1
|
Vashisth S, Kumar P, Chandel VGS, Kumar R, Verma SC, Chandel RS. Unraveling the enigma of root-knot nematodes: from origins to advanced management strategies in agriculture. PLANTA 2024; 260:36. [PMID: 38922545 DOI: 10.1007/s00425-024-04464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION Integrated management strategies, including novel nematicides and resilient cultivars, offer sustainable solutions to combat root-knot nematodes, crucial for safeguarding global agriculture against persistent threats. Root-knot nematodes (RKN) pose a significant threat to a diverse range of host plants, with their obligatory endoparasitic nature leading to substantial agricultural losses. RKN spend much of their lives inside or in contact by secreting plant cell wall-modifying enzymes resulting in the giant cell development for establishing host-parasite relationships. Additionally, inflicting physical harm to host plants, RKN also contributes to disease complexes creation with fungi and bacteria. This review comprehensively explores the origin, history, distribution, and physiological races of RKN, emphasizing their economic impact on plants through gall formation. Management strategies, ranging from cultural and physical to biological and chemical controls, along with resistance mechanisms and marker-assisted selection, are explored. While recognizing the limitations of traditional nematicides, recent breakthroughs in non-fumigant alternatives like fluensulfone, spirotetramat, and fluopyram offer promising avenues for sustainable RKN management. Despite the success of resistance mechanisms like the Mi gene, challenges persist, prompting the need for integrative approaches to tackle Mi-virulent isolates. In conclusion, the review stresses the importance of innovative and resilient control measures for sustainable agriculture, emphasizing ongoing research to address evolving challenges posed by RKN. The integration of botanicals, resistant cultivars, and biological controls, alongside advancements in non-fumigant nematicides, contributes novel insights to the field, laying the ground work for future research directions to ensure the long-term sustainability of agriculture in the face of persistent RKN threats.
Collapse
Affiliation(s)
- Sumit Vashisth
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Vishav Gaurav Singh Chandel
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Subhash Chander Verma
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rajeshwar Singh Chandel
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| |
Collapse
|
2
|
Ahn E, Prom LK, Magill C. Multi-Trait Genome-Wide Association Studies of Sorghum bicolor Regarding Resistance to Anthracnose, Downy Mildew, Grain Mold and Head Smut. Pathogens 2023; 12:779. [PMID: 37375469 DOI: 10.3390/pathogens12060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multivariate linear mixed models (mvLMMs) are widely applied for genome-wide association studies (GWAS) to detect genetic variants affecting multiple traits with correlations and/or different plant growth stages. Subsets of multiple sorghum populations, including the Sorghum Association Panel (SAP), the Sorghum Mini Core Collection and the Senegalese sorghum population, have been screened against various sorghum diseases such as anthracnose, downy mildew, grain mold and head smut. Still, these studies were generally performed in a univariate framework. In this study, we performed GWAS based on the principal components of defense-related multi-traits against the fungal diseases, identifying new potential SNPs (S04_51771351, S02_66200847, S09_47938177, S08_7370058, S03_72625166, S07_17951013, S04_66666642 and S08_51886715) associated with sorghum's defense against these diseases.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Gattoni KM, Park SW, Lawrence KS. Evaluation of the mechanism of action of Bacillus spp. to manage Meloidogyne incognita with split root assay, RT-qPCR and qPCR. FRONTIERS IN PLANT SCIENCE 2023; 13:1079109. [PMID: 36743572 PMCID: PMC9895862 DOI: 10.3389/fpls.2022.1079109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
The goal of this research is to determine the mechanism of action of two Bacillus spp. that can manage Meloidogyne incognita population density in cotton. The overall objectives are 1) determine the efficacy and direct antagonistic capabilities of the Bacillus spp. and 2) determine the systemic capabilities of the Bacillus spp. The greenhouse in planta assay indicated B. amyloliquefaciens QST713 and B. firmus I-1582 could manage M. incognita similarly to the chemical standard fluopyram. An in vitro assay determined that B. firmus I-1582 and its extracted metabolites were able to directly manage M. incognita second stage juveniles by increasing mortality rate above 75%. A split root assay, used to determine systemic capabilities of the bacteria, indicated B. amyloliquefaciens QST713 and B. firmus I-1582 could indirectly decrease the