Ma F, Luo L, Gao X. Metabolite and transcriptome analyses revealed the modulation of fructo-oligosaccharide on ileum metabolism of Taiping chickens.
J Appl Microbiol 2021;
132:2249-2261. [PMID:
34608718 DOI:
10.1111/jam.15319]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/08/2023]
Abstract
AIM
The metabolic markers and differentially expressed genes (DEGs) related to fructo-oligosaccharide (FOS) were screened, and the response of FOS to the ileum metabolic pathway of Taiping chickens was analysed.
METHODS AND RESULTS
Prebiotic are widely used in agricultural breeding for care and maintenance of animal health, especially FOS. Metabonomics evaluation of ileum of Taiping chicken ultra-performance liquid chromatography-quadruple time of-flight high-sensitivity mass spectrometry showed that 93 differentially altered metabolites were identified and divided into eight categories, of which organic acids and derivatives was the most important one. Transcriptomic analysis showed that DEGs were mainly enriched in drug metabolism-cytochrome p450, metabolism of xenobiotics by cytochrome p450, retinol metabolism and fat digestion and absorption. Integrated analysis of metabolite profiles and gene expression revealed that the significantly up-regulated GSTT1 was significantly correlated with most of the different lipid metabolites, suggesting that GSTT1 may play an important role in FOS regulation of lipid metabolism.
CONCLUSIONS
The results of this study suggest that supplementation of FOS can have a positive effect on gut metabolites, which may contribute to the overall health with indigenous chickens.
SIGNIFICANCE AND IMPACT OF THE STUDY
Insight into the responses of intestinal prebiotics of Taiping chicken is helpful to understand the role of prebiotics in maintaining intestinal microflora balance and improving immune response and productivity of poultry from the molecular and metabolic levels.
Collapse