1
|
Talenti A, Wilkinson T, Cook EA, Hemmink JD, Paxton E, Mutinda M, Ngulu SD, Jayaraman S, Bishop RP, Obara I, Hourlier T, Garcia Giron C, Martin FJ, Labuschagne M, Atimnedi P, Nanteza A, Keyyu JD, Mramba F, Caron A, Cornelis D, Chardonnet P, Fyumagwa R, Lembo T, Auty HK, Michaux J, Smitz N, Toye P, Robert C, Prendergast JGD, Morrison LJ. Continent-wide genomic analysis of the African buffalo (Syncerus caffer). Commun Biol 2024; 7:792. [PMID: 38951693 PMCID: PMC11217449 DOI: 10.1038/s42003-024-06481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.
Collapse
Affiliation(s)
- Andrea Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Toby Wilkinson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Elizabeth A Cook
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Johanneke D Hemmink
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Matthew Mutinda
- Kenya Wildlife Service, P.O. Box 40241, Nairobi, 00100, Kenya
| | | | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Richard P Bishop
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Carlos Garcia Giron
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | | | | | - Anne Nanteza
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
| | - Furaha Mramba
- Vector and Vector-Borne Diseases Institute, Tanga, Tanzania
| | - Alexandre Caron
- ASTRE, University of Montpellier (UMR), CIRAD, 34090, Montpellier, France
- CIRAD, UMR ASTRE, RP-PCP, Maputo, 01009, Mozambique
- Faculdade Veterinaria, Universidade Eduardo Mondlan, Maputo, Mozambique
| | - Daniel Cornelis
- CIRAD, Forêts et Sociétés, 34398, Montpellier, France
- Forêts et Sociétés, University of Montpellier, CIRAD, 34090, Montpellier, France
| | | | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
| | - Tiziana Lembo
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harriet K Auty
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Johan Michaux
- Laboratoire de Génétique de la Conservation, Institut de Botanique (Bat. 22), Université de Liège (Sart Tilman), Chemin de la Vallée 4, B4000, Liège, Belgium
| | - Nathalie Smitz
- Royal Museum for Central Africa (BopCo), Leuvensesteenweg 13, 3080, Tervuren, Belgium
| | - Philip Toye
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Christelle Robert
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United Kingdom
| | - James G D Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom.
| |
Collapse
|
2
|
Du X, Sun Y, Fu T, Gao T, Zhang T. Research Progress and Applications of Bovine Genome in the Tribe Bovini. Genes (Basel) 2024; 15:509. [PMID: 38674443 PMCID: PMC11050176 DOI: 10.3390/genes15040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Various bovine species have been domesticated and bred for thousands of years, and they provide adequate animal-derived products, including meat, milk, and leather, to meet human requirements. Despite the review studies on economic traits in cattle, the genetic basis of traits has only been partially explained by phenotype and pedigree breeding methods, due to the complexity of genomic regulation during animal development and growth. With the advent of next-generation sequencing technology, genomics projects, such as the 1000 Bull Genomes Project, Functional Annotation of Animal Genomes project, and Bovine Pangenome Consortium, have advanced bovine genomic research. These large-scale genomics projects gave us a comprehensive concept, technology, and public resources. In this review, we summarize the genomics research progress of the main bovine species during the past decade, including cattle (Bos taurus), yak (Bos grunniens), water buffalo (Bubalus bubalis), zebu (Bos indicus), and gayal (Bos frontalis). We mainly discuss the development of genome sequencing and functional annotation, focusing on how genomic analysis reveals genetic variation and its impact on phenotypes in several bovine species.