nematode population density. Another species, B. mojavensis strain 2, also demonstrated systemic capabilities but was not a successful biological control agent because it supported a high population density in greenhouse in planta assay and in the split root assay. A RT-qPCR assay was used to confirm any systemic activity observed in the split root assay. At 24 hours both B. amyloliquefaciens QST713 and B. firmus I-1582 upregulated one gene involved in the initial stages of JA synthesis pathway but not another gene involved in the later stages of JA synthesis. These results point to a JA intermediate molecule, most likely OPDA, stimulated by the bacteria rather than JA in a short-term systemic response. After 1 week, the Bacillus spp. stimulated a SA-responsive defense related gene. The long-term systemic response to the Bacillus spp. indicates salicylic acid also plays a role in defense conferred by these bacteria. The final assay was a qPCR to determine the concentration of the bacteria on the cotton roots after 24 days. Bacillus amyloliquefaciens QST713 and B. firmus I-43 1582 were able to colonize the root successfully, with the concentration after 24 days not significantly differing from the concentration at inoculation. This study identifies two bacteria that work via systemic resistance and will help aid in implementing these species in an integrated management system.
Collapse
|
4
|
Abd-Elgawad MMM. Exploiting Plant-Phytonematode Interactions to Upgrade Safe and Effective Nematode Control. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111916. [PMID: 36431051 PMCID: PMC9693997 DOI: 10.3390/life12111916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Plant-parasitic nematodes (PPNs) bring about substantial losses of economic crops globally. With the environmental and health issues facing the use of chemical nematicides, research efforts should focus on providing economically effective and safe control methods. The sound exploitation of plant-PPN interactions is fundamental to such efforts. Initially, proper sampling and extraction techniques should be followed to avoid misleading nematode data. Recent evolutions in plant-PPN interactions can make use of diverse non-molecular and molecular approaches to boost plant defenses. Therefore, PPN control and increasing crop yields through single, sequential, dual-purpose, and simultaneous applications of agricultural inputs, including biocontrol agents, should be seriously attempted, especially within IPM schemes. The use of biologicals would ideally be facilitated by production practices to solve related issues. The full investment of such interactions should employ new views of interdisciplinary specialties in the relevant modern disciplines to optimize the PPN management. Having an accurate grasp of the related molecular events will help in developing tools for PPN control. Nonetheless, the currently investigated molecular plant-PPN interactions favoring plant responses, e.g., resistance genes, RNA interference, marker-assisted selection, proteinase inhibitors, chemo-disruptive peptides, and plant-incorporated protectants, are key factors to expanding reliable management. They may be applied on broader scales for a substantial improvement in crop yields.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Institute, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
5
|
Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. PLANTS 2022; 11:plants11162141. [PMID: 36015444 PMCID: PMC9415668 DOI: 10.3390/plants11162141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Developing control measures of plant-parasitic nematodes (PPNs) rank high as they cause big crop losses globally. The growing awareness of numerous unsafe chemical nematicides and the defects found in their alternatives are calling for rational molecular control of the nematodes. This control focuses on using genetically based plant resistance and exploiting molecular mechanisms underlying plant–nematode interactions. Rapid and significant advances in molecular techniques such as high-quality genome sequencing, interfering RNA (RNAi) and gene editing can offer a better grasp of these interactions. Efficient tools and resources emanating from such interactions are highlighted herein while issues in using them are summarized. Their revision clearly indicates the dire need to further upgrade knowledge about the mechanisms involved in host-specific susceptibility/resistance mediated by PPN effectors, resistance genes, or quantitative trait loci to boost their effective and sustainable use in economically important plant species. Therefore, it is suggested herein to employ the impacts of these techniques on a case-by-case basis. This will allow us to track and optimize PPN control according to the actual variables. It would enable us to precisely fix the factors governing the gene functions and expressions and combine them with other PPN control tactics into integrated management.
