPRO, Campus Coupure, building F, first floor, Coupure Links 653, 9000 Gent, Belgium
| | - J L M R Leroy
- Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
10
|
O'Sullivan M, Butler ST, Pierce KM, Crowe MA, O'Sullivan K, Fitzgerald R, Buckley F. Reproductive efficiency and survival of Holstein-Friesian cows of divergent Economic Breeding Index, evaluated under seasonal calving pasture-based management. J Dairy Sci 2019; 103:1685-1700. [PMID: 31837792 DOI: 10.3168/jds.2019-17374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022]
Abstract
The objective of the current study was to examine phenotypic fertility performance and survival, and to gain insight into underlying factors that may contribute to greater fertility performance in 2 divergent genetic groups (GG) of Holstein-Friesian, selected using the Irish Economic Breeding Index (EBI). The GG were evaluated across 3 spring calving pasture-based feeding treatments (FT) over 4 yr. The 2 divergent GG were (1) high EBI; representative of the top 5% nationally (elite), and (2) EBI representative of the national average (NA). In each year, 90 elite and 45 NA cows were randomly allocated to 1 of 3 FT: control, lower grass allowance, and high concentrate. No interaction between GG and FT was observed for any of the measures of fertility investigated. The elite cows achieved significantly greater pregnancy rate to first service (+14.9 percentage points), and significantly greater pregnancy rates after 21, 42, and 84 d of breeding (+17.3, +15.2, and +9.6 percentage points, respectively) compared with NA. The number of services per cow was fewer for elite (1.57) compared with NA (1.80). The interval from mating start date to pregnancy was significantly shorter for elite cows compared with NA. The elite cows maintained greater mean body condition score than NA throughout the study (2.91 vs. 2.72), and had greater body condition score at calving, artificial insemination, and drying off compared with NA. The elite cows had greater mean circulating concentrations of insulin-like growth factor-1 compared with NA. No significant effect was observed of GG on commencement of luteal activity, or progesterone profile variables. Greater survival to the start of fifth lactation was observed for elite cows. The elite cows were 43% less likely to be culled than NA by the beginning of the fifth lactation. The results highlight the success of the Economic Breeding Index to deliver reproductive performance and longevity consistent with industry targets across a range of seasonal pasture-based FT. The results also clearly demonstrate the potential of appropriate genetic selection to reverse negative fertility trends incurred during previous decades of selection for milk production alone.
Collapse
Affiliation(s)
- M O'Sullivan
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61 C997, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - S T Butler
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61 C997, Ireland
| | - K M Pierce
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - M A Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - K O'Sullivan
- School of Mathematical Sciences, University College Cork, Cork, T12 XF62, Ireland
| | - R Fitzgerald
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61 C997, Ireland
| | - F Buckley
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61 C997, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland.
| |
Collapse
|
11
|
Valdmann M, Kurykin J, Kaart T, Mällo GK, Waldmann A. Relationships between plasma insulin-like growth factor-1 and insulin concentrations in multiparous dairy cows with cytological endometritis. Vet Rec 2018; 183:126. [DOI: 10.1136/vr.104640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Merle Valdmann
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences; Tartu Estonia
| | - Jevgeni Kurykin
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences; Tartu Estonia
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences; Tartu Estonia
| | - Gret-Kristel Mällo
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences; Tartu Estonia
| | - Andres Waldmann
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences; Tartu Estonia
| |
Collapse
|
12
|
Moore SG, McCabe MS, Green JC, Newsom EM, Lucy MC. The transcriptome of the endometrium and placenta is associated with pregnancy development but not lactation status in dairy cows†,‡. Biol Reprod 2017; 97:18-31. [DOI: 10.1093/biolre/iox059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/17/2017] [Indexed: 01/08/2023] Open
|
13
|
Cheong SH, Sá Filho OG, Absalon-Medina VA, Schneider A, Butler WR, Gilbert RO. Uterine and systemic inflammation influences ovarian follicular function in postpartum dairy cows. PLoS One 2017; 12:e0177356. [PMID: 28542500 PMCID: PMC5438135 DOI: 10.1371/journal.pone.0177356] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