Collapse
Affiliation(s)
- Xingjie Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tianliu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Tober AV, Govender D, Russo IRM, Cable J. The microscopic five of the big five: Managing zoonotic diseases within and beyond African wildlife protected areas. ADVANCES IN PARASITOLOGY 2022; 117:1-46. [PMID: 35878948 DOI: 10.1016/bs.apar.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
African protected areas strive to conserve the continent's great biodiversity with a targeted focus on the flagship 'Big Five' megafauna. Though often not considered, this biodiversity protection also extends to the lesser-known microbes and parasites that are maintained in these diverse ecosystems, often in a silent and endemically stable state. Climate and anthropogenic change, and associated diversity loss, however, are altering these dynamics leading to shifts in ecological interactions and pathogen spill over into new niches and hosts. As many African protected areas are bordered by game and livestock farms, as well as villages, they provide an ideal study system to assess infection dynamics at the human-livestock-wildlife interface. Here we review five zoonotic, multi-host diseases (bovine tuberculosis, brucellosis, Rift Valley fever, schistosomiasis and cryptosporidiosis)-the 'Microscopic Five'-and discuss the biotic and abiotic drivers of parasite transmission using the iconic Kruger National Park, South Africa, as a case study. We identify knowledge gaps regarding the impact of the 'Microscopic Five' on wildlife within parks and highlight the need for more empirical data, particularly for neglected (schistosomiasis) and newly emerging (cryptosporidiosis) diseases, as well as zoonotic disease risk from the rising bush meat trade and game farm industry. As protected areas strive to become further embedded in the socio-economic systems that surround them, providing benefits to local communities, One Health approaches can help maintain the ecological integrity of ecosystems, while protecting local communities and economies from the negative impacts of disease.
Collapse
Affiliation(s)
- Anya V Tober
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom.
| | - Danny Govender
- SANParks, Scientific Services, Savanna and Grassland Research Unit, Pretoria, South Africa; Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Isa-Rita M Russo
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
4
|
Chen Y, Zhang T, Xian M, Zhang R, Yang W, Su B, Yang G, Sun L, Xu W, Xu S, Gao H, Xu L, Gao X, Li J. A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation. Commun Biol 2022; 5:353. [PMID: 35418663 PMCID: PMC9008013 DOI: 10.1038/s42003-022-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Drung cattle (Bos frontalis) have 58 chromosomes, differing from the Bos taurus 2n = 60 karyotype. To date, its origin and evolution history have not been proven conclusively, and the mechanisms of chromosome fusion and environmental adaptation have not been clearly elucidated. Here, we assembled a high integrity and good contiguity genome of Drung cattle with 13.7-fold contig N50 and 4.1-fold scaffold N50 improvements over the recently published Indian mithun assembly, respectively. Speciation time estimation and phylogenetic analysis showed that Drung cattle diverged from Bos taurus into an independent evolutionary clade. Sequence evidence of centromere regions provides clues to the breakpoints in BTA2 and BTA28 centromere satellites. We furthermore integrated a circulation and contraction-related biological process involving 43 evolutionary genes that participated in pathways associated with the evolution of the cardiovascular system. These findings may have important implications for understanding the molecular mechanisms of chromosome fusion, alpine valleys adaptability and cardiovascular function.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Ming Xian
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Weifei Yang
- 1 Gene Co., Ltd, 310051, Hangzhou, P.R. China
- Annoroad Gene Technology (Beijing) Co., Ltd, 100176, Beijing, P.R. China
| | - Baqi Su
- Drung Cattle Conservation Farm in Jiudang Wood, Drung and Nu Minority Autonomous County, Gongshan, 673500, Kunming, Yunnan, P.R. China
| | - Guoqiang Yang
- Livestock and Poultry Breed Improvement Center, Nujiang Lisu Minority Autonomous Prefecture, 673199, Kunming, Yunnan, P.R. China
| | - Limin Sun
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Wenkun Xu
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Shangzhong Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| |
Collapse
|
5
|
Sinding MHS, Ciucani MM, Ramos-Madrigal J, Carmagnini A, Rasmussen JA, Feng S, Chen G, Vieira FG, Mattiangeli V, Ganjoo RK, Larson G, Sicheritz-Pontén T, Petersen B, Frantz L, Gilbert MTP, Bradley DG. Kouprey ( Bos sauveli) genomes unveil polytomic origin of wild Asian Bos. iScience 2021; 24:103226. [PMID: 34712923 PMCID: PMC8531564 DOI: 10.1016/j.isci.2021.103226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/11/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
The evolution of the genera Bos and Bison, and the nature of gene flow between wild and domestic species, is poorly understood, with genomic data of wild species being limited. We generated two genomes from the likely extinct kouprey (Bos sauveli) and analyzed them alongside other Bos and Bison genomes. We found that B. sauveli possessed genomic signatures characteristic of an independent species closely related to Bos javanicus and Bos gaurus. We found evidence for extensive incomplete lineage sorting across the three species, consistent with a polytomic diversification of the major ancestry in the group, potentially followed by secondary gene flow. Finally, we detected significant gene flow from an unsampled Asian Bos-like source into East Asian zebu cattle, demonstrating both that the full genomic diversity and evolutionary history of the Bos complex has yet to be elucidated and that museum specimens and ancient DNA are valuable resources to do so. We generated two genomes from the likely extinct kouprey (Bos sauveli) Extensive mt and nuclear-genome-wide incomplete lineage sorting across wild Asian Bos Initial polytomic diversification of the wild Asian Bos—kouprey, banteng, and gaur
