1
|
Yu L, Toriseva M, Afshan S, Cangiano M, Fey V, Erickson A, Seikkula H, Alanen K, Taimen P, Ettala O, Nurmi M, Boström PJ, Kallajoki M, Tuomela J, Mirtti T, Beumer IJ, Nees M, Härkönen P. Increased Expression and Altered Cellular Localization of Fibroblast Growth Factor Receptor-Like 1 (FGFRL1) Are Associated with Prostate Cancer Progression. Cancers (Basel) 2022; 14:cancers14020278. [PMID: 35053442 PMCID: PMC8796033 DOI: 10.3390/cancers14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most frequently diagnosed malignancies in men. PCa is primarily regulated by androgens, but other mechanisms, such as fibroblast growth factor receptor (FGFR) signaling, are also involved. In some patients, PCa relapses after surgical removal of prostate, and androgen deprivation therapy (ADT) is used as the first-line treatment. Unfortunately, the patients often lose response to ADT and progress by other mechanisms to castration-resistant, currently non-curable PCa. In our study, we aimed to identify better diagnostic markers and therapeutic targets against PCa. We analyzed patient PCa tissue samples from radical prostatectomies and biopsies, and used physiologically relevant 3D organoids and mouse xenografts to study FGFR signaling in PCa. We found that FGFRL1, a protein belonging to the FGFR family, plays a role in PCa. Our results suggest that FGFRL1 has significant effects on PCa progression and has potential as a prognostic biomarker. Abstract Fibroblast growth factor receptors (FGFRs) 1–4 are involved in prostate cancer (PCa) regulation, but the role of FGFR-like 1 (FGFRL1) in PCa is unclear. FGFRL1 expression was studied by qRT-PCR and immunohistochemistry of patient tissue microarrays (TMAs) and correlated with clinical patient data. The effects of FGFRL1 knockdown (KD) in PC3M were studied in in vitro culture models and in mouse xenograft tumors. Our results showed that FGFRL1 was significantly upregulated in PCa. The level of membranous FGFRL1 was negatively associated with high Gleason scores (GSs) and Ki67, while increased cytoplasmic and nuclear FGFRL1 showed a positive correlation. Cox regression analysis indicated that nuclear FGFRL1 was an independent prognostic marker for biochemical recurrence after radical prostatectomy. Functional studies indicated that FGFRL1-KD in PC3M cells increases FGFR signaling, whereas FGFRL1 overexpression attenuates it, supporting decoy receptor actions of membrane-localized FGFRL1. In accordance with clinical data, FGFRL1-KD markedly suppressed PC3M xenograft growth. Transcriptomics of FGFRL1-KD cells and xenografts revealed major changes in genes regulating differentiation, ECM turnover, and tumor–stromal interactions associated with decreased growth in FGFRL1-KD xenografts. Our results suggest that FGFRL1 upregulation and altered cellular compartmentalization contribute to PCa progression. The nuclear FGFRL1 could serve as a prognostic marker for PCa patients.
Collapse
Affiliation(s)
- Lan Yu
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Mervi Toriseva
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Mario Cangiano
- GenomeScan, 2333 BZ Leiden, The Netherlands; (M.C.); (I.J.B.)
| | - Vidal Fey
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford 0X3 9DU, UK;
| | - Heikki Seikkula
- Department of Urology, University of Turku and Turku University Hospital, 20520 Turku, Finland; (H.S.); (O.E.); (M.N.); (P.J.B.)
| | - Kalle Alanen
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; (K.A.); (M.K.)
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; (K.A.); (M.K.)
| | - Otto Ettala
- Department of Urology, University of Turku and Turku University Hospital, 20520 Turku, Finland; (H.S.); (O.E.); (M.N.); (P.J.B.)
| | - Martti Nurmi
- Department of Urology, University of Turku and Turku University Hospital, 20520 Turku, Finland; (H.S.); (O.E.); (M.N.); (P.J.B.)
| | - Peter J. Boström
- Department of Urology, University of Turku and Turku University Hospital, 20520 Turku, Finland; (H.S.); (O.E.); (M.N.); (P.J.B.)
| | - Markku Kallajoki
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; (K.A.); (M.K.)
| | - Johanna Tuomela
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Tuomas Mirtti
- HUS Diagnostic Center and Research Program in Systems Oncology (ONCOSYS), Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland;
| | - Inès J. Beumer
- GenomeScan, 2333 BZ Leiden, The Netherlands; (M.C.); (I.J.B.)