The objective of this study was to determine the effects of uterine and systemic inflammatory responses to uterine bacterial contamination at calving in dairy cows on the growth and ovulatory outcomes of the first dominant follicle postpartum. Ovulatory capability of the first dominant follicle postpartum was predicted in 53 multiparous cows by using a combination of follicle growth characteristics and circulating estradiol concentrations. Endotoxin levels were assayed in follicular fluid samples that were aspirated the day after ovulatory outcome prediction. Plasma levels of haptoglobin, a proinflammatory acute phase protein, and paraoxonase, a negative acute phase protein were determined. Uterine bacteria and inflammation were evaluated in three uterine fluid samples from each cow collected on the day of calving, the day after follicle aspiration, and at 35 days postpartum. Cows that had a strong initial uterine inflammatory response (robust recruitment of polymorphonuclear leukocytes of ≥ 35% and cows with uterine pH < 8.5 on the day of calving) were more likely to have an ovulatory first dominant follicle. Follicular fluid endotoxin levels were higher in non-ovulatory cows compared with ovulatory cows. Endotoxin levels in circulation were not different between ovulatory groups but were higher prepartum than on day 7 and 14 postpartum. Systemic inflammation characterized by elevated haptoglobin concentrations was higher in non-ovulatory cows despite similar bacterial contamination and circulating endotoxin levels. Paraoxonase activity in follicular fluid was significantly associated with the paraoxonase activity in plasma, however, plasma paraoxonase concentrations were not different between non-ovulatory and ovulatory cows. Cows with a higher uterine bacterial load on the day of calving had slower ovarian follicle growth. In summary, a robust uterine inflammatory response on the day of calving was positively associated with ovarian function while elevated systemic inflammation during the early postpartum period was negatively associated with the ovulatory status of the first dominant follicle postpartum.
Collapse
Affiliation(s)
- Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (SHC); (ROG)
| | - Ocilon G. Sá Filho
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| | | | - Augusto Schneider
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| | - W. R. Butler
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| | - Robert O. Gilbert
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (SHC); (ROG)
| |
Collapse
|
14
|
Ortega MS, Denicol AC, Cole JB, Null DJ, Taylor JF, Schnabel RD, Hansen PJ. Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows. J Dairy Sci 2017; 100:3725-3734. [PMID: 28259397 DOI: 10.3168/jds.2016-12260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/07/2017] [Indexed: 11/19/2022]
Abstract
Many genetic markers related to health or production traits are not evaluated in populations independent of the discovery population or related to phenotype. Here we evaluated 68 single nucleotide polymorphisms (SNP) in candidate genes previously associated with genetic merit for fertility and production traits for association with phenotypic measurements of fertility in a population of Holstein cows that was selected based on predicted transmitting ability (PTA) for daughter pregnancy rate (DPR; high, ≥1, n = 989; low, ≤ -1.0, n = 1,285). Cows with a high PTA for DPR had higher pregnancy rate at first service, fewer services per conception, and fewer days open than cows with a low PTA for DPR. Of the 68 SNP, 11 were associated with pregnancy rate at first service, 16 with services per conception, and 19 with days open. Single nucleotide polymorphisms in 12 genes (BDH2, BSP3, CAST, CD2, CD14, FUT1, FYB, GCNT3, HSD17B7, IBSP, OCLN, and PCCB) had significant associations with 2 fertility traits, and SNP in 4 genes (CSPP1, FCER1G, PMM2, and TBC1D24) had significant associations with each of the 3 traits. Results from this experiment were compared with results from 2 earlier studies in which the SNP were associated with genetic estimates of fertility. One study involved the same animals as used here, and the other study was of an independent population of bulls. A total of 13 SNP associated with 1 or more phenotypic estimates of fertility were directionally associated with genetic estimates of fertility in the same cow population. Moreover, 14 SNP associated with reproductive phenotype were directionally associated with genetic estimates of fertility in the bull population. Nine SNP (located in BCAS, BSP3, CAST, FUT1, HSD17B7, OCLN, PCCB, PMM2, and TBC1D24) had a directional association with fertility in all 3 studies. Examination of the function of the genes with SNP associated with reproduction in more than one study indicates the importance of steroid hormones and immune function as determinants of reproductive function. All but 1 of the 68 evaluated SNP were variable in 11 breeds besides Holstein, indicating the potential effects of these SNP on reproductive function across breeds of cattle.
Collapse
Affiliation(s)
- M Sofia Ortega
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville 32611
| | - Anna C Denicol
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville 32611
| | - John B Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - Daniel J Null
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia 65211; Informatics Institute, University of Missouri, Columbia 65211
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville 32611.
| |
Collapse
|