Collapse
Affiliation(s)
| | | | | | - Alberto Carmagnini
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Jacob Agerbo Rasmussen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Guangji Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Thomas Sicheritz-Pontén
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Bent Petersen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - M. Thomas P. Gilbert
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Curaudeau M, Rozzi R, Hassanin A. The genome of the lowland anoa (Bubalus depressicornis) illuminates the origin of river and swamp buffalo. Mol Phylogenet Evol 2021; 161:107170. [PMID: 33798669 DOI: 10.1016/j.ympev.2021.107170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Two types of domestic water buffalo are currently recognized: the river buffalo from the Indian subcontinent and Mediterranean countries and the swamp buffalo from China and Southeast Asia. To test the hypothesis of two separate species of water buffalo, we sequenced the genome of the lowland anoa, Bubalus depressicornis, which is a dwarf wild buffalo endemic to Sulawesi, and two genomes of swamp buffalo, and made comparisons with 12 additional genomes. Three genomic data sets were constructed to infer phylogenetic relationships: the mitochondrial genome (15,468 bp; maternal transmission), two concatenated Y-chromosomal genes, AMELY and DDX3Y (20,036 bp; paternal transmission), and a selection of 30 nuclear genes representing all cattle chromosomes (364,887 bp; biparental transmission). The comparisons between our 30 nuclear gene sequences obtained by read mapping and those directly extracted from Bos taurus and Bubalus bubalis genome assemblies show that the mapping approach revealed higher levels of heterozygosity at both nucleotide sites and indels (insertions and deletions) (0.09-0.15%), as well as several sequence errors (0.07%). Our phylogenetic and molecular dating analyses provide strong evidence that the lowland anoa, river buffalo, and swamp buffalo are three distinct taxa which separated rapidly from each other during the Pleistocene epoch. We therefore conclude that two species of domestic water buffalo should be distinguished: Bubalus bubalis for the river buffalo and Bubalus kerabau for the swamp buffalo. The new classification can have deep implications for understanding the evolution and selection of domesticated forms and for the conservation and management of wild buffalo populations in South and Southeast Asia.
Collapse
Affiliation(s)
- Manon Curaudeau
- Institut Systématique Evolution Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, 57 rue Cuvier, CP 51, 75005 Paris, France
| | - Roberto Rozzi
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Synthesis Centre for Biodiversity Sciences (sDiv), Puschstr. 4, D-04103 Leipzig, Germany; Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
| | - Alexandre Hassanin
- Institut Systématique Evolution Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, 57 rue Cuvier, CP 51, 75005 Paris, France.
| |
Collapse
|
7
|
Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals (Basel) 2021; 11:904. [PMID: 33809937 PMCID: PMC8004149 DOI: 10.3390/ani11030904] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| |
Collapse
|
8
|
Pandey M, Singh S, Yadav M, Singh D, Onteru SK. Transcriptome analysis of buffalo granulosa cells in three dimensional culture systems. Mol Reprod Dev 2021; 88:287-301. [PMID: 33734523 DOI: 10.1002/mrd.23465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
Hanging drop (HD) three-dimensional (3D) culture model for buffalo granulosa cells (GC) was reported to mimic the preovulatory stage of ovarian follicles in our previous study. To further verify its reliability, the present study attempted a comparative transcriptome profile of buffalo GC freshly isolated from ovarian follicles (<8 mm diameter) (FC) and their cultures in normal culture dish (ND or 2D), polyHEMA coated dish (PH) and HD culture systems (3D). Out of 223 significantly (-log2 fold change: >3; p < .0005; false discovery rate [FDR]: <0.1) differentially expressed genes (SDEGs) among different culture systems, 137 were found unannotated, and 94, 29, and 66 were exclusively expressed in FC, PH, and HD, respectively. However, on eliminating the fixed points of p values and FDR from the entire raw data, only 11 genes related to long noncoding RNA, 12 genes related to luteinization, and 3 genes related to follicular maturation were exclusively expressed in FC, PH, and HD culture systems, respectively. The quantitative real time-PCR validation and the next generation sequencing data had more than 90% correlation. Bioinformatics analyses of the exclusively expressed SDEG revealed that the freshly aspirated GCs were a true representative of GCs from small follicles (<8 mm diameter), the GC spheroids under PH maintained mitochondrial function, and those cultured in HD system for 6 days simulated the inflammatory milieu required for ovulation. Therefore, the comparative transcriptome profile also reinforced that HD culture system is better in vitro culture method than the other methods analyzed in this study for buffalo GC.