| | - Matthias Nees
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
- Department of Biochemistry and Molecular Biology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Pirkko Härkönen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
- Correspondence: ; Tel.: +358-40-7343520
| |
Collapse
|
2
|
Sueyoshi K, Komura D, Katoh H, Yamamoto A, Onoyama T, Chijiwa T, Isagawa T, Tanaka M, Suemizu H, Nakamura M, Miyagi Y, Aburatani H, Ishikawa S. Multi-tumor analysis of cancer-stroma interactomes of patient-derived xenografts unveils the unique homeostatic process in renal cell carcinomas. iScience 2021; 24:103322. [PMID: 35079698 PMCID: PMC8767947 DOI: 10.1016/j.isci.2021.103322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
The patient-derived xenograft (PDX) model is a versatile tool used to study the tumor microenvironment (TME). However, limited studies have described multi-tumor PDX screening strategies to detect hub regulators during cancer-stroma interaction. Transcriptomes of cancer (human) and stroma (mouse) components of 70 PDX samples comprising 9 distinctive tumor types were analyzed in this study. PDX models recapitulated the original tumors' features, including tumor composition and putative signaling. Particularly, kidney renal clear cell carcinoma (KIRC) stood out, with altered hypoxia-related pathways and a high proportion of endothelial cells in the TME. Furthermore, an integrated analysis conducted to predict paracrine effectors in the KIRC cancer-to-stroma communication detected well-established soluble factors responsible for the hypoxia-related reaction and the so-far unestablished soluble factor, apelin (APLN). Subsequent experiments also supported the potential role of APLN in KIRC tumor progression. Therefore, this paper hereby provides an analytical workflow to find hub regulators in cancer-stroma interactions.
Collapse
Affiliation(s)
- Kuniyo Sueyoshi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Experimental Research Buliding, 12Floor, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Experimental Research Buliding, 12Floor, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Experimental Research Buliding, 12Floor, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Experimental Research Buliding, 12Floor, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takumi Onoyama
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Experimental Research Buliding, 12Floor, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Tsuyoshi Chijiwa
- Central Institute for Experimental Animals, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210–0821, Japan
| | - Takayuki Isagawa
- Data Science Center, Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi 329–0498, Japan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–8654, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210–0821, Japan
| | - Masato Nakamura
- Department of Regenerative Medicine, Tokai University School of Medicine, Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Yohei Miyagi
- Research Institute, Kanagawa Cancer Center, Nakao, Asahi-ku, Yokohama 241–8515, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo 113–8654, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Experimental Research Buliding, 12Floor, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
3
|
Ohkuma R, Yada E, Ishikawa S, Komura D, Kubota Y, Hamada K, Horiike A, Ishiguro T, Hirasawa Y, Ariizumi H, Shida M, Watanabe M, Onoue R, Ando K, Tsurutani J, Yoshimura K, Sasada T, Aoki T, Murakami M, Norose T, Ohike N, Takimoto M, Kobayashi S, Tsunoda T, Wada S. High expression levels of polymeric immunoglobulin receptor are correlated with chemoresistance and poor prognosis in pancreatic cancer. Oncol Rep 2020; 44:252-262. [PMID: 32627041 PMCID: PMC7251687 DOI: 10.3892/or.2020.7610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer has extremely poor prognosis, warranting the discovery of novel therapeutic and prognostic markers. The expression of polymeric immunoglobulin receptor (pIgR), a key component of the mucosal immune system, is increased in several cancers. However, its clinical relevance in pancreatic cancer remains unclear. In the present study, the prognostic value of pIgR in pancreatic cancer patients after surgical resection was assessed and it was determined that the expression of pIgR was correlated with poor prognosis. Ten pancreatic cancer patient‑derived xenograft (PDX) lines were established, followed by next‑generation sequencing of tumor tissues from these lines after standard chemotherapy. Immunohistochemical analysis of chemoresistance‑related molecules using 77 pancreatic cancer tissues was also performed. The expression of pIgR mRNA in the PDX group treated with anticancer drugs was higher than in the untreated group. High pIgR expression in tissue specimens from 77 pancreatic cancer patients was significantly associated with poor prognosis and was revealed to be an independent prognostic factor, predicting poor outcomes. High pIgR mRNA and protein levels were independent prognostic factors, indicating that pIgR could be a novel predictor for poor prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Ryotaro Ohkuma
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Erica Yada
- Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
| | - Shumpei Ishikawa
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑0033, Japan
| | - Daisuke Komura