Collapse
|
6
|
Wang C, Ulloa M, Nichols RL, Roberts PA. Sequence Composition of Bacterial Chromosome Clones in a Transgressive Root-Knot Nematode Resistance Chromosome Region in Tetraploid Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:574486. [PMID: 33381129 PMCID: PMC7767830 DOI: 10.3389/fpls.2020.574486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/15/2020] [Indexed: 05/08/2023]
Abstract
Plants evolve innate immunity including resistance genes to defend against pest and pathogen attack. Our previous studies in cotton (Gossypium spp.) revealed that one telomeric segment on chromosome (Chr) 11 in G. hirsutum cv. Acala NemX (rkn1 locus) contributed to transgressive resistance to the plant parasitic nematode Meloidogyne incognita, but the highly homologous segment on homoeologous Chr 21 had no resistance contribution. To better understand the resistance mechanism, a bacterial chromosome (BAC) library of Acala N901 (Acala NemX resistance source) was used to select, sequence, and analyze BAC clones associated with SSR markers in the complex rkn1 resistance region. Sequence alignment with the susceptible G. hirsutum cv. TM-1 genome indicated that 23 BACs mapped to TM-1-Chr11 and 18 BACs mapped to TM-1-Chr 21. Genetic and physical mapping confirmed less BAC sequence (53-84%) mapped with the TM-1 genome in the rkn1 region on Chr 11 than to the homologous region (>89%) on Chr 21. A 3.1-cM genetic distance between the rkn1 flanking markers CIR316 and CIR069 was mapped in a Pima S-7 × Acala NemX RIL population with a physical distance ∼1 Mbp in TM-1. NCBI Blast and Gene annotation indicated that both Chr 11 and Chr 21 harbor resistance gene-rich cluster regions, but more multiple homologous copies of Resistance (R) proteins and of adjacent transposable elements (TE) are present within Chr 11 than within Chr 21. (CC)-NB-LRR type R proteins were found in the rkn1 region close to CIR316, and (TIR)-NB-LRR type R proteins were identified in another resistance rich region 10 cM from CIR 316 (∼3.1 Mbp in the TM-1 genome). The identified unique insertion/deletion in NB-ARC domain, different copies of LRR domain, multiple copies or duplication of R proteins, adjacent protein kinases, or TE in the rkn1 region on Chr 11 might be major factors contributing to complex recombination and transgressive resistance.
Collapse
Affiliation(s)
- Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Mauricio Ulloa
- United States Department of Agriculture-Agricultural Research Service, Plains Area, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | | | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Philip A. Roberts,
| |
Collapse
|
7
|
Kumar P, Khanal S, Da Silva M, Singh R, Davis RF, Nichols RL, Chee PW. Transcriptome analysis of a nematode resistant and susceptible upland cotton line at two critical stages of Meloidogyne incognita infection and development. PLoS One 2019; 14:e0221328. [PMID: 31504059 PMCID: PMC6736245 DOI: 10.1371/journal.pone.0221328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/06/2019] [Indexed: 11/18/2022] Open
Abstract
Host plant resistance is the most practical approach to control the Southern root-knot nematode (Meloidogyne incognita; RKN), which has emerged as one of the most serious economic pests of Upland cotton (Gossypium hirsutum L.). Previous QTL analyses have identified a resistance locus on chromosome 11 (qMi-C11) affecting galling and another locus on chromosome-14 (qMi-C14) affecting egg production. Although these two QTL regions were fine mapped and candidate genes identified, expression profiling of genes would assist in further narrowing the list of candidate genes in the QTL regions. We applied the comparative transcriptomic approach to compare expression profiles of genes between RKN susceptible and resistance genotypes at an early stage of RKN development that coincides with the establishment of a feeding site and at the late stage of RKN development that coincides with RKN egg production. Sequencing of cDNA libraries produced over 315 million reads of which 240 million reads (76%) were mapped on to the Gossypium hirsutum genome. A total of 3,789 differentially expressed genes (DEGs) were identified which were further grouped into four clusters based on their expression profiles. A large number of DEGs were found to be down regulated in the susceptible genotype at the late stage of RKN development whereas several genes were up regulated in the resistant genotype. Key enriched categories included transcription factor activity, defense response, response to phyto-hormones, cell wall organization, and protein serine/threonine kinase activity. Our results also show that the DEGs in the resistant genotype at qMi-C11 and qMi-C14 loci displayed higher expression of defense response, detoxification and callose deposition genes, than the DEGs in the susceptible genotype.