Collapse
Affiliation(s)
- Mamta Pandey
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| | - Sudhakar Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| | - Monica Yadav
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
9
|
de Jager D, Glanzmann B, Möller M, Hoal E, van Helden P, Harper C, Bloomer P. High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes. Sci Rep 2021; 11:4540. [PMID: 33633171 PMCID: PMC7907399 DOI: 10.1038/s41598-021-83823-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Genomes retain records of demographic changes and evolutionary forces that shape species and populations. Remnant populations of African buffalo (Syncerus caffer) in South Africa, with varied histories, provide an opportunity to investigate signatures left in their genomes by past events, both recent and ancient. Here, we produce 40 low coverage (7.14×) genome sequences of Cape buffalo (S. c. caffer) from four protected areas in South Africa. Genome-wide heterozygosity was the highest for any mammal for which these data are available, while differences in individual inbreeding coefficients reflected the severity of historical bottlenecks and current census sizes in each population. PSMC analysis revealed multiple changes in Ne between approximately one million and 20 thousand years ago, corresponding to paleoclimatic changes and Cape buffalo colonisation of southern Africa. The results of this study have implications for buffalo management and conservation, particularly in the context of the predicted increase in aridity and temperature in southern Africa over the next century as a result of climate change.
Collapse
Affiliation(s)
- Deon de Jager
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Brigitte Glanzmann
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Cindy Harper
- Veterinary Genetics Laboratory, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. Evolution and domestication of the Bovini species. Anim Genet 2020; 51:637-657. [PMID: 32716565 DOI: 10.1111/age.12974] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species - taurine cattle, zebu and yak - and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Yalelaan 104, Utrecht, 3584 CM, The Netherlands
| | - S Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - W Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
El-Khishin DA, Ageez A, Saad ME, Ibrahim A, Shokrof M, Hassan LR, Abouelhoda MI. Sequencing and assembly of the Egyptian buffalo genome. PLoS One 2020; 15:e0237087. [PMID: 32813723 PMCID: PMC7437910 DOI: 10.1371/journal.pone.0237087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/20/2020] [Indexed: 01/09/2023] Open
Abstract
Water buffalo (Bubalus bubalis) is an important source of meat and milk in countries with relatively warm weather. Compared to the cattle genome, a little has been done to reveal its genome structure and genomic traits. This is due to the complications stemming from the large genome size, the complexity of the genome, and the high repetitive content. In this paper, we introduce a high-quality draft assembly of the Egyptian water buffalo genome. The Egyptian breed is used as a dual purpose animal (milk/meat). It is distinguished by its adaptability to the local environment, quality of feed changes, as well as its high resistance to diseases. The genome assembly of the Egyptian water buffalo has been achieved using a reference-based assembly workflow. Our workflow significantly reduced the computational complexity of the assembly process, and improved the assembly quality by integrating different public resources. We also compared our assembly to the currently available draft assemblies of water buffalo breeds. A total of 21,128 genes were identified in the produced assembly. A list of milk virgin-related genes; milk pregnancy-related genes; milk lactation-related genes; milk involution-related genes; and milk mastitis-related genes were identified in the assembly. Our results will significantly contribute to a better understanding of the genetics of the Egyptian water buffalo which will eventually support the ongoing breeding efforts and facilitate the future discovery of genes responsible for complex processes of dairy, meat production and disease resistance among other significant traits.