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑0033, Japan
| | - Yutaro Kubota
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Kazuyuki Hamada
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Atsushi Horiike
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Tomoyuki Ishiguro
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Yuya Hirasawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Hirotsugu Ariizumi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Midori Shida
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Rie Onoue
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Kiyohiro Ando
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Junji Tsurutani
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Kiyoshi Yoshimura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Tetsuro Sasada
- Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
| | - Takeshi Aoki
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University, Tokyo 142‑8555, Japan
| | - Masahiko Murakami
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University, Tokyo 142‑8555, Japan
| | - Tomoko Norose
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Nobuyuki Ohike
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| |
Collapse
|
4
|
Ohkuma R, Yada E, Ishikawa S, Komura D, Ishizaki H, Tamada K, Kubota Y, Hamada K, Ishida H, Hirasawa Y, Ariizumi H, Satoh E, Shida M, Watanabe M, Onoue R, Ando K, Tsurutani J, Yoshimura K, Yokobori T, Sasada T, Aoki T, Murakami M, Norose T, Ohike N, Takimoto M, Izumizaki M, Kobayashi S, Tsunoda T, Wada S. High expression of olfactomedin-4 is correlated with chemoresistance and poor prognosis in pancreatic cancer. PLoS One 2020; 15:e0226707. [PMID: 31923206 PMCID: PMC6953839 DOI: 10.1371/journal.pone.0226707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has an extremely poor prognosis, and identification of novel predictors of therapeutic efficacy and prognosis is urgently needed. Chemoresistance-related molecules are correlated with poor prognosis and may be effective targets for cancer treatment. Here, we aimed to identify novel molecules correlated with chemoresistance and poor prognosis in pancreatic cancer. We established 10 patient-derived xenograft (PDX) lines from patients with pancreatic cancer and performed next-generation sequencing (NGS) of tumor tissues from PDXs after treatment with standard drugs. We established a gene-transferred tumor cell line to express chemoresistance-related molecules and analyzed the chemoresistance of the established cell line against standard drugs. Finally, we performed immunohistochemical (IHC) analysis of chemoresistance-related molecules using 80 pancreatic cancer tissues. From NGS analysis, we identified olfactomedin-4 (OLFM4) as having high expression in the PDX group treated with anticancer drugs. In IHC analysis, OLFM4 expression was also high in PDXs administered anticancer drugs compared with that in untreated PDXs. Chemoresistance was observed by in vitro analysis of tumor cell lines with forced expression of OLFM4. In an assessment of tissue specimens from 80 patients with pancreatic cancer, Kaplan-Meier analysis showed that patients in the low OLFM4 expression group had a better survival rate than patients in the high OLFM4 expression group. Additionally, multivariate analysis showed that high expression of OLFM4 was an independent prognostic factor predicting poor outcomes. Overall, our study revealed that high expression of OLFM4 was involved in chemoresistance and was an independent prognostic factor in pancreatic cancer. OLFM4 may be a candidate therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Ryotaro Ohkuma
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Physiology, Graduate School of Medicine, Showa University, Tokyo, Japan
| | - Erica Yada
- Kanagawa Cancer Center Research Institute, Kanagawa, Japan
| | - Shumpei Ishikawa
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Koji Tamada
- Department of Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yutaro Kubota
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Kazuyuki Hamada
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Hiroo Ishida
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuya Hirasawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Etsuko Satoh
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Shida
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Rie Onoue
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Kiyohiro Ando
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Junji Tsurutani
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Takehiko Yokobori
- Department of Innovative Immune-Oncology Therapeutics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tetsuro Sasada
- Kanagawa Cancer Center Research Institute, Kanagawa, Japan
| | - Takeshi Aoki
- Department of Surgery, Division of General and Gastroenterological Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiko Murakami
- Department of Surgery, Division of General and Gastroenterological Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Tomoko Norose
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Nobuyuki Ohike
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Graduate School of Medicine, Showa University, Tokyo, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
5
|