Collapse
Affiliation(s)
- Pawan Kumar
- Dept. of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States of America
| | - Sameer Khanal
- Dept. of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States of America
| | - Mychele Da Silva
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States of America
| | - Rippy Singh
- Dept. of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States of America
| | - Richard F. Davis
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States of America
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, United States of America
- * E-mail: (RFD);(PWC)
| | | | - Peng W. Chee
- Dept. of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States of America
- * E-mail: (RFD);(PWC)
| |
Collapse
|
8
|
Ibrahim HMM, Ahmad EM, Martínez-Medina A, Aly MAM. Effective approaches to study the plant-root knot nematode interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:332-342. [PMID: 31207494 DOI: 10.1016/j.plaphy.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 06/08/2019] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.
Collapse
Affiliation(s)
- Heba M M Ibrahim
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Wubben MJ, Thyssen GN, Callahan FE, Fang DD, Deng DD, McCarty JC, Li P, Islam MS, Jenkins JN. A novel variant of Gh_D02G0276 is required for root-knot nematode resistance on chromosome 14 (D02) in Upland cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1425-1434. [PMID: 30741320 DOI: 10.1007/s00122-019-03289-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/12/2019] [Indexed: 05/24/2023]
Abstract
MAGIC population sequencing and virus-induced gene silencing identify Gh_D02G0276 as a novel root-knot nematode resistance gene on chromosome 14 in Upland cotton. The southern root-knot nematode [RKN; Meloidogyne incognita (Kofoid & White)] remains the primary yield-limiting biotic stress to Upland cotton (Gossypium hirsutum L.) throughout the southeastern USA. While useful genetic markers have been developed for two major RKN resistance loci on chromosomes 11 (A11) and 14 (D02), these markers are not completely effective because the causative genes have not been identified. Here, we sequenced 550 recombinant inbred lines (RILs) from a multi-parent advanced generation intercross (MAGIC) population to identify five RILs that had informative recombinations near the D02-RKN resistance locus. The RKN resistance phenotypes of these five RILs narrowed the D02-RKN locus to a 30-kb region with four candidate genes. We conducted virus-induced gene silencing (VIGS) on each of these genes and found that Gh_D02G0276 was required for suppression of RKN egg production conferred by the Chr. D02 resistance gene. The resistant lines all possessed an allele of Gh_D02G0276 that showed non-synonymous mutations and was prematurely truncated. Furthermore, a Gh_D02G0276-specific marker for the resistance allele variant was able to identify RKN-resistant germplasm from a collection of 367 cotton accessions. The Gh_D02G0276 peptide shares similarity with domesticated hAT-like transposases with additional novel N- and C-terminal domains that resemble the target of known RKN effector molecules and a prokaryotic motif, respectively. The truncation in the resistance allele results in a loss of a plant nuclear gene-specific C-terminal motif, potentially rendering this domain antigenic due to its high homology with bacterial proteins. The conclusive identification of this RKN resistance gene opens new avenues for understanding plant resistance mechanisms to RKN as well as opportunities to develop more efficient marker-assisted selection in cotton breeding programs.