Collapse
Affiliation(s)
- Dina A. El-Khishin
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- * E-mail:
| | - Amr Ageez
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Faculty of Biotechnology, MSA University, October City, Egypt
| | - Mohamed E. Saad
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Department of Biology, Taibah University, Almadinah Almonawarah, KSA
| | - Amr Ibrahim
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Moustafa Shokrof
- Centre for Informatics Sciences, Nile University Giza, October city, Egypt
- Department of Computer Science, University of California at Davis, Davis, CA, United States of America
| | - Laila R. Hassan
- Animal Production Research Institute, Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Mohamed I. Abouelhoda
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Luo X, Zhou Y, Zhang B, Zhang Y, Wang X, Feng T, Li Z, Cui K, Wang Z, Luo C, Li H, Deng Y, Lu F, Han J, Miao Y, Mao H, Yi X, Ai C, Wu S, Li A, Wu Z, Zhuo Z, Da Giang D, Mitra B, Vahidi MF, Mansoor S, Al-Bayatti SA, Sari EM, Gorkhali NA, Prastowo S, Shafique L, Ye G, Qian Q, Chen B, Shi D, Ruan J, Liu Q. Understanding divergent domestication traits from the whole-genome sequencing of swamp- and river-buffalo populations. Natl Sci Rev 2020; 7:686-701. [PMID: 34692087 PMCID: PMC8289072 DOI: 10.1093/nsr/nwaa024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/27/2019] [Accepted: 02/12/2020] [Indexed: 01/01/2023] Open
Abstract
Abstract
Domesticated buffaloes have been integral to rice-paddy agro-ecosystems for millennia, yet relatively little is known about the buffalo genomics. Here, we sequenced and assembled reference genomes for both swamp and river buffaloes and we re-sequenced 230 individuals (132 swamp buffaloes and 98 river buffaloes) sampled from across Asia and Europe. Beyond the many actionable insights that our study revealed about the domestication, basic physiology and breeding of buffalo, we made the striking discovery that the divergent domestication traits between swamp and river buffaloes can be explained with recent selections of genes on social behavior, digestion metabolism, strengths and milk production.
Collapse
Affiliation(s)
- Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yu Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Bing Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Xiaobo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Chan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Huaming Mao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyan Yi
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cheng Ai
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shigang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Alun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhichao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zijun Zhuo
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Do Da Giang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Bacgiang Agriculture and Forestry University, Bacgiang 230000, Vietnam
| | - Bikash Mitra
- Cellular Immunology Lab, Department of Zoology, University of North Bengal, Siligun 734013, India
| | - Mohammad Farhad Vahidi
- Animal Biotechnology Department, Agricultural Biotechnology Research Institute of Iran-North Region, Agricultural Research, Education and Extension Organization, Rasht 999067, Iran
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 999010, Pakistan
| | - Sahar Ahmed Al-Bayatti
- Animal Genetic Sources Department, Directorate of Animal Resources, Ministry of Agriculture, Baghdad 19207, Iraq
| | - Eka Meutia Sari
- Department of Animal Science, Faculty of Agriculture, Syiah Kuala University, Darussalam-Banda Aceh 23111, Indonesia
| | - Neena Amatya Gorkhali
- Animal Breeding Division, National Animal Science Research Institute, Nepal Agriculture Research Council, Khumaltar 999098, Nepal
| | - Sigit Prastowo
- Animal Science Department Universitas Sebelas Maret, Surakarta 999006, Indonesia
| | - Laiba Shafique
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Guoyou Ye
- International Rice Research Institute, Manila 999005, Philippines
| | - Qian Qian
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
13
|
Tavalire HF, Hoal EG, le Roex N, van Helden PD, Ezenwa VO, Jolles AE. Risk alleles for tuberculosis infection associate with reduced immune reactivity in a wild mammalian host. Proc Biol Sci 2019; 286:20190914. [PMID: 31311473 PMCID: PMC6661349 DOI: 10.1098/rspb.2019.0914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Integrating biological processes across scales remains a central challenge in disease ecology. Genetic variation drives differences in host immune responses, which, along with environmental factors, generates temporal and spatial infection patterns in natural populations that epidemiologists seek to predict and control. However, genetics and immunology are typically studied in model systems, whereas population-level patterns of infection status and susceptibility are uniquely observable in nature. Despite obvious causal connections, organizational scales from genes to host outcomes to population patterns are rarely linked explicitly. Here we identify two loci near genes involved in macrophage (phagocyte) activation and pathogen degradation that additively increase risk of bovine tuberculosis infection by up to ninefold in wild African buffalo. Furthermore, we observe genotype-specific variation in IL-12 production indicative of variation in macrophage activation. Here, we provide measurable differences in infection resistance at multiple scales by characterizing the genetic and inflammatory variation driving patterns of infection in a wild mammal.