Hiroshima Y, Kasajima R, Kimura Y, Komura D, Ishikawa S, Ichikawa Y, Bouvet M, Yamamoto N, Oshima T, Morinaga S, Singh SR, Hoffman RM, Endo I, Miyagi Y. Novel targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma. Cancer Lett 2020; 469:217-227. [DOI: 10.1016/j.canlet.2019.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022]
|
6
|
Nishizawa T, Nakano K, Fujii E, Komura D, Kuroiwa Y, Ishimaru C, Monnai M, Aburatani H, Ishikawa S, Suzuki M. In vivo effects of mutant RHOA on tumor formation in an orthotopic inoculation model. Oncol Rep 2019; 42:1745-1754. [PMID: 31485674 PMCID: PMC6775816 DOI: 10.3892/or.2019.7300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022] Open
Abstract
Ras homolog family member A (RHOA) mutations are driver genes in diffuse‑type gastric cancers (DGCs), and we previously revealed that RHOA mutations contribute to cancer cell survival and cell migration through their dominant negative effect on Rho‑associated kinase (ROCK) signaling in vitro. However, how RHOA mutations contribute to DGC development in vivo is poorly understood. In the present study, the contribution of RHOA mutations to tumor morphology was investigated using an orthotopic xenograft model using the gastric cancer cell line MKN74, in which wild‑type (WT) or mutated (Y42C and Y42S) RHOA had been introduced. When we conducted RNA sequencing to distinguish between the genes expressed in human tumor tissues from those in mouse stroma, the expression profiles of the tumors were clearly divided into a Y42C/Y42S group and a mock/WT group. Through gene set enrichment analysis, it was revealed that inflammation‑ and hypoxia‑related pathways were enriched in the mock/WT tumors; however, cell metabolism‑ and cell cycle‑related pathways such as Myc, E2F, oxidative phosphorylation and G2M checkpoint were enriched in the Y42C/Y42S tumors. In addition, the gene set related to ROCK signaling inhibition was enriched in the RHOA‑mutated group, which indicated that a series of events are related to ROCK inhibition induced by RHOA mutations. Histopathological analysis revealed that small tumor nests were more frequent in RHOA mutants than in the mock or WT group. In addition, increased blood vessel formation and infiltration of macrophages within the tumor mass were observed in the RHOA mutants. Furthermore, unlike mock/WT, the RHOA‑mutated tumor cells had little antitumor host reaction in the invasive front, which is similar to the pattern of mucosal invasion in clinical RHOA‑mutated DGC. These transcriptome and pathological analyses revealed that mutated RHOA functionally contributes to the acquisition of DGC features, which will accelerate our understanding of the contribution of RHOA mutations in DGC biology and the development of further therapeutic strategies.
Collapse
Affiliation(s)
- Takashi Nishizawa
- Department of Research, Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, Tokyo 153‑8904, Japan
| | - Kiyotaka Nakano
- Department of Research, Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, Tokyo 153‑8904, Japan
| | - Etsuko Fujii
- Department of Research, Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, Tokyo 153‑8904, Japan
| | - Daisuke Komura
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Yoshie Kuroiwa
- Chugai Research Institute for Medical Science Co., Ltd., Kamakura, Kanagawa 247‑8530, Japan
| | - Chisako Ishimaru
- Chugai Research Institute for Medical Science Co., Ltd., Kamakura, Kanagawa 247‑8530, Japan
| | - Makoto Monnai
- Chugai Research Institute for Medical Science Co., Ltd., Kamakura, Kanagawa 247‑8530, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153‑8904, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Masami Suzuki
- Department of Research, Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, Tokyo 153‑8904, Japan
| |
Collapse
|
7
|
Chaudhury S, O'Connor C, Cañete A, Bittencourt-Silvestre J, Sarrou E, Prendergast Á, Choi J, Johnston P, Wells CA, Gibson B, Keeshan K. Age-specific biological and molecular profiling distinguishes paediatric from adult acute myeloid leukaemias. Nat Commun 2018; 9:5280. [PMID: 30538250 PMCID: PMC6290074 DOI: 10.1038/s41467-018-07584-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) affects children and adults of all ages. AML remains one of the major causes of death in children with cancer and for children with AML relapse is the most common cause of death. Here, by modelling AML in vivo we demonstrate that AML is discriminated by the age of the cell of origin. Young cells give rise to myeloid, lymphoid or mixed phenotype acute leukaemia, whereas adult cells give rise exclusively to AML, with a shorter latency. Unlike adult, young AML cells do not remodel the bone marrow stroma. Transcriptional analysis distinguishes young AML by the upregulation of immune pathways. Analysis of human paediatric AML samples recapitulates a paediatric immune cell interaction gene signature, highlighting two genes, RGS10 and FAM26F as prognostically significant. This work advances our understanding of paediatric AML biology, and provides murine models that offer the potential for developing paediatric specific therapeutic strategies. Acute myeloid leukaemia (AML) affects people of all ages. Here, the authors model AML in vivo and demonstrate that the age of the cell of origin impacts leukaemia development and the genetic signature where adult cells of origin give rise exclusively to AML and young cells of origin give rise to myeloid, lymphoid or mixed phenotype acute leukaemia.