Collapse
Affiliation(s)
- Martin J Wubben
- Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit, USDA-ARS, 150 Twelve Lane, Mississippi State, MS, 39762, USA.
| | - Gregory N Thyssen
- Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, USDA-ARS, New Orleans, LA, USA
- Southern Regional Research Center, Cotton Chemistry and Utilization Research Unit, USDA-ARS, New Orleans, LA, USA
| | - Franklin E Callahan
- Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit, USDA-ARS, 150 Twelve Lane, Mississippi State, MS, 39762, USA
| | - David D Fang
- Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, USDA-ARS, New Orleans, LA, USA
| | - Dewayne D Deng
- Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit, USDA-ARS, 150 Twelve Lane, Mississippi State, MS, 39762, USA
| | - Jack C McCarty
- Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit, USDA-ARS, 150 Twelve Lane, Mississippi State, MS, 39762, USA
| | - Ping Li
- Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, USDA-ARS, New Orleans, LA, USA
| | | | - Johnie N Jenkins
- Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit, USDA-ARS, 150 Twelve Lane, Mississippi State, MS, 39762, USA
| |
Collapse
|
10
|
Yu X, Kong HY, Meiyalaghan V, Casonato S, Chng S, Jones EE, Butler RC, Pickering R, Johnston PA. Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2567-2580. [PMID: 30178277 DOI: 10.1007/s00122-018-3173-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/25/2018] [Indexed: 05/25/2023]
Abstract
The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes. A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar 'Emir'. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar 'Emir' to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Hoi Yee Kong
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Vijitha Meiyalaghan
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Seona Casonato
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Soonie Chng
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - E Eirian Jones
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Ruth C Butler
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Richard Pickering
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Paul A Johnston
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand.
| |
Collapse
|
11
|
Galeng-Lawilao J, Kumar A, De Waele D. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola. BMC Genet 2018; 19:53. [PMID: 30081817 PMCID: PMC6080554 DOI: 10.1186/s12863-018-0656-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Background The root-knot nematode Meloidogyne graminicola is an obligate biotrophic pathogen considered to be the most damaging nematode species that causes significant yield losses to upland and rainfed lowland rice production in South and Southeast Asia. Mapping and identification of quantitative trait loci (QTL) for resistance to and tolerance for M. graminicola may offer a safe and economic management option to farmers. In this study, resistance to and tolerance for M. graminicola in Asian rice (Oryza sativa L.) were studied in a mapping population consisting of 300 recombinant inbred lines (RILs) derived from IR78877–208-B-1-2, an aerobic rice genotype with improved resistance to and tolerance for M. graminicola, and IR64, a popular, high-yielding rice mega-variety susceptible to M. graminicola. RILs were phenotyped for resistance and tolerance in the dry seasons of 2012 and 2013. QTL analysis was performed using 131 single nucleotide polymorphism (SNP) and 33 simple sequence repeat (SSR) markers. Results Three QTLs with main effects on chromosomes 4 (qMGR4.1), 7 (qMGR7.1) and 9 (qMGR9.1) and two epistatic interactions (qMGR3.1/ qMGR11.1 and qMGR4.2/ qMGR8.1) associated with nematode reproduction that were consistent in the two seasons were detected. A QTL affecting root galling was found on chromosomes 4 (qGR4.1) and 8 (qGR8.1), and QTLs for nematode tolerance were found on chromosomes 5 (qYR5.1) and 11 (qYR11.1). These QTLs were consistent in both seasons. A QTL for grain yield was found on chromosome 10 (qGYLD10.1), a QTL affecting filled grains per panicle was detected on chromosome 11 (qFG11.1) and a QTL for fresh root weight was found on chromosomes 2 (qFRWt2.1), 8 (qFRWt8.1) and 12 (qFRWt12.1) in both seasons. The donor of the alleles for qMGR4.1, qMGR7.1, qMGR9.1, qGR4.1, qGR8.1, qYR5.1 and qFRWt2.1 was IR78877–208-B-1-2, whereas for qYR11.1, qGYLD10.1 and qFG11.1, qFRWt8.1 and qFRWt12.1 was IR64. Lines having favorable alleles for resistance, tolerance and yield provided better yield under nematode-infested conditions and could be a starting point of marker-assisted breeding (MAB) for the improvement of M. graminicola resistance and tolerance in Asian rice. Conclusion This study identified a total of 12 QTLs with main effects and two epistatic interactions in the 1st season and 2nd season related to M. graminicola resistance and tolerance, and other agronomic traits such as plant yield, percentage of filled grains, and fresh and dry root weight. Rice genotypes that have the favorable alleles for resistance (qMGR4.1, qMGR7.1, qMGR9.1, qGR4.1, qGR8.1) and tolerance (qYR5.1, and qYR11.1,) QTLs, and which are either resistant or partially resistant and tolerant, were also selected. These selected genotypes and the identified QTLs are vital information in designing MAB for the improvement of high-yielding rice genotypes but are susceptible to M. graminicola infection. Electronic supplementary material The online version of this article (10.1186/s12863-018-0656-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith Galeng-Lawilao
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, University of Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.,International Rice Research Rice Institute (IRRI), Dapo Box 7777, Metro Manila, Philippines.,Department of Plant Pathology, College of Agriculture, Benguet State University, La Trinidad, Benguet, Philippines
| | - Arvind Kumar
- International Rice Research Rice Institute (IRRI), Dapo Box 7777, Metro Manila, Philippines.