Collapse
Affiliation(s)
- Hannah F. Tavalire
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Eileen G. Hoal
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nikki le Roex
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Vanessa O. Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna E. Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
14
|
Goud ESK, Pandey M, Singh C, Vedamurthy GV, Singh D, Onteru SK. Effect of Dioxins in Milk on the 3D Cultured Primary Buffalo Hepatocyte Model System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8007-8019. [PMID: 31268702 DOI: 10.1021/acs.jafc.9b03384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cow and human milk have been reported to contain dioxins ranging from 0.023 to 26.46 and 0.88 to 19 pg/g of fat, respectively. However, the toxic effects of the dioxins in the milk in this range of concentrations were not explored. Therefore, considering the outbred livestock tissues as better models than inbred laboratory animals, the present study targeted to study the effect of dioxins present in the milk on three-dimensionally (3D) cultured buffalo primary hepatocyte spheroids. The spheroids were treated with a model dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), directly and also through milk fat at different concentrations (i.e, 0.02-20 pg/mL) for 24 h. Among the liver-cell-specific (ALB, HNF4α, and AFP) genes, a similar ALB and upregulated HNF4α expression at all treatments indicated the functional and transcriptionally active hepatocyte spheroids. Supportingly, no significant difference in the antiapoptotic gene expression between the treatments of milk fat and milk fat containing dioxins indicated the survivability of the spheroids during dioxin treatments. Among the selected TCDD responsive (CYP1A1, CYP1A2, AHR, CYP1B1, and TIPARP) genes, a nonsignificant increasing trend of the CYP1A1 expression was observed from 0.2 to 10 pg/mL of TCDD concentration through milk fat. This pattern was similar to the reported insensitive response of human primary hepatocytes toward dioxins than that of rat primary hepatocytes. This may indicate that the buffalo hepatocyte spheroids could be better models than rats for TCDD hepatotoxic studies. Further, TCDD in the milk in the range of 0.02-20 pg/mL concentration may not be very hepatotoxic.
Collapse
Affiliation(s)
- Emmagouni Sharath Kumar Goud
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division , ICAR-National Dairy Research Institute , Karnal 132001 , India
| | - Mamta Pandey
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division , ICAR-National Dairy Research Institute , Karnal 132001 , India
| | - Chhama Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division , ICAR-National Dairy Research Institute , Karnal 132001 , India
| | - Gowdar Veerappa Vedamurthy
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division , ICAR-National Dairy Research Institute , Karnal 132001 , India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division , ICAR-National Dairy Research Institute , Karnal 132001 , India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division , ICAR-National Dairy Research Institute , Karnal 132001 , India
| |
Collapse
|
15
|
Mintoo AA, Zhang H, Chen C, Moniruzzaman M, Deng T, Anam M, Emdadul Huque QM, Guang X, Wang P, Zhong Z, Han P, Khatun A, Awal TM, Gao Q, Liang X. Draft genome of the river water buffalo. Ecol Evol 2019; 9:3378-3388. [PMID: 30962899 PMCID: PMC6434576 DOI: 10.1002/ece3.4965] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 11/25/2022] Open
Abstract
Water buffalo (Bubalus bubalis), a large-sized member of the Bovidae family, is considered as an important livestock species throughout Southeast Asia. In order to better understand the molecular basis of buffalo improvement and breeding, we sequenced and assembled the genome (2n=50) of a river buffalo species Bubalus bubalis from Bangladesh. Its genome size is 2.77 Gb, with a contig N50 of 25 kb and the scaffold N50 of 6.9 Mbp. Based on the assembled genome, we annotated 24,613 genes for future functional genomics studies. Phylogenetic tree analysis of cattle and water buffalo lineages showed that they diverged about 5.8-9.8 million years ago. Our findings provide an insight into the water buffalo genome which will contribute in further research on buffalo such as molecular breeding, understanding complex traits, conservation, and biodiversity.