Collapse
Affiliation(s)
- Shahzya Chaudhury
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.,Royal Hospital for Children, Glasgow, Scotland, UK
| | - Caitríona O'Connor
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ana Cañete
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Evgenia Sarrou
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Áine Prendergast
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jarny Choi
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Pamela Johnston
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine A Wells
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | | | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Nakano K, Nishizawa T, Komura D, Fujii E, Monnai M, Kato A, Funahashi SI, Ishikawa S, Suzuki M. Difference in morphology and interactome profiles between orthotopic and subcutaneous gastric cancer xenograft models. J Toxicol Pathol 2018; 31:293-300. [PMID: 30393433 PMCID: PMC6206286 DOI: 10.1293/tox.2018-0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/22/2018] [Indexed: 01/21/2023] Open
Abstract
In xenograft models, orthotopic (ORT) engraftment is thought to provide a different tumor microenvironment compared with subcutaneous (SC) engraftment. We attempted to characterize the biological difference between OE19 (adenocarcinoma of the gastroesophageal junction) SC and ORT models by pathological analysis and CASTIN (CAncer-STromal INteractome) analysis, which is a novel method developed to analyze the tumor-stroma interactome framework. In SC models, SCID mice were inoculated subcutaneously with OE19 cells, and tumor tissues were sampled at 3 weeks. In ORT models, SCID mice were inoculated under the serosal membrane of the stomach wall, and tumor tissues were sampled at 3 and 6 weeks after engraftment. Results from the two models were then compared. Histopathologically, the SC tumors were well circumscribed from the adjacent tissue, with scant stroma and the formation of large ductal structures. In contrast, the ORT tumors were less circumscribed, with small ductal structures invading into abundant stroma. Then we compared the transcriptome profiles of human tumor cells with the mouse stromal cells of each model by species-specific RNA sequencing. With CASTIN analysis, we successfully identified several interactions that are known to affect the tumor microenvironment as being selectively enhanced in the ORT model. In conclusion, pathological analysis and CASTIN analysis revealed that ORT models of OE19 cells have a more invasive character and enhanced interaction with stromal cells compared with SC models.
Collapse
Affiliation(s)
- Kiyotaka Nakano
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takashi Nishizawa
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Daisuke Komura
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Etsuko Fujii
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Makoto Monnai
- Chugai Research Institute for Medical Science Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Atsuhiko Kato
- Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Shin-Ichi Funahashi
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masami Suzuki
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
9
|
Hosonaga M, Arima Y, Sampetrean O, Komura D, Koya I, Sasaki T, Sato E, Okano H, Kudoh J, Ishikawa S, Saya H, Ishikawa T. HER2 Heterogeneity Is Associated with Poor Survival in HER2-Positive Breast Cancer. Int J Mol Sci 2018; 19:ijms19082158. [PMID: 30042341 PMCID: PMC6121890 DOI: 10.3390/ijms19082158] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022] Open
Abstract
Intratumoral human epidermal growth factor receptor 2 (HER2) heterogeneity has been reported in 16⁻36% of HER2-positive breast cancer and its clinical impact is under discussion. We examined the biological effects of HER2-heterogeneity on mouse models and analyzed metastatic brains by RNA sequence analysis. A metastatic mouse model was developed using 231-Luc (triple negative cells) and 2 HER2-positive cell lines, namely, HER2-60 and HER2-90 which showed heterogeneous and monotonous HER2 expressions, respectively. Metastatic lesions developed in 3 weeks in all the mice injected with HER2-60 cells, and in 69% of the mice injected with HER2-90 and 87.5% of the mice injected with 231-Luc. The median survival days of mice injected with 231-Luc, HER2-60, and HER2-90 cells were 29 (n = 24), 24 (n = 22) and 30 (n = 13) days, respectively. RNA sequence analysis showed that CASP-1 and its related genes were significantly downregulated in metastatic brain tumors with HER2-60 cells. The low expression of caspase-1 could be a new prognostic biomarker for early relapse in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Mari Hosonaga
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Daisuke Komura
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Ikuko Koya
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Eiichi Sato
- Department of Pathology (Medical Research Center), Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Jun Kudoh
- Laboratory of Gene Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| |
Collapse
|