| | - Dirk De Waele
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, University of Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.,International Rice Research Rice Institute (IRRI), Dapo Box 7777, Metro Manila, Philippines.,Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
12
|
Wang C, Ulloa M, Duong TT, Roberts PA. QTL Analysis of Transgressive Nematode Resistance in Tetraploid Cotton Reveals Complex Interactions in Chromosome 11 Regions. FRONTIERS IN PLANT SCIENCE 2017; 8:1979. [PMID: 29209344 PMCID: PMC5702019 DOI: 10.3389/fpls.2017.01979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 05/24/2023]
Abstract
Transgressive segregation in cotton (Gossypium spp.) provides an important approach to enhance resistance to the major pest root-knot nematode (RKN) Meloidogyne incognita. Our previous studies reported transgressive RKN resistance in an intraspecific Gossypium hirsutum resistant NemX × susceptible SJ-2 recombinant inbred line (RIL) population and early generations of interspecific cross Gossypium barbadense (susceptible Pima S-7) × G. hirsutum (NemX). However, the underlying functional mechanisms for this phenomenon are not known. In this study, the region of RKN resistance gene rkn1 on chromosome (Chr) 11 and its homoeologous Chr 21 was fine mapped with G. raimondii D5 genome reference sequence. Transgressive resistance was found in the later generation of a new RIL population F2:7 (Pima S-7 × NemX) and one interspecific F2 (susceptible Pima S-7 × susceptible SJ-2). QTL analysis revealed similar contributions to root-galling and egg-production resistance phenotypes associated with SSR marker CIR316 linked to resistance gene rkn1 in NemX on Chr 11 in all seven populations analyzed. In testcross NemX × F1 (Pima S-7 × SJ-2) marker allele CIR069-271 from Pima S-7 linked to CIR316 contributed 63% of resistance to galling phenotype in the presence of rkn1. Similarly, in RIL population F2:8 (NemX × SJ-2), SJ-2 markers closely linked to CIR316 contributed up to 82% of resistance to root-galling. These results were confirmed in BC1F1 SJ-2 × F1 (NemX × SJ-2), F2 (NemX × SJ-2), and F2 (Pima S-7 × SJ-2) populations in which up to 44, 36, and 15% contribution in resistance to galling was found, respectively. Transgressive segregation for resistance was universal in all intra- and inter-specific populations, although stronger transgressive resistance occurred in later than in early generations in the intraspecific cross compared with the interspecific cross. Transgressive effects on progeny from susceptible parents are possibly provided in the rkn1 resistance region of chromosome 11 by tandemly arrayed allele (TAA) or gene (TAG) interactions contributing to transgressive resistance. Complex TAA and TAG recombination and interactions in the rkn1 resistance region provide three genes and a model to study disease and transgressive resistance in polyploid plants, and novel genotypes for plant breeding.
Collapse
Affiliation(s)
- Congli Wang
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Mauricio Ulloa
- Plant Stress and Germplasm Development Research, PA, CSRL, USDA-ARS, Lubbock, TX, United States
| | - Tra T. Duong
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|