Collapse
Affiliation(s)
- Abdul Awal Mintoo
- Lal Teer Seed LimitedDhakaBangladesh
- Lal Teer Livestock LimitedDhakaBangladesh
- MNT Life Sciences CenterGazipurBangladesh
| | - Hailin Zhang
- BGI‐Genomics, BGI‐ShenzhenShenzhenChina
- BGI Education CenterUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research InstituteChinese Academy of Agricultural SciencesNanningChina
| | - Mahbub Anam
- Lal Teer Seed LimitedDhakaBangladesh
- Lal Teer Livestock LimitedDhakaBangladesh
- MNT Life Sciences CenterGazipurBangladesh
| | | | | | - Ping Wang
- BGI‐Genomics, BGI‐ShenzhenShenzhenChina
| | | | | | | | - Tabith M. Awal
- Lal Teer Seed LimitedDhakaBangladesh
- Lal Teer Livestock LimitedDhakaBangladesh
- MNT Life Sciences CenterGazipurBangladesh
| | - Qiang Gao
- BGI‐Genomics, BGI‐ShenzhenShenzhenChina
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research InstituteChinese Academy of Agricultural SciencesNanningChina
| |
Collapse
|
16
|
Tavalire HF, Beechler BR, Buss PE, Gorsich EE, Hoal EG, le Roex N, Spaan JM, Spaan RS, van Helden PD, Ezenwa VO, Jolles AE. Context-dependent costs and benefits of tuberculosis resistance traits in a wild mammalian host. Ecol Evol 2018; 8:12712-12726. [PMID: 30619576 PMCID: PMC6308860 DOI: 10.1002/ece3.4699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Disease acts as a powerful driver of evolution in natural host populations, yet individuals in a population often vary in their susceptibility to infection. Energetic trade-offs between immune and reproductive investment lead to the evolution of distinct life history strategies, driven by the relative fitness costs and benefits of resisting infection. However, examples quantifying the cost of resistance outside of the laboratory are rare. Here, we observe two distinct forms of resistance to bovine tuberculosis (bTB), an important zoonotic pathogen, in a free-ranging African buffalo (Syncerus caffer) population. We characterize these phenotypes as "infection resistance," in which hosts delay or prevent infection, and "proliferation resistance," in which the host limits the spread of lesions caused by the pathogen after infection has occurred. We found weak evidence that infection resistance to bTB may be heritable in this buffalo population (h 2 = 0.10) and comes at the cost of reduced body condition and marginally reduced survival once infected, but also associates with an overall higher reproductive rate. Infection-resistant animals thus appear to follow a "fast" pace-of-life syndrome, in that they reproduce more quickly but die upon infection. In contrast, proliferation resistance had no apparent costs and was associated with measures of positive host health-such as having a higher body condition and reproductive rate. This study quantifies striking phenotypic variation in pathogen resistance and provides evidence for a link between life history variation and a disease resistance trait in a wild mammalian host population.
Collapse
Affiliation(s)
- Hannah F. Tavalire
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
- The Institute of Ecology and EvolutionUniversity of OregonEugeneOregon
- Present address:
Prevention Science InstituteUniversity of OregonEugeneOregon
- Present address:
Institute of Ecology and EvolutionUniversity of OregonEugeneOregon
| | | | | | - Erin E. Gorsich
- College of Veterinary MedicineOregon State UniversityCorvallisOregon
- Present address:
Erin E. Gorsich, Zeeman Institute: Systems Biology and Infectious Disease Epidemiology Research (SBIDER)University of WarwickCoventryUK
- Present address:
School of Life SciencesUniversity of WarwickCoventryUK
| | - Eileen G. Hoal
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Nikki le Roex
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Johannie M. Spaan
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Robert S. Spaan
- Department of Fisheries and WildlifeOregon State UniversityCorvallisOregon
| | - Paul D. van Helden
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Vanessa O. Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgia
| | - Anna E. Jolles
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
- College of Veterinary MedicineOregon State UniversityCorvallisOregon
| |
Collapse
|
17
|
Williams JL, Iamartino D, Pruitt KD, Sonstegard T, Smith TPL, Low WY, Biagini T, Bomba L, Capomaccio S, Castiglioni B, Coletta A, Corrado F, Ferré F, Iannuzzi L, Lawley C, Macciotta N, McClure M, Mancini G, Matassino D, Mazza R, Milanesi M, Moioli B, Morandi N, Ramunno L, Peretti V, Pilla F, Ramelli P, Schroeder S, Strozzi F, Thibaud-Nissen F, Zicarelli L, Ajmone-Marsan P, Valentini A, Chillemi G, Zimin A. Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50). Gigascience 2018; 6:1-6. [PMID: 29048578 PMCID: PMC5737279 DOI: 10.1093/gigascience/gix088] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/28/2017] [Indexed: 11/12/2022] Open
Abstract
Water buffalo is a globally important species for agriculture and local economies. A de novo assembled, well-annotated reference sequence for the water buffalo is an important prerequisite for studying the biology of this species, and is necessary to manage genetic diversity and to use modern breeding and genomic selection techniques. However, no such genome assembly has been previously reported. There are 2 species of domestic water buffalo, the river (2 n = 50) and the swamp (2 n = 48) buffalo. Here we describe a draft quality reference sequence for the river buffalo created from Illumina GA and Roche 454 short read sequences using the MaSuRCA assembler. The assembled sequence is 2.83 Gb, consisting of 366 983 scaffolds with a scaffold N50 of 1.41 Mb and contig N50 of 21 398 bp. Annotation of the genome was supported by transcriptome data from 30 tissues and identified 21 711 predicted protein coding genes. Searches for complete mammalian BUSCO gene groups found 98.6% of curated single copy orthologs present among predicted genes, which suggests a high level of completeness of the genome. The annotated sequence is available from NCBI at accession GCA_000471725.1.
Collapse
Affiliation(s)
- John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.,Parco Tecnologico Padano, Via Einstein, 26500, Lodi, Italy
| | - Daniela Iamartino
- AIA-LGS, Associazione Italiana Allevatori, Laboratorio Genetica e Servizi, Via Bergamo 292, 26100 Cremona (CR), Italy.,Parco Tecnologico Padano, Via Einstein, 26500, Lodi, Italy
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tad Sonstegard
- Recombinetics, 1246 University Ave W, St Paul, MN 55104, USA
| | - Timothy P L Smith
- USDA-ARS U.S. Meat Animal Research Center, 844 Road 313, Clay Center, NE 68933, USA
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, S. Giovanni Rotondo, Italy
| | - Lorenzo Bomba
- Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza PC, Italy.,Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, CB10 1HH, UK
| | - Stefano Capomaccio
- Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza PC, Italy
| | - Bianca Castiglioni
- CNR, Istituto di Biologia e Biotecnologia Agraria Via Einstein, 26900 Lodi, Italy
| | - Angelo Coletta
- ANASB Associazione Nazionale Allevatori Specie Bufalina, Centuran, Caserta, Italy
| | - Federica Corrado
- IZSM, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2-80055, Portici (NA), Italy
| | - Fabrizio Ferré
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna Alma Mater, Via Belmeloro 8/2, 40126 Bologna, Italy
| | - Leopoldo Iannuzzi
- CNR, Istituto Per Il Sistema Produzione Animale In Ambiente Mediterraneo, Via Argine, 1085, 80147 Napoli, Italy
| | - Cynthia Lawley
- Illumina, Inc. 499 Illinois St. Suite 210, San Francisco, CA 94158, USA
| | - Nicolò Macciotta
- Università degli Studi di Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Matthew McClure
- USDA, ARS, Animal Genomics and Improvement Laboratory, Building 306 BARC-East, Beltsville, MD 20705-2350, USA.,Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Co., Cork, P72 × 050, Ireland
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Donato Matassino
- ConSDABI, Consorzio per la Sperimentazione, Divulgazione e Applicazione di Biotecniche Innovative, Contrada Piano Cappelle, Benevento (BN), Italy
| | - Raffaele Mazza
- AIA-LGS, Associazione Italiana Allevatori, Laboratorio Genetica e Servizi, Via Bergamo 292, 26100 Cremona (CR), Italy
| | - Marco Milanesi
- Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza PC, Italy
| | - Bianca Moioli
- CRA Centro di Ricerca per la Produzione delle Carni ed il Miglioramento Genetico, Via Salaria 31, 00015, Montorotondo, Italy
| | | | - Luigi Ramunno
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (NA), Italy
| | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Napoli, Italy
| | - Fabio Pilla
- Department of Agriculture, Environment and Food, University of Molise
| | - Paola Ramelli
- Parco Tecnologico Padano, Via Einstein, 26500, Lodi, Italy
| | - Steven Schroeder
- USDA, ARS, Animal Genomics and Improvement Laboratory, Building 306 BARC-East, Beltsville, MD 20705-2350, USA
| | - Francesco Strozzi
- Parco Tecnologico Padano, Via Einstein, 26500, Lodi, Italy.,Enterome, 94-96 Avenue Ledru-Rollin, 75011 Paris, France
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Luigi Zicarelli
- Department of Agriculture, Environment and Food, University of Molise
| | - Paolo Ajmone-Marsan
- Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza PC, Italy
| | - Alessio Valentini
- Universit à della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Giovanni Chillemi
- SCAI Super Computing Applications and Innovation Department, Cineca, Via dei Tizii 6, 00185, Rome
| | | |
Collapse
|
18
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
19
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|